期刊文献+
共找到419篇文章
< 1 2 21 >
每页显示 20 50 100
Thrust-vectoring schemes for electric propulsion systems:A review 被引量:1
1
作者 Andrei SHUMEIKO Victor TELEKH Sergei RYZHKOV 《Chinese Journal of Aeronautics》 2025年第6期179-203,共25页
Thrust-vectoring capability has become a critical feature for propulsion systems as space missions move from static to dynamic.Thrust-vectoring is a well-developed area of rocket engine science.For electric propulsion... Thrust-vectoring capability has become a critical feature for propulsion systems as space missions move from static to dynamic.Thrust-vectoring is a well-developed area of rocket engine science.For electric propulsion,however,it is an evolving field that has taken a new leap forward in recent years.A review and analysis of thrust-vectoring schemes for electric propulsion systems have been conducted.The scope of this review includes thrust-vectoring schemes that can be implemented for electrostatic,electromagnetic,and beam-driven thrusters.A classification of electric propulsion schemes that provide thrust-vectoring capability is developed.More attention is given to schemes implemented in laboratory prototypes and flight models.The final part is devoted to a discussion on the suitability of different electric propulsion systems with thrust-vectoring capability for modern space mission operations.The thrust-vectoring capability of electric propulsion is necessary for inner and outer space satellites,which are at a disadvantage with conventional unidirectional propulsion systems due to their limited maneuverability. 展开更多
关键词 Electric propulsion Spacecraft propulsion Plasma sources Flight control systems Thrust vectoring Thrust vector control
原文传递
Recent Development of Aircraft Electric Propulsion System:A Technical Review 被引量:1
2
作者 Wei Chen Yexin Yan +2 位作者 Yang Qi Ming Huang Weilin Li 《CES Transactions on Electrical Machines and Systems》 2025年第1期115-130,共16页
The technology of electric propulsion aircraft(EPA)represents an important direction and an advanced stage in the development of aviation electrification.It is a key pathway for green development in aviation industry ... The technology of electric propulsion aircraft(EPA)represents an important direction and an advanced stage in the development of aviation electrification.It is a key pathway for green development in aviation industry and can significantly enhance the energy efficiency of aircraft propulsion system.Electric motor is the most critical electromechanical energy conversion component in an aircraft electric propulsion system(EPS).High-performance electric motors,power electronic converters and EPS control form the foundation of the EPA.This paper provides an overview of the characteristics of electric motors for EPA,analyzes the inverter topologies of EPSs,and reviews ongoing EPA projects.The article highlights the latest advancements in three types of motors:superconducting motors(SCMs),permanent magnet synchronous motors(PMSMs),and induction motors(IMs).It summarizes the control system architectures of current EPA initiatives and,building on this foundation,proposes future research directions for EPSs.These include cutting-edge areas such as high-performance motors and advanced manufacturing technologies,Ga N-or Si C-based inverter integration and innovation,electric propulsion control systems,and optimization of wiring systems. 展开更多
关键词 Electric propulsion aircraft Inverter topologies Electric motor systems Superconducting motors Distributed electric propulsion
在线阅读 下载PDF
Lateral Undulation and Force Prediction in Soft Robotic Fish:A Systematic Approach
3
作者 Rakhshan Hatami Varnousfaderani Mohammadreza Estarki +2 位作者 Mohammad Zareinejad Heidar Ali Talebi Hamed Ghafarirad 《Journal of Bionic Engineering》 2025年第6期2950-2964,共15页
Soft robots,as a modern gateway to unlocking the mysteries of underwater realms,present new complexities.Modeling their behavior when in contact with external forces,whether point-based or distributed,is a primary cha... Soft robots,as a modern gateway to unlocking the mysteries of underwater realms,present new complexities.Modeling their behavior when in contact with external forces,whether point-based or distributed,is a primary challenge due to the nature of soft bodies.To obtain a holistic view of the system’s behavior determining the governing dynamics is deemed necessary.This paper proposes a new technique to simulate the dynamic lateral undulation of a soft robotic fish with a cable-driven soft tail.By integrating the rigid finite element method with rigid-body robotics,the model represents the undulation of a finite number of rigid elements connected through a set of torsional spring and damper.Instead of directly modeling external forces,we substitute equivalent joint torques into the system dynamics,allowing us to consider external effects without complicating the model.The resulting model yields valuable insights into the system’s behavior,including propulsive and lateral forces.A comparison with experimental results shows strong agreement,with a tip amplitude error of 10% at 0.8 Hz,5.25% at 1.6 Hz and 2.54%at 2.2 Hz flapping frequency.These findings illuminate the influence of lateral undulation on the overall dynamics,paving the way for fully autonomous robotic fish. 展开更多
