Background:Excessive use of inorganic trace minerals(ITMs)in swine production leads to high fecal mineral excretion and environmental risks,while most studies on organic trace minerals(OTMs)focus on single elements,wi...Background:Excessive use of inorganic trace minerals(ITMs)in swine production leads to high fecal mineral excretion and environmental risks,while most studies on organic trace minerals(OTMs)focus on single elements,with limited data on the synergistic effects and molecular mechanisms of combined OTMs(Fe,Cu,Mn,Zn)in growing-finishing pigs.Methods:This study aimed to investigate the effects of graded levels of micromineral proteinates(combined OTMs)on growth performance,mineral metabolism,and mRNA expression of mineral regulatory proteins.A total of 360 crossbred Duroc×Landrace×Large White pigs(initial body weight 47.1±4.8 kg)were randomly assigned to 6 dietary treatments:basal diet without microminerals(CON),basal diet with ITMs at commercially recommended levels(IT),and basal diets with 15%(OT 15%),25%(OT 25%),35%(OT 35%)commercially recommended levels(CRL)of combined micromineral proteinates.After a 70-day feeding trial,samples were analyzed using ICP-OES,ELISA,and RT-qPCR.Results:Results showed that reduced levels(15-35%CRL)of micromineral proteinates did not significantly affect average daily gain,average daily feed intake,or feed conversion ratio(gain-to-feed ratio)compared to IT(P>0.05),but significantly increased plasma Cu(1.73-1.83μg/mL)and Zn(1.72-1.97μg/mL)concentrations(P<0.05)and elevated activities of Cu/Zn-superoxide dismutase(32.9-35.9 U/L)and manganese superoxide dismutase(20.5-24.1 U/L)compared to CON(P<0.05),with no significant differences from IT(P>0.05).Fecal excretion of Fe,Cu,Mn,and Zn was significantly reduced by 35-50%in OT 15%-OT 35%groups compared to IT(P<0.05).OT 25%group exhibited the highest apparent absorptivity of Fe(38.5%),Cu(27.8%),and Zn(42.4%)(P<0.05),which was associated with significantly regulated mRNA expression of mineral regulatory proteins:upregulated DMT1,FPN1,ZIP4,and MT1A in the duodenum,and modulated HAMP,ATP7B,ZIP14,and ZnT1 in the liver(P<0.05).Conclusion:In conclusion,dietary supplementation with 25%CRL or less of combined micromineral proteinates can fully meet the nutritional needs of growing-finishing pigs,improve mineral absorptivity,and reduce fecal mineral excretion by regulating intestinal and hepatic mineral transport and homeostatic proteins,providing a sustainable alternative to high-dose ITMs.展开更多
The excessive buildup of neurotoxicα-synuclein plays a pivotal role in the pathogenesis of Parkinson's disease,highlighting the urgent need for innovative therapeutic strategies to promoteα-synuclein clearance,p...The excessive buildup of neurotoxicα-synuclein plays a pivotal role in the pathogenesis of Parkinson's disease,highlighting the urgent need for innovative therapeutic strategies to promoteα-synuclein clearance,particularly given the current lack of disease-modifying treatments.The glymphatic system,a recently identified perivascular fluid transport network,is crucial for clearing neurotoxic proteins.This review aims to synthesize current knowledge on the role of the glymphatic system inα-synuclein clearance and its implications for the pathology of Parkinson's disease while emphasizing potential therapeutic strategies and areas for future research.The review begins with an overview of the glymphatic system and details its anatomical structure and physiological functions that facilitate cerebrospinal fluid circulation and waste clearance.It summarizes emerging evidence from neuroimaging and experimental studies that highlight the close correlation between the glymphatic system and clinical symptom severity in patients with Parkinson's disease,as well as the effect of glymphatic dysfunction onα-synuclein accumulation in Parkinson's disease models.Subsequently,the review summarizes the mechanisms of glymphatic system impairment in Parkinson's disease,including sleep disturbances,aquaporin-4 impairment,and mitochondrial dysfunction,all of which diminish glymphatic system efficiency.This creates a vicious cycle that exacerbatesα-synuclein accumulation and worsens Parkinson's disease.The therapeutic perspectives section outlines strategies for enhancing glymphatic activity,such as improving sleep quality and pharmacologically targeting aquaporin-4 or its subcellular localization.Promising interventions include deep brain stimulation,melatonin supplementation,γ-aminobutyric acid modulation,and non-invasive methods(such as exercise and bright-light therapy),multisensoryγstimulation,and ultrasound therapy.Moreover,identifying neuroimaging biomarkers to assess glymphatic flow as an indicator ofα-synuclein burden could refine Parkinson's disease diagnosis and track disease progression.In conclusion,the review highlights the critical role of the glymphatic system inα-synuclein clearance and its potential as a therapeutic target in Parkinson's disease.It advocates for further research to elucidate the specific mechanisms by which the glymphatic system clears misfoldedα-synuclein and the development of imaging biomarkers to monitor glymphatic activity in patients with Parkinson's disease.Findings from this review suggest that enhancing glymphatic clearance is a promising strategy for reducingα-synuclein deposits and mitigating the progression of Parkinson's disease.展开更多
Intracerebral hemorrhage is the most dangerous subtype of stroke,characterized by high mortality and morbidity rates,and frequently leads to significant secondary white matter injury.In recent decades,studies have rev...Intracerebral hemorrhage is the most dangerous subtype of stroke,characterized by high mortality and morbidity rates,and frequently leads to significant secondary white matter injury.In recent decades,studies have revealed that gut microbiota can communicate bidirectionally with the brain through the gut microbiota–brain axis.This axis indicates that gut microbiota is closely related to the development and prognosis of intracerebral hemorrhage and its associated secondary white matter injury.The NACHT,LRR,and pyrin domain-containing protein 3(NLRP3)inflammasome plays a crucial role in this context.This review summarizes the dysbiosis of gut microbiota following intracerebral hemorrhage and explores the mechanisms by which this imbalance may promote the activation of the NLRP3 inflammasome.These mechanisms include metabolic pathways(involving short-chain fatty acids,lipopolysaccharides,lactic acid,bile acids,trimethylamine-N-oxide,and tryptophan),neural pathways(such as the vagus nerve and sympathetic nerve),and immune pathways(involving microglia and T cells).We then discuss the relationship between the activated NLRP3 inflammasome and secondary white matter injury after intracerebral hemorrhage.The activation of the NLRP3 inflammasome can exacerbate secondary white matter injury by disrupting the blood–brain barrier,inducing neuroinflammation,and interfering with nerve regeneration.Finally,we outline potential treatment strategies for intracerebral hemorrhage and its secondary white matter injury.Our review highlights the critical role of the gut microbiota–brain axis and the NLRP3 inflammasome in white matter injury following intracerebral hemorrhage,paving the way for exploring potential therapeutic approaches.展开更多
