Red-green-blue(RGB)beam combiners are widely used in scenarios such as augmented reality/virtual reality(AR/VR),laser projection,biochemical detection,and other fields.Optical waveguide combiners have attracted extens...Red-green-blue(RGB)beam combiners are widely used in scenarios such as augmented reality/virtual reality(AR/VR),laser projection,biochemical detection,and other fields.Optical waveguide combiners have attracted extensive attention due to their advantages of small size,high multiplexing efficiency,convenient mass production,and low cost.An RGB beam combiner based on directional couplers is designed,with a core-cladding relative refractive index difference of 0.75%.The RGB beam combiner is optimized from the perspective of parameter optimization.Using the beam propagation method(BPM),the relationship between the performance of the RGB beam combiner and individual parameters is studied,achieving preliminary optimization of the device’s performance.The key parameters of the RGB beam combiner are optimized using the entropy weight-technique for order preference by similarity to an ideal solution TOPSIS method,establishing the optimal parameter scheme and further improving the device’s performance indicators.The results show that after optimization,the multiplexing efficiencies for red,green,and blue lights,as well as the average multiplexing efficiency,reached 99.17%,99.76%,96.63%and 98.52%,respectively.The size of the RGB beam combiner is 4.768 mm×0.062 mm.展开更多
The narrow band propagator method is introduced to the wide-band coherent signal-subspace processing in the direction finding problem. A new technique that needs no direction pre-estimation or matrix decomposition is ...The narrow band propagator method is introduced to the wide-band coherent signal-subspace processing in the direction finding problem. A new technique that needs no direction pre-estimation or matrix decomposition is presented to compute the focusing matrices, so the focusing matrices are robust and the computation,.is simple. Then, the propagator method is extended to the focused covariance matrix to find the directions of the sources. The whole estimation process avoids the rather expensive matrix decomposition, and the results of simulations proved the effectiveness of the new method.展开更多
The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establis...The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establish thetraining data set,the validation data set,and the test data set.The artificial neural network(ANN)methodand Back Propagation method are employed to train parameters in the ANN.The developed ANN is applied toconstruct the sub-grid scale model for the large eddy simulation of the Burgers turbulence in the one-dimensionalspace.The proposed model well predicts the time correlation and the space correlation of the Burgers turbulence.展开更多
Electromagnetic vector sensor(EMVS)embedded multiple-input multiple-output(MIMO)radar is an emerging technology that enables two-dimensional(2D)direction of arrival(DOA)estimation.In this paper,we proposed a low-compl...Electromagnetic vector sensor(EMVS)embedded multiple-input multiple-output(MIMO)radar is an emerging technology that enables two-dimensional(2D)direction of arrival(DOA)estimation.In this paper,we proposed a low-complexity estimation of signal parameters via rotational invariance techniques(ESPRIT)algorithm for uniform linear array(ULA)EMVSMIMO radar at a monostatic,enabling rapid estimation of 2D target angles.Initially,by employing a selection matrix,complexity reduction is applied to the array data,thereby eliminating redundancy in the array data.Subsequently,leveraging the rotation invariance propagator method(PM)algorithm,obtain the estimation of the elevation angle,but due to array sparsity,this estimation exhibits ambiguity.Then,the vector cross-product(VCP)technique is employed to achieve unambiguous 2D-DOA estimation.Finally,the aforementioned estimates are synthesized to obtain highresolution,unambiguous elevation angle estimation.The proposed algorithm is applicable to largescale and spare EMVS-MIMO radar systems and provides higher estimation accuracy compared to existing ESPRIT algorithms.The effectiveness of the algorithm is verified through matrix laboratory(MATLAB)simulations.展开更多
In loosely coupled or large-scale problems with high dominance ratios,slow fission source convergence can take extremely long time,reducing Monte Carlo(MC)criticality calculation efficiency.Although various accelerati...In loosely coupled or large-scale problems with high dominance ratios,slow fission source convergence can take extremely long time,reducing Monte Carlo(MC)criticality calculation efficiency.Although various acceleration methods have been developed,some methods cannot reduce convergence times,whereas others have been limited to specific problem geometries.In this study,a new fission source convergence acceleration(FSCA)method,the forced propagation(FP)method,has been proposed,which forces the fission source to propagate and accelerate fission source convergence.Additionally,some stabilization techniques have been designed to render the method more practical.The resulting stabilized method was then successfully implemented in the MC transport code,and its feasibility and effectiveness were tested using the modified OECD/NEA,one-dimensional slab benchmark,and the Hoogenboom full-core problem.The comparison results showed that the FP method was able to achieve efficient FSCA.展开更多