关键词 Dynamic modeling Soft robotic fish Lateral motion prediction Rigid finite element method propulsive force Lateral force
在线阅读 下载PDF
Status analysis on sputtering and erosion evaluation methods of ion optic systems
4
作者 Long MIAO Tongxun YANG +3 位作者 Zhengxi ZHU Chang LU Zhiwen WU Ningfei WANG 《Chinese Journal of Aeronautics》 2025年第1期254-270,共17页
In the past few decades,ion engines have been widely used in deep-space propulsion and satellite station-keeping.The aim of extending the thruster lifetime is still one of the most important parts during the design st... In the past few decades,ion engines have been widely used in deep-space propulsion and satellite station-keeping.The aim of extending the thruster lifetime is still one of the most important parts during the design stage of ion engine.As one of the core components of ion engine,the grid assembly of ion optic systems may experience long-term ion sputtering in extreme electro-thermal environments,which will eventually lead to its structural and electron-backstreaming failures.In this paper,the current studies of the grid assembly erosion process are systematically analyzed from the aspects of sputtering damage process of grid materials,numerical simulations,and measurements of erosion characteristics of grid assembly.The advantages and disadvantages of various erosion prediction models are highlighted,and the key factors and processes affecting the prediction accuracy of grid assembly erosion patterns are analyzed.Three different types of experimental methods of grid assembly erosion patterns are compared.The analysis in this paper is of great importance for selecting the sputter-resistant grid materials,as well as establishing the erosion models and measurement methods to accurately determine the erosion rate and failure modes of grid assembly.Consequently,the working conditions and structure parameters of ion optic systems could be optimized based on erosion models to promote the ion engine lifetime. 展开更多
关键词 Electric propulsion Ion optic systems Sputtering yield Erosion characteristics Erosion pattern measurement Lifetime evaluation
原文传递
Aero-propulsive coupling performance and design of distributed propulsion wing
5
作者 Kelei WANG Zhou ZHOU 《Chinese Journal of Aeronautics》 2025年第4期127-141,共15页
The Distributed Propulsion Wing(DPW)presents prominent advantages in terms of energy conservation during flight,but the intense integration of propulsive internal flow with aerodynamic external flow brings significant... The Distributed Propulsion Wing(DPW)presents prominent advantages in terms of energy conservation during flight,but the intense integration of propulsive internal flow with aerodynamic external flow brings significant design challenges.To tackle this issue,this paper undertakes a comprehensive investigation of the aero-propulsive coupling performance of the DPW under both hovering and cruising conditions,and subsequently proposes a multi-level collaboration optimization design method based on the decomposition principle.Specifically,the complex 3D surfaces of DPW are systematically dissociated into simple 2D curves with inherent relationships for design.The decomposition is achieved based on the analysis results of the aero-propulsive coupling characteristics.And a DPW design case is conducted and subsequently analyzed in order to further validate the effectiveness and feasibility of the proposed design method.It is shown that a 115.75%drag reduction of DPW can be achieved at cruise under a specified thrust level.Furthermore,the DPW exhibits inherent characteristics of consistent lift-to-drag ratio with the thrust-drag balance constraint,regardless of variations in incoming flow velocity or total thrust. 展开更多
关键词 Distributed propulsion wing Aero-propulsive coupling performance Multi-level collaboration optimization design method Decomposition principle Thrust-drag balance
原文传递
Hydrodynamic Characteristic Analysis of a Biomimetic Underwater Vehicle-Manipulator System
6
作者 Hongfei Chu Xiaolong Hui +2 位作者 Xuejian Bai Min Tan Yu Wang 《Journal of Bionic Engineering》 2025年第2期654-669,共16页