Protein aggregates,mitochondrial import stress and neurodegenerative disorders:A salient hallmark of several neurodegenerative diseases,including Parkinson’s disease,is the abundance of protein aggregates(Goiran et a...Protein aggregates,mitochondrial import stress and neurodegenerative disorders:A salient hallmark of several neurodegenerative diseases,including Parkinson’s disease,is the abundance of protein aggregates(Goiran et al.,2022).This molecular event is believed to lead to activation of stress pathways ultimately resulting in cellular dysfunction(Eldeeb et al.,2022).Accordingly,many lines of research investigations focused on dampening the formation of protein aggregates or augmenting the clearance of protein aggregates as a potential therapeutic strategy to counteract the progression of neurodegenerative diseases,albeit with little success(Costa-Mattioli and Walter,2020).Cell stress cues such as the accumulation of protein aggregates lead to the activation of stress response pathways that aid cells in responding to the damage.Despite the notion that the transient activation of these pathways helps cells cope with stressors,persistent activation can induce unwanted apoptosis of cells and reduce overall tissue strength as well as lead to an accumulation of aggregation-prone proteins(Hetz and Papa,2018).Mutations in proteins involved in stress signaling termination can cause conditions like ataxia and early-onset dementia(Conroy et al.,2014).Therefore,it is crucial for stress response signaling to be turned off once conditions have improved.Nevertheless,the mechanisms by which cells silence these signals are still elusive.展开更多
Autophagy is well-known for delivering cargo materials to lysosomes for proteolytic digestion.Recently,autophagy has emerged as a key mechanism in unconventional protein secretion(UPS).This perspective introduces unco...Autophagy is well-known for delivering cargo materials to lysosomes for proteolytic digestion.Recently,autophagy has emerged as a key mechanism in unconventional protein secretion(UPS).This perspective introduces unconventional secretion pathways,focusing on secretory autophagy and its role in secreting protein aggregates associated with neurodegenerative disorders.We also explore additional neuronal functions of secretory autophagy beyond the release of protein aggregates.We propose autophagosomes as transport organelles that deliver cargo material directly from the endoplasmatic reticulum(ER)to the plasma membrane rather than solely to lysosomes.展开更多
Neuroserpin,a secreted protein that belongs to the serpin superfamily of serine protease inhibitors,is highly expressed in the central nervous system and plays multiple roles in brain development and pathology.As a na...Neuroserpin,a secreted protein that belongs to the serpin superfamily of serine protease inhibitors,is highly expressed in the central nervous system and plays multiple roles in brain development and pathology.As a natural inhibitor of recombinant tissue plasminogen activator,neuroserpin inhibits the increased activity of tissue plasminogen activator in ischemic conditions and extends the therapeutic windows of tissue plasminogen activator for brain ischemia.However,the neuroprotective mechanism of neuroserpin against ischemic stroke remains unclear.In this study,we used a mouse model of middle cerebral artery occlusion and oxygen-glucose deprivation/reperfusion-injured cortical neurons as in vivo and in vitro ischemia-reperfusion models,respectively.The models were used to investigate the neuroprotective effects of neuroserpin.Our findings revealed that endoplasmic reticulum stress was promptly triggered following ischemia,initially manifesting as the acute activation of endoplasmic reticulum stress transmembrane sensors and the suppression of protein synthesis,which was followed by a later apoptotic response.Notably,ischemic stroke markedly downregulated the expression of neuroserpin in cortical neurons.Exogenous neuroserpin reversed the activation of multiple endoplasmic reticulum stress signaling molecules,the reduction in protein synthesis,and the upregulation of apoptotic transcription factors.This led to a reduction in neuronal death induced by oxygen/glucose deprivation and reperfusion,as well as decreased cerebral infarction and neurological dysfunction in mice with middle cerebral artery occlusion.However,the neuroprotective effects of neuroserpin were markedly inhibited by endoplasmic reticulum stress activators thapsigargin and tunicamycin.Our findings demonstrate that neuroserpin exerts neuroprotective effects on ischemic stroke by suppressing endoplasmic reticulum stress.展开更多
Microglia,the resident immune cells of the central nervous system,exhibit a wide array of functional states,even in their so-called“homeostatic”condition,when they are not actively responding to overt pathological s...Microglia,the resident immune cells of the central nervous system,exhibit a wide array of functional states,even in their so-called“homeostatic”condition,when they are not actively responding to overt pathological stimuli.These functional states can be visualized using a combination of multi-omics techniques(e.g.,gene and protein expression,posttranslational modifications,mRNA profiling,and metabolomics),and,in the case of homeostatic microglia,are largely defined by the global(e.g.,genetic variations,organism’s age,sex,circadian rhythms,and gut microbiota)as well as local(specific area of the brain,immediate microglial surrounding,neuron-glia interactions and synaptic density/activity)signals(Paolicelli et al.,2022).While phenomics(i.e.,ultrastructural microglial morphology and motility)is also one of the key microglial state-defining parameters,it is known that cells with similar morphology can belong to different functional states.展开更多
Neurodegenerative diseases are prevalent conditions that greatly impact human health.These diseases are primarily characterized by the progressive loss and eventual death of neuronal function,although the precise mech...Neurodegenerative diseases are prevalent conditions that greatly impact human health.These diseases are primarily characterized by the progressive loss and eventual death of neuronal function,although the precise mechanisms underlying these processes remain incompletely understood.Iron is an essential trace element in the human body,playing a crucial role in various biological processes.The maintenance of iron homeostasis relies on the body's intricate and nuanced regulatory mechanisms.In recent years,considerable attention has been directed toward the relationship between dysregulated iron homeostasis and neurodegenerative diseases.The regulation of iron homeostasis within cells is crucial for maintaining proper nervous system function.Research has already revealed that disruptions in iron homeostasis may lead to ferroptosis and oxidative stress,which,in turn,can impact neuronal health and contribute to the development of neurodegenerative diseases.This article primarily explores the intimate relationship between iron homeostasis and neurodegenerative diseases,aiming to provide novel insights and strategies for treating these debilitating conditions.展开更多
Post-translational modification of spastin enables precise spatiotemporal control of its microtubule severing activity.However,the detailed mechanism by which spastin turnover is regulated in the context of neurite ou...Post-translational modification of spastin enables precise spatiotemporal control of its microtubule severing activity.However,the detailed mechanism by which spastin turnover is regulated in the context of neurite outgrowth remains unknown.Here,we found that spastin interacted with ubiquitin and was significantly degraded by K48-mediated poly-ubiquitination.Cullin3 facilitated spastin degradation and ubiquitination.RING-box protein 1,but not RING-box protein 2,acted synergistically with Cullin3 protein to regulate spastin degradation.Overexpression of Culin3 or BRX1 markedly suppressed spastin expression,and inhibited spastin-mediated microtubule severing and promotion of neurite outgrowth.Moreover,USP14 interacted directly with spastin to mediate its deubiquitination.USP14 overexpression significantly increased spastin expression and suppressed its ubiquitination and degradation.Although co-expression of spastin and USP14 did not enhance microtubule severing,it did increase neurite length in hippocampal neurons.Taken together,these findings elucidate the intricate regulatory mechanisms of spastin turnover,highlighting the roles of the Cullin-3–Ring E3 ubiquitin ligase complex and USP14 in orchestrating its ubiquitination and degradation.The dynamic interplay between these factors governs spastin stability and function,ultimately influencing microtubule dynamics and neuronal morphology.These insights shed light on potential therapeutic targets for neurodegenerative disorders associated with spastin defects.展开更多