A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first ...A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first sub-step, but evaluated and doubly used in the second sub-step. The order of two sub-steps is reversed for each transverse magnetic field component so that the cross-coupling terms are always expressed in implicit form, thus the calculation is very efficient and stable. Moreover, an improved six-point finite-difference scheme with high accuracy independent of specific structures of waveguide is also constructed to approximate the cross-coupling terms along the transverse directions. The imaginary-distance procedure is used to assess the validity and utility of the present method. The field patterns and the normalized propagation constants of the fundamental mode for a buried rectangular waveguide and a rib waveguide are presented. Solutions are in excellent agreement with the benchmark results from the modal transverse resonance method.展开更多
Black locust (Robinia pseudoacacia L.) is one of the most important stand-forming tree species in Hungary and its importance is increasing in many countries. Black locust plants are commonly produced by two methods, b...Black locust (Robinia pseudoacacia L.) is one of the most important stand-forming tree species in Hungary and its importance is increasing in many countries. Black locust plants are commonly produced by two methods, by seed and by root cuttings. Tissue culture propagation can be considered as a relatively new method. Growing trees from seed is a relatively sim-ple method for reliably producing seedlings on a large scale under a variety of circumstances. Mechanization of the method is easy and the production cost is relatively low. Propagation from root cuttings and tissue culture are valuable for reproduction of superior individuals or varieties. By applying these methods, superior traits of the selected trees can be preserved in the clones. Recent experiments demonstrated that micropropagated trees could be successfully transplanted into soil, hardened and grown in the field.展开更多
In order to monitor the basic mechanical properties and interior damage of concrete structures,the piezoelectric actuator/sensor based wave propagation method was investigated experimentally in the laboratory using a ...In order to monitor the basic mechanical properties and interior damage of concrete structures,the piezoelectric actuator/sensor based wave propagation method was investigated experimentally in the laboratory using a specifically designed test setup.The energy attenuation of stress waves was measured by the relative index between the output voltage of sensors and the excitation voltage at the actuator.Based on the experimental results of concrete cube and cylinder specimens,the effect of excitation frequencies,excitation amplitude,wave propagation paths and the curing age on the output signals of sensors are evaluated.The results show that the relative voltage attenuation coefficient RVAC is an effective indicator for measuring the attenuation of stress waves through the interior of concrete.展开更多
We present numerical modeling of SH-wave propagation for the recently proposed whole Moon model and try to improve our understanding of lunar seismic wave propagation. We use a hybrid PSM/FDM method on staggered grids...We present numerical modeling of SH-wave propagation for the recently proposed whole Moon model and try to improve our understanding of lunar seismic wave propagation. We use a hybrid PSM/FDM method on staggered grids to solve the wave equations and implement the calculation on a parallel PC cluster to improve the computing efficiency. Features of global SH-wave propagation are firstly discussed for a 100-km shallow and900-km deep moonquakes, respectively. Effects of frequency range and lateral variation of crust thickness are then investigated with various models. Our synthetic waveforms are finally compared with observed Apollo data to show the features of wave propagation that were produced by our model and those not reproduced by our models. Our numerical modeling show that the low-velocity upper crust plays significant role in the development of reverberating wave trains. Increasing frequency enhances the strength and duration of the reverberations.Surface multiples dominate wavefields for shallow event.Core–mantle reflections can be clearly identified for deep event at low frequency. The layered whole Moon model and the low-velocity upper crust produce the reverberating wave trains following each phases consistent with observation. However, more realistic Moon model should be considered in order to explain the strong and slow decay scattering between various phases shown on observation data.展开更多