The propulsion mechanisms of biomimetic underwater vehicles using bionic undulatory fins have been extensively studied for their potential to enhance efficiency and maneuverability in underwater environments.However,t... The propulsion mechanisms of biomimetic underwater vehicles using bionic undulatory fins have been extensively studied for their potential to enhance efficiency and maneuverability in underwater environments.However,the hydrodynamic interactions between the vehicle body,robotic manipulator,and fluctuating motion remain less explored,particularly in turbulent conditions.In this work,a Biomimetic Underwater Vehicle-Manipulator System(BUVMS)propelled using bionic undulatory fins is considered.The propulsion mechanism and hydrodynamic performance of fluctuating motion are analyzed by numerical simulation.The drag coefficients of the BUVMS at different Reynolds numbers are calculated,and the investigation of vortex generation during the motion of the BUVMS reveals that vortex binding and shedding are the key factors for propulsion generation.Various moving modes of the BUVMS are developed in conjunction with the pro-pulsion mechanism.The hydrodynamic loads during the motion of the underwater robotic arm in a turbulent environment are analyzed.A simple motion strategy is proposed to reduce the effect of water drag on the manipulation of the robotic arm and on the overall stability of the BUVMS.The results of the hydrodynamic analysis offer systematic guidance for controlling underwater operations of the BUVMS. 展开更多
关键词 Biomimetic underwater vehicle-Manipulator system(BUVMS) Computational fluid dynamics(CFD) HYDRODYNAMICS Bionic undulatory fins Propulsion mechanism
在线阅读 下载PDF
Propulsive performance and flow field characteristics of a 2-D flexible fin with variations in the location of its pitching axis 被引量:1
7
作者 王志东 丛文超 张晓庆 《Journal of Marine Science and Application》 2009年第4期298-304,共7页
The thrust coefficients and propulsive efficiency of a two-dimensional flexible fin with heaving and pitching motion were computed using FLUENT. The effect of different locations of the pitching axis on propulsive per... The thrust coefficients and propulsive efficiency of a two-dimensional flexible fin with heaving and pitching motion were computed using FLUENT. The effect of different locations of the pitching axis on propulsive performance was examined using three deflexion modes which are respectively, modified Bose mode, cantilever beam with uniformly distributed load and cantilever beam with non-uniformly distributed load. The results show that maximum thrust can be achieved with the pitching axis at the trailing edge, but the highest propulsive efficiency can be achieved with the pitching axis either 1/3 of the chord length from the leading edge in modified Bose mode, or 2/3 of the chord length from the leading edge in cantilever beam mode. At the same time, the effects of the Strouhal number and maximal attack angle on the hydrodynamics performance of the flexible fin were analyzed. Parameter interval of the maximum thrust coefficient and the highest propulsive efficiency were gained. If the Strouhal number is low, high propulsive efficiency can be achieved at low αmax , and vice versa. 展开更多
关键词 flexible fin pitching axis Strouhal number maximal attack angle propulsive performance
在线阅读 下载PDF
Numerical Simulation of Characteristics of CEX Ions in Ion Thruster Optical System 被引量:7
8
作者 Zhong Lingwei Liu Yu +4 位作者 Li Juan Gu Zuo Jiang Haocheng Wang Haixing Tang Haibin 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第1期15-21,共7页
Charge exchange (CEX) ions could inflict severe damages on the ion thruster optical system. This article is aimed at investigating the characteristics of the CEX ions and their influences upon the optical system by ... Charge exchange (CEX) ions could inflict severe damages on the ion thruster optical system. This article is aimed at investigating the characteristics of the CEX ions and their influences upon the optical system by means of particle-incell(PIC) ion simulation and Monte Carlo collision(MCC) methods. The results from numerical simulation indicate that despite the fact that CEX ions appear in the entire beamlet region near the ion optical system, the ones that present themselves downstream of the accelerator grid have good reason for attracting more attention. As their trajectories are significantly affected by the local electric field, a great number of CEX ions are accelerated toward grids resulting in sputtering erosion. When the influences of the CEX ions are considered in the nulnerical simulation,there could hardly be observed augments in the screen grid current,but the accelerator grid current increases from zero to 1.4% of the beamlet current. It can be understood from the numerical simulation that the CEX ions formed in the region far downstream of the accelerator grid should be blamed for the erosion on the downstream surface of the accelerator grid. 展开更多
关键词 eleetric propulsion ion propulsion ion optical system particle simulation charge exchange collision
原文传递
Research on Propeller Dynamic Load Simulation System of Electric Propulsion Ship 被引量:12
9
作者 黄辉 沈爱弟 褚建新 《China Ocean Engineering》 SCIE EI CSCD 2013年第2期255-263,共9页
A dynamic marine propeller simulation system was developed, which is utilized for meeting the experimental requirement of theory research and engineering design of marine electric propulsion system. By applying an act... A dynamic marine propeller simulation system was developed, which is utilized for meeting the experimental requirement of theory research and engineering design of marine electric propulsion system. By applying an actual ship parameter and its accurate propeller J' -KT' and J' - Kp' curve data, functional experiments based on the simulation system were carried out. The experiment results showed that the system can correctly emulate the propeller characteristics, produce the dynamic and steady performances of the propeller under different navigation modes, and present actual load torque for electric propulsion motor. 展开更多