With the growth of global protein demand and the development of plant-based foods,pea protein,as a low-allergenic,nutritionally balanced and environmentally friendly plant protein,has shown great potential in replacin...With the growth of global protein demand and the development of plant-based foods,pea protein,as a low-allergenic,nutritionally balanced and environmentally friendly plant protein,has shown great potential in replacing animal protein.Pea protein is mainly composed of globulin and albumin,with a protein content of 20%to 30%,and has a balanced amino acid composition,as well as being rich in minerals and dietary fiber.It also possesses good foaming,gelling,emulsifying and antioxidant functional properties.However,pea protein also has inherent defects that limit its application in the food industry.This article systematically reviews the extraction techniques,functional properties,modification methods and application fields of pea protein,and focuses on evaluating the effects of different extraction and modification strategies on protein yield and functional properties.Research shows that ultrasonic-assisted alkaline extraction can reduce solvent usage by 55%,shorten extraction time by 50%,and increase extraction rate by 12.51%;under optimized conditions,ultrafiltration membrane technology can achieve a protein purity of 91%.In terms of modification,ultrasonic treatment increases foaming capacity by 37.4%,and phenolic cross-linking increases gel strength from 3.0 kPa to 48 kPa.This article provides data support and theoretical reference for the efficient extraction and functional optimization of pea protein,and has promoting significance for its wide application in plant-based foods.展开更多
Stem cells are pluripotent cells that can divide and differentiate,forming many different types of cells.Stem cells can be obtained from various sources,with embryonic stem cells being the most advantageous as they po...Stem cells are pluripotent cells that can divide and differentiate,forming many different types of cells.Stem cells can be obtained from various sources,with embryonic stem cells being the most advantageous as they possess a broad dividing potential.When the standard treatment proves ineffective,stem cells are typically utilized as a final option.Infections and childhood malignancies are among the significant causes of mortality in the pediatric population.Stem cell therapy has shown a decrease in morbidity and mortality when used in patients with favorable conditions like young age and lack of comorbidities.This review discusses how stem cells are prepared and used in treating pediatric diseases like X-linked agammaglobulinemia,diabetes mellitus,aplastic anemia,infections,and leukemia.Technological advancement has played a significant role in producing more specific stem cells using genetic modification methods like clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9,which produce stem cells that target a particular cell type,e.g.,myocytes and hematopoietic cells,further increasing the effectiveness of the therapy.We address the obstacles faced when conducting research related to stem cells,including ethical and legal issues,which hinder the use of this therapy in some fields.We also indicate recommendations for increasing the efficacy of stem cell therapy in the pediatric population.展开更多
Cholelithiasis has a complex pathogenesis,necessitating better therapeutic and preventive strategies.We recently read with interest Wang et al’s study on lysine acetyltransferase 2A(KAT2A)-mediated adenosine monophos...Cholelithiasis has a complex pathogenesis,necessitating better therapeutic and preventive strategies.We recently read with interest Wang et al’s study on lysine acetyltransferase 2A(KAT2A)-mediated adenosine monophosphate-activated protein kinase(AMPK)succinylation in cholelithiasis.Using mouse models and gallbladder mucosal epithelial cells,they found that KAT2A inhibits gallstones through AMPK K170 succinylation,thereby activating the AMPK/silent information regulator 1 pathway to reduce inflammation and pyroptosis.This study is the first to connect lysine succinylation with cholelithiasis,offering new insights and identifying succinylation as a potential therapeutic target.Future research should confirm these findings using patient samples,investigate other posttranslational modifications,and use structural biology to clarify succinylationinduced conformational changes,thereby bridging basic research to clinical applications.展开更多
A key pathological feature of Parkinson’s disease(PD)is that lysosomes are overwhelmed with cellular materials that need to be degraded and cleared.While the build-up of protein is characteristic of neurodegenerative...A key pathological feature of Parkinson’s disease(PD)is that lysosomes are overwhelmed with cellular materials that need to be degraded and cleared.While the build-up of protein is characteristic of neurodegenerative diseases such as PD and Alzheimer’s disease(AD)and is thought to reflect lysosome dysfunction,lipid accumulation may also contribute to and be indicative of severe lysosomal dysfunction.Much is known about the detrimental effects of glucosylceramide accumulation in PD lysosomes.展开更多
GEMIN5 is a predominantly cytoplasmic multifunctional protein, known to be involved in recognizing snRNAs through its WD40 repeats domain placed at the N-terminus. A dimerization domain in the middle region acts as a ...GEMIN5 is a predominantly cytoplasmic multifunctional protein, known to be involved in recognizing snRNAs through its WD40 repeats domain placed at the N-terminus. A dimerization domain in the middle region acts as a hub for protein–protein interaction, while a non-canonical RNA-binding site is placed towards the C-terminus. The singular organization of structural domains present in GEMIN5 enables this protein to perform multiple functions through its ability to interact with distinct partners, both RNAs and proteins. This protein exerts a different role in translation regulation depending on its physiological state, such that while GEMIN5 down-regulates global RNA translation, the C-terminal half of the protein promotes translation of its mRNA. Additionally, GEMIN5 is responsible for the preferential partitioning of mRNAs into polysomes. Besides selective translation, GEMIN5 forms part of distinct ribonucleoprotein complexes, reflecting the dynamic organization of macromolecular complexes in response to internal and external signals. In accordance with its contribution to fundamental cellular processes, recent reports described clinical loss of function mutants suggesting that GEMIN5 deficiency is detrimental to cell growth and survival. Remarkably, patients carrying GEMIN5 biallelic variants suffer from neurodevelopmental delay, hypotonia, and cerebellar ataxia. Molecular analyses of individual variants, which are defective in protein dimerization, display decreased levels of ribosome association, reinforcing the involvement of the protein in translation regulation. Importantly, the number of clinical variants and the phenotypic spectrum associated with GEMIN5 disorders is increasing as the knowledge of the protein functions and the pathways linked to its activity augments. Here we discuss relevant advances concerning the functional and structural features of GEMIN5 and its separate domains in RNA-binding, protein interactome, and translation regulation, and how these data can help to understand the involvement of protein malfunction in clinical variants found in patients developing neurodevelopmental disorders.展开更多