The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special fe...The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special features as well. One of the most prominent advantages is its capability of calculating stress intensity factors (SIFs) directly from the stress solutions whose singularities at crack tips are analytically represented. This advantage is taken in this study to model static and dynamic fracture problems. For static problems, a remeshing algorithm as simple as used in the BEM is developed while retaining the generality and flexibility of the FEM. Fully-automatic modelling of the mixed-mode crack propagation is then realised by combining the remeshing algorithm with a propagation criterion. For dynamic fracture problems, a newly developed series-increasing solution to the SBFEM governing equations in the frequency domain is applied to calculate dynamic SIFs. Three plane problems are modelled. The numerical results show that the SBFEM can accurately predict static and dynamic SIFs, cracking paths and load-displacement curves, using only a fraction of degrees of freedom generally needed by the traditional finite element methods.展开更多
A new numerical technique based on the wavelet derivative operator is presented as an alternative to BPM to study the integrated optical waveguide. The wavelet derivative operator is used instead of FFT/IFFT or finite...A new numerical technique based on the wavelet derivative operator is presented as an alternative to BPM to study the integrated optical waveguide. The wavelet derivative operator is used instead of FFT/IFFT or finite difference to calculate the derivatives of the transverse variable in the Helmholtz equation. Results of numerically simulating the injected field at z =0 are exhibited with Gaussian distribution in transverse direction propagating through the two dimensional waveguides (with linear and/or nonlinear refractive index) , which are similar to those in the related publications. Consequently it is efficient and needs not absorbing boundary by introducing the interpolation operator during calculating the wavelet derivative operator. The iterative process needs fewer steps to be stable. Also, when the light wave meets the changes of mediums, the wavelet derivative operator has the adaptive property to adjust those changes at the boundaries.展开更多
A modified wide-angle beam propagation based on the Douglas operators is presented.The truncation error in the modified wide-angle beam propagation is reduced to o (Δ x ) 4 in the transverse direction nearly wi...A modified wide-angle beam propagation based on the Douglas operators is presented.The truncation error in the modified wide-angle beam propagation is reduced to o (Δ x ) 4 in the transverse direction nearly without any increase of the computation time,whereas the error in the ordinary wide-angle beam propagation method is typically o (Δ x ) 2.With trivial programming changes,the accuracy is higher,especially in wide-angle propagation.展开更多
In this paper, a split step ABCD matrix method is suggested to investigate Gaussian beam propagation in a Kerr type metamaterial medium. This method is based on dividing the medium interval into subsequent steps.Meanw...In this paper, a split step ABCD matrix method is suggested to investigate Gaussian beam propagation in a Kerr type metamaterial medium. This method is based on dividing the medium interval into subsequent steps.Meanwhile, Gaussian beam profile in every step is obtained by finding the ABCD matrix of that particular step, and is used to find the ABCD matrix of the next step. Results of the suggested matrix method have been compared with the results of numerical split-step Fourier method for a Kerr medium, which indicates a good agreement. Then, we use the ABCD matrix to investigate Gaussian beams propagation in a Kerr type metamaterial, which is also in agreement with pervious results by other methods.展开更多
Modeling of seismic responses of variable permeability on the basis of the patchy-sa^ration model provides insights into the seismic characterization of fluid mobility. We linked rock-physics models in the frequency d...Modeling of seismic responses of variable permeability on the basis of the patchy-sa^ration model provides insights into the seismic characterization of fluid mobility. We linked rock-physics models in the frequency domain and seismic modeling on the basis of the propagator matrix method. For a layered patchy-saturated reservoir, the seismic responses represent a combination of factors, including impedance contrast, the effect of dispersion and attenuation within the reservoir, and the tuning and interference of reflections at the top and bottom of the reservoir. Numerical results suggest that increasing permeability significantly reduces the P-wave velocity and induces dispersion between the high- and low-frequency elastic limit. Velocity dispersion and the layered structure of a reservoir lead to complex reflection waveforms. Seismic reflections are sensitive to permeability if the impedance of the reservoir is close to that of the surroundings. For variable layer thickness, the stacked amplitudes increase with permeability for high-velocity surrounding shale, whereas the stacked amplitudes decrease with permeability for low-velocity surrounding shale.展开更多