关键词 electric propulsion ship-propeller model dynamic load emulation torque closed-loop control
在线阅读 下载PDF
Propulsive Velocity Optimization of 3-Joint Fish Robot Using Genetic-Hill Climbing Algorithm 被引量:6
10
作者 Tuong Quan Vo Hyoung Seok Kim Byung Ryong Lee 《Journal of Bionic Engineering》 SCIE EI CSCD 2009年第4期415-429,共15页
Underwater robot is a new research field which is emerging quickly in recent years.Previous researches in this field focus on Remotely Operated Vehicles(ROVs),Autonomous Underwater Vehicles(AUVs),underwater manipulato... Underwater robot is a new research field which is emerging quickly in recent years.Previous researches in this field focus on Remotely Operated Vehicles(ROVs),Autonomous Underwater Vehicles(AUVs),underwater manipulators,etc.Fish robot, which is a new type of underwater biomimetic robot,has attracted great attention because of its silence in moving and energy efficiency compared to conventional propeller-oriented propulsive mechanism. However,most of researches on fish robots have been carried out via empirical or experimental approaches,not based on dynamic optimality.In this paper,we proposed an analytical optimization approach which can guarantee the maximum propulsive velocity of fish robot in the given parametric conditions.First,a dynamic model of 3-joint(4 links)carangiform fish robot is derived,using which the influences of parameters of input torque functions,such as amplitude,frequency and phase difference,on its velocity are investigated by simulation.Second,the maximum velocity of the fish robot is optimized by combining Genetic Algorithm(GA)and Hill Climbing Algorithm(HCA).GA is used to generate the initial optimal parameters of the input functions of the system.Then,the parameters are optimized again by HCA to ensure that the final set of parameters is the'near'global optimization.Finally,both simulations and primitive experiments are carried out to prove the feasibility of the proposed method. 展开更多
关键词 fish robot carangiform velocity optimization propulsive model
在线阅读 下载PDF
Modeling novel methodologies for unmanned aerial systems–Applications to the UAS-S4 Ehecatl and the UAS-S45 Bálaam 被引量:6
11
作者 Maxime Alex Junior KUITCHE Ruxandra Mihaela BOTEZ 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第1期58-77,共20页
The rising demand for Unmanned Aerial Systems(UASs) to perform tasks in hostile environments has emphasized the need for their simulation models for the preliminary evaluations of their missions. The efficiency of the... The rising demand for Unmanned Aerial Systems(UASs) to perform tasks in hostile environments has emphasized the need for their simulation models for the preliminary evaluations of their missions. The efficiency of the UAS model is directly related to its capacity to estimate its flight dynamics with minimum computational resources. The literature describes several techniques to estimate accurate aircraft flight dynamics. Most of them are based on system identification. This paper presents an alternative methodology to obtain complete model of the S4 and S45 unmanned aerial systems. The UAS-S4 and the UAS-S45 models were divided into four sub-models, each corresponding to a specific discipline: aerodynamics, propulsion, mass and inertia, and actuator. The‘‘aerodynamic" sub-model was built using the Fderivatives in-house code, which is an improvement of the classical DATCOM procedure. The ‘‘propulsion" sub-model was obtained by coupling a two-stroke engine model based on the ideal Otto cycle and a Blade Element Theory(BET) analysis of the propeller. The ‘‘mass and the inertia" sub-model was designed utilizing the Raymer and DATCOM methodologies. A sub-model of an actuator using servomotor characteristics was employed to complete the model. The total model was then checked by validation of each submodel with numerical and experimental data. The results indicate that the obtained model was accurate and could be used to design a flight simulator. 展开更多
关键词 AERODYNAMICS Aerospace propulsion Flight dynamics Unmanned aerial vehicles MODELING
原文传递
Study on the lift and propulsive force shares to improve the flight performance of a compound helicopter 被引量:5
12
作者 Kelong YANG Dong HAN Qipeng SHI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第1期365-375,共11页