The global burden of bacterial infections,exacerbated by antimicrobial resistance(AMR),necessitates innovative strategies.Bacterial protein vaccines offer promise by eliciting targeted immunity while circumventing AMR...The global burden of bacterial infections,exacerbated by antimicrobial resistance(AMR),necessitates innovative strategies.Bacterial protein vaccines offer promise by eliciting targeted immunity while circumventing AMR.However,their clinical translation is hindered by their inherently low immunogenicity,often requiring potent adjuvants and advanced delivery systems.Biomembrane nanostructures(e.g.,liposomes,exosomes,and cell membrane-derived nanostructures),characterized by superior biocompatibility,intrinsic targeting ability,and immune-modulating properties,could serve as versatile platforms that potentiate vaccine efficacy by increasing antigen stability,enabling codelivery of immunostimulants,and facilitating targeted delivery to lymphoid tissues/antigen-presenting cells.This intrinsic immunomodulation promotes robust humoral and cellular immune responses to combat bacteria.This review critically reviews(1)key biomembrane nanostructure classes for bacterial protein antigens,(2)design strategies leveraging biomembrane nanostructures to enhance humoral and cellular immune responses,(3)preclinical efficacy against diverse pathogens,and(4)translational challenges and prospects.Biomembrane nanostructure-driven approaches represent a paradigm shift in the development of next-generation bacterial protein vaccines against resistant infections.展开更多
Since the first electron micrograph of“lace-like structures”over 75 years ago,the endoplasmic reticulum(ER)is now viewed as a highly dynamic,constantly remodeling,continuous network of tubules and cisternae that pla...Since the first electron micrograph of“lace-like structures”over 75 years ago,the endoplasmic reticulum(ER)is now viewed as a highly dynamic,constantly remodeling,continuous network of tubules and cisternae that plays an important role in a broad range of cellular activities from calcium regulation to protein synthesis and trafficking.In neurons,the ER extends from the soma through the axon to presynaptic terminals,and throughout the dendritic arbor into as many as half of all postsynaptic dendritic spines at any given time(Falahati et al.,2022).展开更多
Cell function has a tight relationship with cell architecture.Distribution of proteins to the correct compartment is one of the functions of the traffic pathway through the Golgi apparatus.The others are to ensure pro...Cell function has a tight relationship with cell architecture.Distribution of proteins to the correct compartment is one of the functions of the traffic pathway through the Golgi apparatus.The others are to ensure proper protein folding,the addition of post-translational modifications,and delivering to intracellular and extracellular destinations.Astrocytes are fundamental homeostatic cells,controlling multiple aspects of the central nervous system physiology,such as ion balance,nutrients,blood flow,neurotransmitters,and responses to insults.Astrocytes are polarized cells,and,such as neurons,extensively use the secretory pathway for secreting factors and exposing functional receptors,channels,and transporters on the plasma membrane.In this review,we will underline the importance of studying the Golgi apparatus and the secretory pathway in astrocytes,based on the possible tight connection between the Golgi apparatus and astrocytes’homeostatic function.Given the topic of this review,we will provide examples mostly about the Golgi apparatus structure,function,localization,and its involvement in astrocytes’homeostatic response,with an insight into congenital glycosylation disorders,as an example of a potential future field in the study of astrocyte homeostatic failure and Golgi apparatus alteration.展开更多
α-Synuclein accumulation and transmission are vital to the pathogenesis of Parkinson's disease,although the mechanisms underlying misfoldedα-synuclein accumulation and propagation have not been conclusively dete...α-Synuclein accumulation and transmission are vital to the pathogenesis of Parkinson's disease,although the mechanisms underlying misfoldedα-synuclein accumulation and propagation have not been conclusively determined.The expression of low-density lipoprotein receptor–related protein 1,which is abundantly expressed in neurons and considered to be a multifunctional endocytic receptor,is elevated in the neurons of patients with Parkinson's disease.However,whether there is a direct link between low-density lipoprotein receptor–related protein 1 andα-synuclein aggregation and propagation in Parkinson's disease remains unclear.Here,we established animal models of Parkinson's disease by inoculating monkeys and mice withα-synuclein pre-formed fibrils and observed elevated low-density lipoprotein receptor–related protein 1 levels in the striatum and substantia nigra,accompanied by dopaminergic neuron loss and increasedα-synuclein levels.However,low-density lipoprotein receptor–related protein 1 knockdown efficiently rescued dopaminergic neurodegeneration and inhibited the increase inα-synuclein levels in the nigrostriatal system.In HEK293A cells overexpressingα-synuclein fragments,low-density lipoprotein receptor–related protein 1 levels were upregulated only when the N-terminus ofα-synuclein was present,whereas anα-synuclein fragment lacking the N-terminus did not lead to low-density lipoprotein receptor–related protein 1 upregulation.Furthermore,the N-terminus ofα-synuclein was found to be rich in lysine residues,and blocking lysine residues in PC12 cells treated withα-synuclein pre-formed fibrils effectively reduced the elevated low-density lipoprotein receptor–related protein 1 andα-synuclein levels.These findings indicate that low-density lipoprotein receptor–related protein 1 regulates pathological transmission ofα-synuclein from the striatum to the substantia nigra in the nigrostriatal system via lysine residues in theα-synuclein N-terminus.展开更多
Amyloid-β(Aβ)and tau,the two hallmark proteins associated with Alzheimer’s disease(AD),exhibit distinct toxic effects but also interact synergistically within the disease pathology.The prevailing theory in AD patho...Amyloid-β(Aβ)and tau,the two hallmark proteins associated with Alzheimer’s disease(AD),exhibit distinct toxic effects but also interact synergistically within the disease pathology.The prevailing theory in AD pathology-the amyloid cascade hypothesis-highlights the pivotal role of increased processing of the amyloid precursor protein(APP).Initially cleaved by the majorβ-secretase(β-amyloid cleaving enzyme-1,BACE1)in the brain,then undergoes further cleavage by theγ-secretase complex,resulting in the production of Aβ_(40-42)and a set of intracellular C-terminal peptides known as Aβand APP intracellular domain(β-AICDs)and soluble amyloid precursor proteinβ(sAPPβ)(Orobets and Karamyshev,2023).展开更多
基金financially supported by the Hainan Province Science and Technology Special Fund(Grant no:ZDYF2024XDNY187).