This paper addresses the problem of four-dimensional angle and Doppler frequency estimation for bistatic multiple-input multiple-output (MIMO) radar with arbitrary arrays in spatial co- lored noise. A novel method f...This paper addresses the problem of four-dimensional angle and Doppler frequency estimation for bistatic multiple-input multiple-output (MIMO) radar with arbitrary arrays in spatial co- lored noise. A novel method for joint estimation of Doppler fre- quency, two-dimensional (2D) direction of departure and 2D direc- tion of arrival based on the propagator method (PM) for arbitrary arrays is discussed. A special matrix is constructed to eliminate the influence of spatial colored noise. The four-dimensional (4D) angle and Doppler frequency are extracted from the matrix and the three- dimensional (3D) coordinates of the targets are then calculated on the basis of these angles. The proposed algorithm provides a lower computational complexity and has a parameter estimation very close to that of the ESPRIT algorithm and the DOA-matrix al- gorithm in the high signal to noise ratio and the Cramer-Rao bound (CRB) is given. Furthermore, multi-dimensional parameters can be automatically paired by this algorithm to avoid performance degra- dation resulting from wrong pairing. Simulation results demonstrate the effectiveness of the proposed method.展开更多
To cope with the scenario where both uncorrelated sources and coherent sources coexist, a novel algorithm to direction of arrival (DOA) estimation for symmetric uniform linear array is presented. Under the condition...To cope with the scenario where both uncorrelated sources and coherent sources coexist, a novel algorithm to direction of arrival (DOA) estimation for symmetric uniform linear array is presented. Under the condition of stationary colored noise field, the algorithm employs a spatial differencing method to eliminate the noise covariance matrix and uncorrelated sources, then a Toeplitz matrix is constructed for the remained coherent sources. After preprocessing, a propagator method (PM) is employed to find the DOAs without any eigendecomposition. The number of sources resolved by this approach can exceed the number of array elements at a lower computational complexity. Simulation results demonstrate the effectiveness and efficiency of the proposed method.展开更多
This paper links parallel factor(PARAFAC) analysis to the problem of nominal direction-of-arrival(DOA) estimation for coherently distributed(CD) sources and proposes a fast PARAFACbased algorithm by establishing...This paper links parallel factor(PARAFAC) analysis to the problem of nominal direction-of-arrival(DOA) estimation for coherently distributed(CD) sources and proposes a fast PARAFACbased algorithm by establishing the trilinear PARAFAC model.Relying on the uniqueness of the low-rank three-way array decomposition and the trilinear alternating least squares regression, the proposed algorithm achieves nominal DOA estimation and outperforms the conventional estimation of signal parameter via rotational technique CD(ESPRIT-CD) and propagator method CD(PM-CD)methods in terms of estimation accuracy. Furthermore, by means of the initialization via the propagator method, this paper accelerates the convergence procedure of the proposed algorithm with no estimation performance degradation. In addition, the proposed algorithm can be directly applied to the multiple-source scenario,where sources have different angular distribution shapes. Numerical simulation results corroborate the effectiveness and superiority of the proposed fast PARAFAC-based algorithm.展开更多
This paper presents a low?complexity method for the direction?of?arrival(DOA)estimation of noncircular signals for coprime sensor arrays.The noncircular property is exploited to improve the performance of DOA estimati...This paper presents a low?complexity method for the direction?of?arrival(DOA)estimation of noncircular signals for coprime sensor arrays.The noncircular property is exploited to improve the performance of DOA estimation.To reduce the computational complexity,the rotational invariance propagator method(RIPM)is included in the algorithm.First,the extended array output is reconstructed by combining the array output and its conjugated counterpart.Then,the RIPM is utilized to obtain two sets of DOA estimates for two subarrays.Finally,the true DOAs are estimated by combining the consistent results of the two subarrays.This illustrates the potential gain that both noncircularity and coprime arrays provide when considered together.The proposed algorithm has a lower computational complexity and a better DOA estimation performance than the standard estimation of signal parameters by the rotational invariance technique and Capon algorithm.Numerical simulation results illustrate the effectiveness and superiority of the proposed algorithm.展开更多