To investigate the effects of lift and propulsive force shares on flight performance,a compound helicopter model is derived.The model consists of a helicopter model,a wing model and a propeller model.At a low speed of... To investigate the effects of lift and propulsive force shares on flight performance,a compound helicopter model is derived.The model consists of a helicopter model,a wing model and a propeller model.At a low speed of 100 km/h,the Lift-to-Drag ratio(L/D)of the compound helicopter is improved when the wing provides 20.2%of the take-off weight.At high speeds,the L/D can be improved when the propeller provides the total propulsive force.Lowering the main rotor speed increases the wing lift share,however,the maximum L/D increases first and then decreases.The maximum L/D increases with decreasing the blade twist of the main rotor.Decreasing the blade twist from-16°to-8°increases the maximum L/D by 2.3%,and the wing lift share is increased from 65.0%to 74.7%.When the main rotor torque is balanced by the rudder,the maximum L/D is increased by 2.2%without changing the wing lift share.The wing should provide more lift as increasing the take-off weight,which reduces the induced power of the main rotor and increases the L/D.When increasing the take-off weight from 9500 kg to 11000 kg,the maximum L/D is increased by 6.5%,and the wing lift share is increased from 74.7%to 80.2%. 展开更多
关键词 Compound helicopter Flight performance Lift share Lift-to-Drag ratio PROPELLER propulsive force share Wing
原文传递
Optimization and Sizing for Propulsion System of Liquid Rocket Using Genetic Algorithm 被引量:5
13
作者 Saqlain Akhtar He Lin-shu 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第1期40-46,共7页
Flight vehicle conceptual design appears to be a promising area for application of the Genetic Algorithm(GA)as an approach to help to automate part of the design process.This computational research effort strives to d... Flight vehicle conceptual design appears to be a promising area for application of the Genetic Algorithm(GA)as an approach to help to automate part of the design process.This computational research effort strives to develop a propulsion system design strategy for liquid rocket to optimize take-off mass,satisfying the mission range under the constraint of axial overload.The method by which this process is accomplished by using GA as optimizer is outlined in this paper.Convergence of GA is improved by introducing initial population based on Design of Experiments Technique. 展开更多
关键词 liquid rocket propulsion system genetic algorithm design of experiments
在线阅读 下载PDF
Simplified propulsive model for biomimetic robot fish and its experimental validation 被引量:6
14
作者 喻俊志 Wang +2 位作者 Shuo Tan Min 《High Technology Letters》 EI CAS 2005年第4期382-386,共5页
As a combination of bio-mechanism and engineering technology, robot fish has become a multidisci- plinary research that mainly involves both hydrodynamics-based control and actuation technology. This paper presents a ... As a combination of bio-mechanism and engineering technology, robot fish has become a multidisci- plinary research that mainly involves both hydrodynamics-based control and actuation technology. This paper presents a simplified propulsive model for carangiform propulsion, which is a swimming mode suitable for high speed and high efficiency. The carangiform motion is modeled as an N-joint nscillating mechanism that is composed of two basic components: the streamlined fish body represented by a planar spline curve and its hmate caudal tail by an oscillating foil. The speed of fish's straight swimming is adjusted by modulating the joint's oscillating frequency, and its orientation is tuned by different joint's deflection. The results from actual experiment showed that the proposed simplified propulsive model could be a viable eandidate for application in aquatic: swimming vehicles. 展开更多
关键词 propulsive model robot fish carangitform propulsion body wave
在线阅读 下载PDF
Numerical and Experimental Studies on the Effect of Axial Spacing on Hydrodynamic Performance of the Hybrid CRP Pod Propulsion System 被引量:4
15
作者 熊鹰 张可 +1 位作者 王展智 齐万江 《China Ocean Engineering》 SCIE EI CSCD 2016年第4期627-636,共10页
The hydrodynamic performance of a hybrid CRP pod propulsion system was studied by RANS method with SST k ?? turbulence model and sliding mesh. The effect of axial spacing on the hydrodynamic performance of the hybri... The hydrodynamic performance of a hybrid CRP pod propulsion system was studied by RANS method with SST k ?? turbulence model and sliding mesh. The effect of axial spacing on the hydrodynamic performance of the hybrid CRP pod propulsion system was investigated numerically and experimentally. It shows that RANS with the sliding mesh method and SST k -ω turbulence model predicts accurately the hydrodynamic performance of the hybrid CRP pod propulsion system. The axial spacing has little influence on the hydrodynamic performance of the forward propeller, but great influence on that of the pod unit. Thrust coefficient of the pod unit declines with the increase of the axial spacing, but the trend becomes weaker, and the decreasing amplitude at the lower advance coefficient is larger than that at the higher advance coefficient. The thrust coefficient and open water efficiency of the hybrid CRP pod propulsion system decrease with the increase of the axial spacing, while the torque coefficient keeps almost constant. On this basis, the design principle of axial spacing of the hybrid CRP pod propulsion system was proposed. 展开更多