文摘Background:Excessive use of inorganic trace minerals(ITMs)in swine production leads to high fecal mineral excretion and environmental risks,while most studies on organic trace minerals(OTMs)focus on single elements,with limited data on the synergistic effects and molecular mechanisms of combined OTMs(Fe,Cu,Mn,Zn)in growing-finishing pigs.Methods:This study aimed to investigate the effects of graded levels of micromineral proteinates(combined OTMs)on growth performance,mineral metabolism,and mRNA expression of mineral regulatory proteins.A total of 360 crossbred Duroc×Landrace×Large White pigs(initial body weight 47.1±4.8 kg)were randomly assigned to 6 dietary treatments:basal diet without microminerals(CON),basal diet with ITMs at commercially recommended levels(IT),and basal diets with 15%(OT 15%),25%(OT 25%),35%(OT 35%)commercially recommended levels(CRL)of combined micromineral proteinates.After a 70-day feeding trial,samples were analyzed using ICP-OES,ELISA,and RT-qPCR.Results:Results showed that reduced levels(15-35%CRL)of micromineral proteinates did not significantly affect average daily gain,average daily feed intake,or feed conversion ratio(gain-to-feed ratio)compared to IT(P>0.05),but significantly increased plasma Cu(1.73-1.83μg/mL)and Zn(1.72-1.97μg/mL)concentrations(P<0.05)and elevated activities of Cu/Zn-superoxide dismutase(32.9-35.9 U/L)and manganese superoxide dismutase(20.5-24.1 U/L)compared to CON(P<0.05),with no significant differences from IT(P>0.05).Fecal excretion of Fe,Cu,Mn,and Zn was significantly reduced by 35-50%in OT 15%-OT 35%groups compared to IT(P<0.05).OT 25%group exhibited the highest apparent absorptivity of Fe(38.5%),Cu(27.8%),and Zn(42.4%)(P<0.05),which was associated with significantly regulated mRNA expression of mineral regulatory proteins:upregulated DMT1,FPN1,ZIP4,and MT1A in the duodenum,and modulated HAMP,ATP7B,ZIP14,and ZnT1 in the liver(P<0.05).Conclusion:In conclusion,dietary supplementation with 25%CRL or less of combined micromineral proteinates can fully meet the nutritional needs of growing-finishing pigs,improve mineral absorptivity,and reduce fecal mineral excretion by regulating intestinal and hepatic mineral transport and homeostatic proteins,providing a sustainable alternative to high-dose ITMs.
基金supported by the National Natural Science Foundation of China,No.81971031(to ZL)the National Key Research and Development Program of China,No.2022YFE0210100(to JFC)+7 种基金the National Natural Science Foundation of China(Original Exploration Project),No.82151308(to JFC)the National Natural Science Foundation of China(Research Fund for International Senior Scientists),No.82150710558(to JFC)Science&Technology Initiative STI2030-Major Projects,No.2021ZD0203400(to JFC)Key Research and Development Program of Zhejiang Province,No.2023C03079(to JFC)Scientific Research Starting Foundation of Oujiang Laboratory(Zhejiang Laboratory for Regenerative Medicine,Vision and Brain Health),No.OJQDSP2022007(to JFC)Project of State Key Laboratory of Ophthalmology,Optometry and Visual Science,Wenzhou Medical University,No.J01-20190101(to JFC)Scientific Research Starting Foundation of Wenzhou Medical University,No.QTJ12003(to JFC)Department of Science and Technology of Zhejiang Province,No.2023ZY1011(to JFC)。
文摘The excessive buildup of neurotoxicα-synuclein plays a pivotal role in the pathogenesis of Parkinson's disease,highlighting the urgent need for innovative therapeutic strategies to promoteα-synuclein clearance,particularly given the current lack of disease-modifying treatments.The glymphatic system,a recently identified perivascular fluid transport network,is crucial for clearing neurotoxic proteins.This review aims to synthesize current knowledge on the role of the glymphatic system inα-synuclein clearance and its implications for the pathology of Parkinson's disease while emphasizing potential therapeutic strategies and areas for future research.The review begins with an overview of the glymphatic system and details its anatomical structure and physiological functions that facilitate cerebrospinal fluid circulation and waste clearance.It summarizes emerging evidence from neuroimaging and experimental studies that highlight the close correlation between the glymphatic system and clinical symptom severity in patients with Parkinson's disease,as well as the effect of glymphatic dysfunction onα-synuclein accumulation in Parkinson's disease models.Subsequently,the review summarizes the mechanisms of glymphatic system impairment in Parkinson's disease,including sleep disturbances,aquaporin-4 impairment,and mitochondrial dysfunction,all of which diminish glymphatic system efficiency.This creates a vicious cycle that exacerbatesα-synuclein accumulation and worsens Parkinson's disease.The therapeutic perspectives section outlines strategies for enhancing glymphatic activity,such as improving sleep quality and pharmacologically targeting aquaporin-4 or its subcellular localization.Promising interventions include deep brain stimulation,melatonin supplementation,γ-aminobutyric acid modulation,and non-invasive methods(such as exercise and bright-light therapy),multisensoryγstimulation,and ultrasound therapy.Moreover,identifying neuroimaging biomarkers to assess glymphatic flow as an indicator ofα-synuclein burden could refine Parkinson's disease diagnosis and track disease progression.In conclusion,the review highlights the critical role of the glymphatic system inα-synuclein clearance and its potential as a therapeutic target in Parkinson's disease.It advocates for further research to elucidate the specific mechanisms by which the glymphatic system clears misfoldedα-synuclein and the development of imaging biomarkers to monitor glymphatic activity in patients with Parkinson's disease.Findings from this review suggest that enhancing glymphatic clearance is a promising strategy for reducingα-synuclein deposits and mitigating the progression of Parkinson's disease.
基金supported by the Guangdong Basic and Applied Basic Research Foundation,No.2023A1515030045(to HS)Presidential Foundation of Zhujiang Hospital of Southern Medical University,No.yzjj2022ms4(to HS)。
文摘Intracerebral hemorrhage is the most dangerous subtype of stroke,characterized by high mortality and morbidity rates,and frequently leads to significant secondary white matter injury.In recent decades,studies have revealed that gut microbiota can communicate bidirectionally with the brain through the gut microbiota–brain axis.This axis indicates that gut microbiota is closely related to the development and prognosis of intracerebral hemorrhage and its associated secondary white matter injury.The NACHT,LRR,and pyrin domain-containing protein 3(NLRP3)inflammasome plays a crucial role in this context.This review summarizes the dysbiosis of gut microbiota following intracerebral hemorrhage and explores the mechanisms by which this imbalance may promote the activation of the NLRP3 inflammasome.These mechanisms include metabolic pathways(involving short-chain fatty acids,lipopolysaccharides,lactic acid,bile acids,trimethylamine-N-oxide,and tryptophan),neural pathways(such as the vagus nerve and sympathetic nerve),and immune pathways(involving microglia and T cells).We then discuss the relationship between the activated NLRP3 inflammasome and secondary white matter injury after intracerebral hemorrhage.The activation of the NLRP3 inflammasome can exacerbate secondary white matter injury by disrupting the blood–brain barrier,inducing neuroinflammation,and interfering with nerve regeneration.Finally,we outline potential treatment strategies for intracerebral hemorrhage and its secondary white matter injury.Our review highlights the critical role of the gut microbiota–brain axis and the NLRP3 inflammasome in white matter injury following intracerebral hemorrhage,paving the way for exploring potential therapeutic approaches.