An acoustic vector sensor(AVS)can capture more information than a conventional acoustic pressure sensor(APS).As a result,more output channels are required when multiple AVS are formed into arrays,making processing the...An acoustic vector sensor(AVS)can capture more information than a conventional acoustic pressure sensor(APS).As a result,more output channels are required when multiple AVS are formed into arrays,making processing the data stream computationally intense.This paper proposes a new algorithm based on the propagator method for wideband coherent sources that eliminates eigen-decomposition in order to reduce the computational burden.Data from simulations and lake trials showed that the new algorithm is valid:it resolves coherent sources,breaks left/right ambiguity,and allows inter element spacing to exceed a half-wavelength.展开更多
In this study,the nonlocal strain gradient theory is adopted to investigate the static bending deformation of a functionally graded(FG)multilayered nanoplate made of onedimensional hexagonal piezoelectric quasicrystal...In this study,the nonlocal strain gradient theory is adopted to investigate the static bending deformation of a functionally graded(FG)multilayered nanoplate made of onedimensional hexagonal piezoelectric quasicrystal(PQC)materials subjected to mechanical and electrical surface loadings.The FG materials are assumed to be exponential distribution along the thickness direction.Exact closed-form solutions of an FG PQC nanoplate including nonlocality and strain gradient micro-size dependency are derived by utilizing the pseudo-Stroh formalism.The propagator matrix method is further used to solve the multilayered case by assuming that the layer interfaces are perfectly contacted.Numerical examples for two FG sandwich nanoplates made of piezoelectric crystals and PQC are provided to show the influences of nonlocal parameter,strain gradient parameter,exponential factor,length-to-width ratio,loading form,and stacking sequence on the static deformation of two FG sandwich nanoplates,which play an important role in designing new smart composite structures in engineering.展开更多
基金Project(52175445)supported by the National Natural Science Foundation of ChinaProject(2022JJ30743)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(2023GK2024)supported by the Key Research and Development Program of Hunan Province,ChinaProject(2023ZZTS0391)supported by the Fundamental Research Funds for the Central Universities of China。
文摘Red-green-blue(RGB)beam combiners are widely used in scenarios such as augmented reality/virtual reality(AR/VR),laser projection,biochemical detection,and other fields.Optical waveguide combiners have attracted extensive attention due to their advantages of small size,high multiplexing efficiency,convenient mass production,and low cost.An RGB beam combiner based on directional couplers is designed,with a core-cladding relative refractive index difference of 0.75%.The RGB beam combiner is optimized from the perspective of parameter optimization.Using the beam propagation method(BPM),the relationship between the performance of the RGB beam combiner and individual parameters is studied,achieving preliminary optimization of the device’s performance.The key parameters of the RGB beam combiner are optimized using the entropy weight-technique for order preference by similarity to an ideal solution TOPSIS method,establishing the optimal parameter scheme and further improving the device’s performance indicators.The results show that after optimization,the multiplexing efficiencies for red,green,and blue lights,as well as the average multiplexing efficiency,reached 99.17%,99.76%,96.63%and 98.52%,respectively.The size of the RGB beam combiner is 4.768 mm×0.062 mm.
文摘The narrow band propagator method is introduced to the wide-band coherent signal-subspace processing in the direction finding problem. A new technique that needs no direction pre-estimation or matrix decomposition is presented to compute the focusing matrices, so the focusing matrices are robust and the computation,.is simple. Then, the propagator method is extended to the focused covariance matrix to find the directions of the sources. The whole estimation process avoids the rather expensive matrix decomposition, and the results of simulations proved the effectiveness of the new method.
基金supported by the National Key R&D Program of China(Grant No.2022YFB3303500).
文摘The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establish thetraining data set,the validation data set,and the test data set.The artificial neural network(ANN)methodand Back Propagation method are employed to train parameters in the ANN.The developed ANN is applied toconstruct the sub-grid scale model for the large eddy simulation of the Burgers turbulence in the one-dimensionalspace.The proposed model well predicts the time correlation and the space correlation of the Burgers turbulence.