关键词 hybrid CRP pod propulsion system axial spacing hydrodynamic performance numerical simulation experimental study
在线阅读 下载PDF
An atmosphere-breathing propulsion system using inductively coupled plasma source 被引量:5
16
作者 Peng ZHENG Jianjun WU +2 位作者 Yu ZHANG Bixuan CHE Yuanzheng ZHAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第5期223-238,共16页
CubeSats have attracted more research interest recently due to their lower cost and shorter production time.A promising technology for CubeSat application is atmosphere-breathing electric propulsion,which can capture ... CubeSats have attracted more research interest recently due to their lower cost and shorter production time.A promising technology for CubeSat application is atmosphere-breathing electric propulsion,which can capture the atmospheric particles as propulsion propellant to maintain longterm mission at very low Earth orbit.This paper designs an atmosphere-breathing electric propulsion system for a 3 U CubeSat,which consists of an intake device and an electric thruster based on the inductively coupled plasma.The capture performance of intake device is optimized considering both particles capture efficiency and compression ratio.The plasma source is also analyzed by experiment and simulation.Then,the thrust performance is also estimated when taking into account the intake performance.The results show that it is feasible to use atmosphere-breathing electric propulsion technology for CubeSats to compensate for aerodynamic drag at lower Earth orbit. 展开更多
关键词 Atmosphere-Breathing Electric Propulsion(ABEP) CUBESAT Inductively coupled plasma Intake device Very Low Earth Orbit(VLEO)
原文传递
Analysis of Properties of Thrust Bearing in Ship Propulsion System 被引量:4
17
作者 吴铸新 刘正林 《Journal of Marine Science and Application》 2010年第2期220-222,共3页
Thrust bearing is a key component of the propulsion system of a ship. It transfers the propulsive forces from the propeller to the ship's hull, allowing the propeller to push the ship ahead. The performance of a thru... Thrust bearing is a key component of the propulsion system of a ship. It transfers the propulsive forces from the propeller to the ship's hull, allowing the propeller to push the ship ahead. The performance of a thrust bearing pad is critical. When the thrust bearing becomes damaged, it can cause the ship to lose power and can also affect its operational safety. For this paper, the distribution of the pressure field of a thrust pad was calculated with numerical method, applying Reynolds equation. Thrust bearing properties for loads were analyzed, given variations in outlet thickness of the pad and variations between the load and the slope of the pad. It was noticed that the distribution of pressure was uneven. As a result, increases of both the outlet thickness and the slope coefficient of the pad were able to improve load beating capability. 展开更多
关键词 thrust bearing thrust pad lubrication properties ship propulsion shaft eometrical factors.
在线阅读 下载PDF
Fault Detection and Diagnosis of a Gearbox in Marine Propulsion Systems Using Bispectrum Analysis and Artificial Neural Networks 被引量:3
18
作者 李志雄 严新平 +2 位作者 袁成清 赵江滨 彭中笑 《Journal of Marine Science and Application》 2011年第1期17-24,共8页
A marine propulsion system is a very complicated system composed of many mechanical components.As a result,the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other com... A marine propulsion system is a very complicated system composed of many mechanical components.As a result,the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other components including a diesel engine and main shaft.It is therefore imperative to assess the coupling effect on diagnostic reliability in the process of gear fault diagnosis.For this reason,a fault detection and diagnosis method based on bispectrum analysis and artificial neural networks (ANNs) was proposed for the gearbox with consideration given to the impact of the other components in marine propulsion systems.To monitor the gear conditions,the bispectrum analysis was first employed to detect gear faults.The amplitude-frequency plots containing gear characteristic signals were then attained based on the bispectrum technique,which could be regarded as an index actualizing forepart gear faults diagnosis.Both the back propagation neural network (BPNN) and the radial-basis function neural network (RBFNN) were applied to identify the states of the gearbox.The numeric and experimental test results show the bispectral patterns of varying gear fault severities are different so that distinct fault features of the vibrant signal of a marine gearbox can be extracted effectively using the bispectrum,and the ANN classification method has achieved high detection accuracy.Hence,the proposed diagnostic techniques have the capability of diagnosing marine gear faults in the earlier phases,and thus have application importance. 展开更多
关键词 marine propulsion system fault diagnosis vibration analysis BISPECTRUM artificial neural networks Article
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部