文摘Protein aggregates,mitochondrial import stress and neurodegenerative disorders:A salient hallmark of several neurodegenerative diseases,including Parkinson’s disease,is the abundance of protein aggregates(Goiran et al.,2022).This molecular event is believed to lead to activation of stress pathways ultimately resulting in cellular dysfunction(Eldeeb et al.,2022).Accordingly,many lines of research investigations focused on dampening the formation of protein aggregates or augmenting the clearance of protein aggregates as a potential therapeutic strategy to counteract the progression of neurodegenerative diseases,albeit with little success(Costa-Mattioli and Walter,2020).Cell stress cues such as the accumulation of protein aggregates lead to the activation of stress response pathways that aid cells in responding to the damage.Despite the notion that the transient activation of these pathways helps cells cope with stressors,persistent activation can induce unwanted apoptosis of cells and reduce overall tissue strength as well as lead to an accumulation of aggregation-prone proteins(Hetz and Papa,2018).Mutations in proteins involved in stress signaling termination can cause conditions like ataxia and early-onset dementia(Conroy et al.,2014).Therefore,it is crucial for stress response signaling to be turned off once conditions have improved.Nevertheless,the mechanisms by which cells silence these signals are still elusive.
基金supported by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)grant LU 2347/3-1(to PL).
文摘Autophagy is well-known for delivering cargo materials to lysosomes for proteolytic digestion.Recently,autophagy has emerged as a key mechanism in unconventional protein secretion(UPS).This perspective introduces unconventional secretion pathways,focusing on secretory autophagy and its role in secreting protein aggregates associated with neurodegenerative disorders.We also explore additional neuronal functions of secretory autophagy beyond the release of protein aggregates.We propose autophagosomes as transport organelles that deliver cargo material directly from the endoplasmatic reticulum(ER)to the plasma membrane rather than solely to lysosomes.
基金supported in part by the National Key Research&Development Program of China,No.2022YFA1104900(to LS)the National Natural Science Foundation of China,Nos.82371175,82071535(both to LS),82101614(to YP)+5 种基金the International Science and Technology Cooperation Projects of Guangdong Province,No.2023A0505050121(to LS)Guangdong Basic and Applied Basic Research Foundation,Nos.2022B1515130007(to LS),2023A1515030012(to SZ),2022A1515010666(to WL)the Science and Technology Program of Guangzhou,Nos.202102070001(to LS),202201010041(to YP)Shenzhen Basic Research Grant,Nos.JCYJ20200109140414636,JCYJ20230807145103007(both to WL)awarded a Royal Society Newton Advanced Fellowship,No.AOMS-NAF0051003in collaboration with Zoltán Molnár,Department of Physiology,Anatomy and Genetics,University of Oxford(2017–2021)。
文摘Neuroserpin,a secreted protein that belongs to the serpin superfamily of serine protease inhibitors,is highly expressed in the central nervous system and plays multiple roles in brain development and pathology.As a natural inhibitor of recombinant tissue plasminogen activator,neuroserpin inhibits the increased activity of tissue plasminogen activator in ischemic conditions and extends the therapeutic windows of tissue plasminogen activator for brain ischemia.However,the neuroprotective mechanism of neuroserpin against ischemic stroke remains unclear.In this study,we used a mouse model of middle cerebral artery occlusion and oxygen-glucose deprivation/reperfusion-injured cortical neurons as in vivo and in vitro ischemia-reperfusion models,respectively.The models were used to investigate the neuroprotective effects of neuroserpin.Our findings revealed that endoplasmic reticulum stress was promptly triggered following ischemia,initially manifesting as the acute activation of endoplasmic reticulum stress transmembrane sensors and the suppression of protein synthesis,which was followed by a later apoptotic response.Notably,ischemic stroke markedly downregulated the expression of neuroserpin in cortical neurons.Exogenous neuroserpin reversed the activation of multiple endoplasmic reticulum stress signaling molecules,the reduction in protein synthesis,and the upregulation of apoptotic transcription factors.This led to a reduction in neuronal death induced by oxygen/glucose deprivation and reperfusion,as well as decreased cerebral infarction and neurological dysfunction in mice with middle cerebral artery occlusion.However,the neuroprotective effects of neuroserpin were markedly inhibited by endoplasmic reticulum stress activators thapsigargin and tunicamycin.Our findings demonstrate that neuroserpin exerts neuroprotective effects on ischemic stroke by suppressing endoplasmic reticulum stress.
基金supported by Deutsche Forschungsgemeinschaft,German Research Foundation grant GA 654/13-2 to OG.
文摘Microglia,the resident immune cells of the central nervous system,exhibit a wide array of functional states,even in their so-called“homeostatic”condition,when they are not actively responding to overt pathological stimuli.These functional states can be visualized using a combination of multi-omics techniques(e.g.,gene and protein expression,posttranslational modifications,mRNA profiling,and metabolomics),and,in the case of homeostatic microglia,are largely defined by the global(e.g.,genetic variations,organism’s age,sex,circadian rhythms,and gut microbiota)as well as local(specific area of the brain,immediate microglial surrounding,neuron-glia interactions and synaptic density/activity)signals(Paolicelli et al.,2022).While phenomics(i.e.,ultrastructural microglial morphology and motility)is also one of the key microglial state-defining parameters,it is known that cells with similar morphology can belong to different functional states.
基金supported in part by the National Natural Science Foundation of China,No.82371153(to YS)the Natural Science Foundation of Shandong Province,Nos.ZR2021MH378,ZR2022QH073(to LC)+1 种基金the Shandong Society of Geriatric Science and Technology Project,No.LKJGG2021Z020(to YS)the Yantai Science and Technology Innovation Development Project,Nos.2022YD009,2023YD050。
文摘Neurodegenerative diseases are prevalent conditions that greatly impact human health.These diseases are primarily characterized by the progressive loss and eventual death of neuronal function,although the precise mechanisms underlying these processes remain incompletely understood.Iron is an essential trace element in the human body,playing a crucial role in various biological processes.The maintenance of iron homeostasis relies on the body's intricate and nuanced regulatory mechanisms.In recent years,considerable attention has been directed toward the relationship between dysregulated iron homeostasis and neurodegenerative diseases.The regulation of iron homeostasis within cells is crucial for maintaining proper nervous system function.Research has already revealed that disruptions in iron homeostasis may lead to ferroptosis and oxidative stress,which,in turn,can impact neuronal health and contribute to the development of neurodegenerative diseases.This article primarily explores the intimate relationship between iron homeostasis and neurodegenerative diseases,aiming to provide novel insights and strategies for treating these debilitating conditions.