文摘Electromagnetic vector sensor(EMVS)embedded multiple-input multiple-output(MIMO)radar is an emerging technology that enables two-dimensional(2D)direction of arrival(DOA)estimation.In this paper,we proposed a low-complexity estimation of signal parameters via rotational invariance techniques(ESPRIT)algorithm for uniform linear array(ULA)EMVSMIMO radar at a monostatic,enabling rapid estimation of 2D target angles.Initially,by employing a selection matrix,complexity reduction is applied to the array data,thereby eliminating redundancy in the array data.Subsequently,leveraging the rotation invariance propagator method(PM)algorithm,obtain the estimation of the elevation angle,but due to array sparsity,this estimation exhibits ambiguity.Then,the vector cross-product(VCP)technique is employed to achieve unambiguous 2D-DOA estimation.Finally,the aforementioned estimates are synthesized to obtain highresolution,unambiguous elevation angle estimation.The proposed algorithm is applicable to largescale and spare EMVS-MIMO radar systems and provides higher estimation accuracy compared to existing ESPRIT algorithms.The effectiveness of the algorithm is verified through matrix laboratory(MATLAB)simulations.
基金supported by the National Natural Science Foundation of China(Nos.11775126,11545013,11605101)the Young Elite Scientists Sponsorship Program by CAST(No.2016QNRC001)+1 种基金Science Challenge Project by MIIT of China(No.TZ2018001)Tsinghua University,Initiative Scientific Research Program。
文摘In loosely coupled or large-scale problems with high dominance ratios,slow fission source convergence can take extremely long time,reducing Monte Carlo(MC)criticality calculation efficiency.Although various acceleration methods have been developed,some methods cannot reduce convergence times,whereas others have been limited to specific problem geometries.In this study,a new fission source convergence acceleration(FSCA)method,the forced propagation(FP)method,has been proposed,which forces the fission source to propagate and accelerate fission source convergence.Additionally,some stabilization techniques have been designed to render the method more practical.The resulting stabilized method was then successfully implemented in the MC transport code,and its feasibility and effectiveness were tested using the modified OECD/NEA,one-dimensional slab benchmark,and the Hoogenboom full-core problem.The comparison results showed that the FP method was able to achieve efficient FSCA.
文摘A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first sub-step, but evaluated and doubly used in the second sub-step. The order of two sub-steps is reversed for each transverse magnetic field component so that the cross-coupling terms are always expressed in implicit form, thus the calculation is very efficient and stable. Moreover, an improved six-point finite-difference scheme with high accuracy independent of specific structures of waveguide is also constructed to approximate the cross-coupling terms along the transverse directions. The imaginary-distance procedure is used to assess the validity and utility of the present method. The field patterns and the normalized propagation constants of the fundamental mode for a buried rectangular waveguide and a rib waveguide are presented. Solutions are in excellent agreement with the benchmark results from the modal transverse resonance method.
基金the Hungarian National Sci-entific Research Fund (OTKA-T 029021) and the Hungar- ian Ministry of Agriculture and Region Development (95-a/2001).
文摘Black locust (Robinia pseudoacacia L.) is one of the most important stand-forming tree species in Hungary and its importance is increasing in many countries. Black locust plants are commonly produced by two methods, by seed and by root cuttings. Tissue culture propagation can be considered as a relatively new method. Growing trees from seed is a relatively sim-ple method for reliably producing seedlings on a large scale under a variety of circumstances. Mechanization of the method is easy and the production cost is relatively low. Propagation from root cuttings and tissue culture are valuable for reproduction of superior individuals or varieties. By applying these methods, superior traits of the selected trees can be preserved in the clones. Recent experiments demonstrated that micropropagated trees could be successfully transplanted into soil, hardened and grown in the field.
基金Funded by the National Natural Science Foundation of China (No.50708065)the National High-tech R&D Program(863 Program )(No.2007-AA-11-Z-113)the Key Projects in the Science and Technology Pillar Program of Tianjin(No.11ZCKFSF00300)
文摘In order to monitor the basic mechanical properties and interior damage of concrete structures,the piezoelectric actuator/sensor based wave propagation method was investigated experimentally in the laboratory using a specifically designed test setup.The energy attenuation of stress waves was measured by the relative index between the output voltage of sensors and the excitation voltage at the actuator.Based on the experimental results of concrete cube and cylinder specimens,the effect of excitation frequencies,excitation amplitude,wave propagation paths and the curing age on the output signals of sensors are evaluated.The results show that the relative voltage attenuation coefficient RVAC is an effective indicator for measuring the attenuation of stress waves through the interior of concrete.