基金supported by the National Natural Science Foundation of China,No.32071033(to MT)Basic and Applied Basic Research Foundation of Guangdong Province,Nos.2023A1515010140(to MT),2022A1515140169(to MT),2022A1515111096(to ZC)+3 种基金Science and Technology Project of Guangzhou,Nos.202201010015(to YL),2023A03J0790(to TJ)Basic and Applied Basic Research Foundation of Guangzhou,No.2023A04J1285(to ZC)Medical Research Foundation of Guangdong Province,No.A2023147(to ZC)Health Science and Technology Project of Guangzhou,No.20221A011039(to TJ)。
文摘Post-translational modification of spastin enables precise spatiotemporal control of its microtubule severing activity.However,the detailed mechanism by which spastin turnover is regulated in the context of neurite outgrowth remains unknown.Here,we found that spastin interacted with ubiquitin and was significantly degraded by K48-mediated poly-ubiquitination.Cullin3 facilitated spastin degradation and ubiquitination.RING-box protein 1,but not RING-box protein 2,acted synergistically with Cullin3 protein to regulate spastin degradation.Overexpression of Culin3 or BRX1 markedly suppressed spastin expression,and inhibited spastin-mediated microtubule severing and promotion of neurite outgrowth.Moreover,USP14 interacted directly with spastin to mediate its deubiquitination.USP14 overexpression significantly increased spastin expression and suppressed its ubiquitination and degradation.Although co-expression of spastin and USP14 did not enhance microtubule severing,it did increase neurite length in hippocampal neurons.Taken together,these findings elucidate the intricate regulatory mechanisms of spastin turnover,highlighting the roles of the Cullin-3–Ring E3 ubiquitin ligase complex and USP14 in orchestrating its ubiquitination and degradation.The dynamic interplay between these factors governs spastin stability and function,ultimately influencing microtubule dynamics and neuronal morphology.These insights shed light on potential therapeutic targets for neurodegenerative disorders associated with spastin defects.
文摘With the growth of global protein demand and the development of plant-based foods,pea protein,as a low-allergenic,nutritionally balanced and environmentally friendly plant protein,has shown great potential in replacing animal protein.Pea protein is mainly composed of globulin and albumin,with a protein content of 20%to 30%,and has a balanced amino acid composition,as well as being rich in minerals and dietary fiber.It also possesses good foaming,gelling,emulsifying and antioxidant functional properties.However,pea protein also has inherent defects that limit its application in the food industry.This article systematically reviews the extraction techniques,functional properties,modification methods and application fields of pea protein,and focuses on evaluating the effects of different extraction and modification strategies on protein yield and functional properties.Research shows that ultrasonic-assisted alkaline extraction can reduce solvent usage by 55%,shorten extraction time by 50%,and increase extraction rate by 12.51%;under optimized conditions,ultrafiltration membrane technology can achieve a protein purity of 91%.In terms of modification,ultrasonic treatment increases foaming capacity by 37.4%,and phenolic cross-linking increases gel strength from 3.0 kPa to 48 kPa.This article provides data support and theoretical reference for the efficient extraction and functional optimization of pea protein,and has promoting significance for its wide application in plant-based foods.
文摘Stem cells are pluripotent cells that can divide and differentiate,forming many different types of cells.Stem cells can be obtained from various sources,with embryonic stem cells being the most advantageous as they possess a broad dividing potential.When the standard treatment proves ineffective,stem cells are typically utilized as a final option.Infections and childhood malignancies are among the significant causes of mortality in the pediatric population.Stem cell therapy has shown a decrease in morbidity and mortality when used in patients with favorable conditions like young age and lack of comorbidities.This review discusses how stem cells are prepared and used in treating pediatric diseases like X-linked agammaglobulinemia,diabetes mellitus,aplastic anemia,infections,and leukemia.Technological advancement has played a significant role in producing more specific stem cells using genetic modification methods like clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9,which produce stem cells that target a particular cell type,e.g.,myocytes and hematopoietic cells,further increasing the effectiveness of the therapy.We address the obstacles faced when conducting research related to stem cells,including ethical and legal issues,which hinder the use of this therapy in some fields.We also indicate recommendations for increasing the efficacy of stem cell therapy in the pediatric population.
基金Supported by Wenzhou Science and Technology Bureau,No.Y20240207.
文摘Cholelithiasis has a complex pathogenesis,necessitating better therapeutic and preventive strategies.We recently read with interest Wang et al’s study on lysine acetyltransferase 2A(KAT2A)-mediated adenosine monophosphate-activated protein kinase(AMPK)succinylation in cholelithiasis.Using mouse models and gallbladder mucosal epithelial cells,they found that KAT2A inhibits gallstones through AMPK K170 succinylation,thereby activating the AMPK/silent information regulator 1 pathway to reduce inflammation and pyroptosis.This study is the first to connect lysine succinylation with cholelithiasis,offering new insights and identifying succinylation as a potential therapeutic target.Future research should confirm these findings using patient samples,investigate other posttranslational modifications,and use structural biology to clarify succinylationinduced conformational changes,thereby bridging basic research to clinical applications.
文摘A key pathological feature of Parkinson’s disease(PD)is that lysosomes are overwhelmed with cellular materials that need to be degraded and cleared.While the build-up of protein is characteristic of neurodegenerative diseases such as PD and Alzheimer’s disease(AD)and is thought to reflect lysosome dysfunction,lipid accumulation may also contribute to and be indicative of severe lysosomal dysfunction.Much is known about the detrimental effects of glucosylceramide accumulation in PD lysosomes.
基金partially supported by grants PID2020-115096RB-I00 and PID2023-148273NB-I00 from Ministerio de Ciencia y Universidad (MICIU/AEI)(to EMS)。
文摘GEMIN5 is a predominantly cytoplasmic multifunctional protein, known to be involved in recognizing snRNAs through its WD40 repeats domain placed at the N-terminus. A dimerization domain in the middle region acts as a hub for protein–protein interaction, while a non-canonical RNA-binding site is placed towards the C-terminus. The singular organization of structural domains present in GEMIN5 enables this protein to perform multiple functions through its ability to interact with distinct partners, both RNAs and proteins. This protein exerts a different role in translation regulation depending on its physiological state, such that while GEMIN5 down-regulates global RNA translation, the C-terminal half of the protein promotes translation of its mRNA. Additionally, GEMIN5 is responsible for the preferential partitioning of mRNAs into polysomes. Besides selective translation, GEMIN5 forms part of distinct ribonucleoprotein complexes, reflecting the dynamic organization of macromolecular complexes in response to internal and external signals. In accordance with its contribution to fundamental cellular processes, recent reports described clinical loss of function mutants suggesting that GEMIN5 deficiency is detrimental to cell growth and survival. Remarkably, patients carrying GEMIN5 biallelic variants suffer from neurodevelopmental delay, hypotonia, and cerebellar ataxia. Molecular analyses of individual variants, which are defective in protein dimerization, display decreased levels of ribosome association, reinforcing the involvement of the protein in translation regulation. Importantly, the number of clinical variants and the phenotypic spectrum associated with GEMIN5 disorders is increasing as the knowledge of the protein functions and the pathways linked to its activity augments. Here we discuss relevant advances concerning the functional and structural features of GEMIN5 and its separate domains in RNA-binding, protein interactome, and translation regulation, and how these data can help to understand the involvement of protein malfunction in clinical variants found in patients developing neurodevelopmental disorders.
基金the National Natural Science Foundation of China(82573571)the Shanghai 2025 Basic Research Plan Natural Science Foundation(25ZR1401393)the First Batch of Open Topics of the Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices(2025QN13)。
文摘The global burden of bacterial infections,exacerbated by antimicrobial resistance(AMR),necessitates innovative strategies.Bacterial protein vaccines offer promise by eliciting targeted immunity while circumventing AMR.However,their clinical translation is hindered by their inherently low immunogenicity,often requiring potent adjuvants and advanced delivery systems.Biomembrane nanostructures(e.g.,liposomes,exosomes,and cell membrane-derived nanostructures),characterized by superior biocompatibility,intrinsic targeting ability,and immune-modulating properties,could serve as versatile platforms that potentiate vaccine efficacy by increasing antigen stability,enabling codelivery of immunostimulants,and facilitating targeted delivery to lymphoid tissues/antigen-presenting cells.This intrinsic immunomodulation promotes robust humoral and cellular immune responses to combat bacteria.This review critically reviews(1)key biomembrane nanostructure classes for bacterial protein antigens,(2)design strategies leveraging biomembrane nanostructures to enhance humoral and cellular immune responses,(3)preclinical efficacy against diverse pathogens,and(4)translational challenges and prospects.Biomembrane nanostructure-driven approaches represent a paradigm shift in the development of next-generation bacterial protein vaccines against resistant infections.
基金supported by a grant from NIH(R01AI132695)to RM。
文摘Chronic wasting disease—a prion disease affecting cervids:Many neurological conditions,including Alzheimer's and Parkinson's diseases,amyotrophic lateral sclerosis,frontotemporal dementias,among others,are caused by the accumulation of misfolded proteins in the brain.These diseases affect not only humans,but also animals.
基金supported by AHA Career Development Award 938683 (to PJD)NIH grant R01MH123700 (to MLD)
文摘Since the first electron micrograph of“lace-like structures”over 75 years ago,the endoplasmic reticulum(ER)is now viewed as a highly dynamic,constantly remodeling,continuous network of tubules and cisternae that plays an important role in a broad range of cellular activities from calcium regulation to protein synthesis and trafficking.In neurons,the ER extends from the soma through the axon to presynaptic terminals,and throughout the dendritic arbor into as many as half of all postsynaptic dendritic spines at any given time(Falahati et al.,2022).
文摘Cell function has a tight relationship with cell architecture.Distribution of proteins to the correct compartment is one of the functions of the traffic pathway through the Golgi apparatus.The others are to ensure proper protein folding,the addition of post-translational modifications,and delivering to intracellular and extracellular destinations.Astrocytes are fundamental homeostatic cells,controlling multiple aspects of the central nervous system physiology,such as ion balance,nutrients,blood flow,neurotransmitters,and responses to insults.Astrocytes are polarized cells,and,such as neurons,extensively use the secretory pathway for secreting factors and exposing functional receptors,channels,and transporters on the plasma membrane.In this review,we will underline the importance of studying the Golgi apparatus and the secretory pathway in astrocytes,based on the possible tight connection between the Golgi apparatus and astrocytes’homeostatic function.Given the topic of this review,we will provide examples mostly about the Golgi apparatus structure,function,localization,and its involvement in astrocytes’homeostatic response,with an insight into congenital glycosylation disorders,as an example of a potential future field in the study of astrocyte homeostatic failure and Golgi apparatus alteration.
基金supported by the Natural Science Foundation of Guangxi Zhuang Automomous Region,Nos.2019GXNSFDA245015(to MC),2022GXNSFBA035654(to HL)the National Natural Science Foundation of China,Nos.82360241(to MC),82304876(to HL)+1 种基金Scientific Research and Technology Development Project of Guilin City,Nos.20220139-3(to MC),20210218-5(to HL)Guangxi Medical and Health Key Discipline Construction Project(to QL)。
文摘α-Synuclein accumulation and transmission are vital to the pathogenesis of Parkinson's disease,although the mechanisms underlying misfoldedα-synuclein accumulation and propagation have not been conclusively determined.The expression of low-density lipoprotein receptor–related protein 1,which is abundantly expressed in neurons and considered to be a multifunctional endocytic receptor,is elevated in the neurons of patients with Parkinson's disease.However,whether there is a direct link between low-density lipoprotein receptor–related protein 1 andα-synuclein aggregation and propagation in Parkinson's disease remains unclear.Here,we established animal models of Parkinson's disease by inoculating monkeys and mice withα-synuclein pre-formed fibrils and observed elevated low-density lipoprotein receptor–related protein 1 levels in the striatum and substantia nigra,accompanied by dopaminergic neuron loss and increasedα-synuclein levels.However,low-density lipoprotein receptor–related protein 1 knockdown efficiently rescued dopaminergic neurodegeneration and inhibited the increase inα-synuclein levels in the nigrostriatal system.In HEK293A cells overexpressingα-synuclein fragments,low-density lipoprotein receptor–related protein 1 levels were upregulated only when the N-terminus ofα-synuclein was present,whereas anα-synuclein fragment lacking the N-terminus did not lead to low-density lipoprotein receptor–related protein 1 upregulation.Furthermore,the N-terminus ofα-synuclein was found to be rich in lysine residues,and blocking lysine residues in PC12 cells treated withα-synuclein pre-formed fibrils effectively reduced the elevated low-density lipoprotein receptor–related protein 1 andα-synuclein levels.These findings indicate that low-density lipoprotein receptor–related protein 1 regulates pathological transmission ofα-synuclein from the striatum to the substantia nigra in the nigrostriatal system via lysine residues in theα-synuclein N-terminus.
文摘Amyloid-β(Aβ)and tau,the two hallmark proteins associated with Alzheimer’s disease(AD),exhibit distinct toxic effects but also interact synergistically within the disease pathology.The prevailing theory in AD pathology-the amyloid cascade hypothesis-highlights the pivotal role of increased processing of the amyloid precursor protein(APP).Initially cleaved by the majorβ-secretase(β-amyloid cleaving enzyme-1,BACE1)in the brain,then undergoes further cleavage by theγ-secretase complex,resulting in the production of Aβ_(40-42)and a set of intracellular C-terminal peptides known as Aβand APP intracellular domain(β-AICDs)and soluble amyloid precursor proteinβ(sAPPβ)(Orobets and Karamyshev,2023).