基金supported by the National Natural Science Foundation of China(Grants 41374046 and41174034)
文摘We present numerical modeling of SH-wave propagation for the recently proposed whole Moon model and try to improve our understanding of lunar seismic wave propagation. We use a hybrid PSM/FDM method on staggered grids to solve the wave equations and implement the calculation on a parallel PC cluster to improve the computing efficiency. Features of global SH-wave propagation are firstly discussed for a 100-km shallow and900-km deep moonquakes, respectively. Effects of frequency range and lateral variation of crust thickness are then investigated with various models. Our synthetic waveforms are finally compared with observed Apollo data to show the features of wave propagation that were produced by our model and those not reproduced by our models. Our numerical modeling show that the low-velocity upper crust plays significant role in the development of reverberating wave trains. Increasing frequency enhances the strength and duration of the reverberations.Surface multiples dominate wavefields for shallow event.Core–mantle reflections can be clearly identified for deep event at low frequency. The layered whole Moon model and the low-velocity upper crust produce the reverberating wave trains following each phases consistent with observation. However, more realistic Moon model should be considered in order to explain the strong and slow decay scattering between various phases shown on observation data.
基金The project supported by the National Natural Science Foundation of China (50579081)the Australian Research Council (DP0452681)The English text was polished by Keren Wang
文摘The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special features as well. One of the most prominent advantages is its capability of calculating stress intensity factors (SIFs) directly from the stress solutions whose singularities at crack tips are analytically represented. This advantage is taken in this study to model static and dynamic fracture problems. For static problems, a remeshing algorithm as simple as used in the BEM is developed while retaining the generality and flexibility of the FEM. Fully-automatic modelling of the mixed-mode crack propagation is then realised by combining the remeshing algorithm with a propagation criterion. For dynamic fracture problems, a newly developed series-increasing solution to the SBFEM governing equations in the frequency domain is applied to calculate dynamic SIFs. Three plane problems are modelled. The numerical results show that the SBFEM can accurately predict static and dynamic SIFs, cracking paths and load-displacement curves, using only a fraction of degrees of freedom generally needed by the traditional finite element methods.
文摘A new numerical technique based on the wavelet derivative operator is presented as an alternative to BPM to study the integrated optical waveguide. The wavelet derivative operator is used instead of FFT/IFFT or finite difference to calculate the derivatives of the transverse variable in the Helmholtz equation. Results of numerically simulating the injected field at z =0 are exhibited with Gaussian distribution in transverse direction propagating through the two dimensional waveguides (with linear and/or nonlinear refractive index) , which are similar to those in the related publications. Consequently it is efficient and needs not absorbing boundary by introducing the interpolation operator during calculating the wavelet derivative operator. The iterative process needs fewer steps to be stable. Also, when the light wave meets the changes of mediums, the wavelet derivative operator has the adaptive property to adjust those changes at the boundaries.
文摘A modified wide-angle beam propagation based on the Douglas operators is presented.The truncation error in the modified wide-angle beam propagation is reduced to o (Δ x ) 4 in the transverse direction nearly without any increase of the computation time,whereas the error in the ordinary wide-angle beam propagation method is typically o (Δ x ) 2.With trivial programming changes,the accuracy is higher,especially in wide-angle propagation.
文摘In this paper, a split step ABCD matrix method is suggested to investigate Gaussian beam propagation in a Kerr type metamaterial medium. This method is based on dividing the medium interval into subsequent steps.Meanwhile, Gaussian beam profile in every step is obtained by finding the ABCD matrix of that particular step, and is used to find the ABCD matrix of the next step. Results of the suggested matrix method have been compared with the results of numerical split-step Fourier method for a Kerr medium, which indicates a good agreement. Then, we use the ABCD matrix to investigate Gaussian beams propagation in a Kerr type metamaterial, which is also in agreement with pervious results by other methods.
基金sponsored by the National Natural Science Foundation of China(Nos 41404090 and U1262208)the Foundation of the SINOPEC Key Laboratory of Geophysics(No.33550006-14-FW2099-0029)
文摘Modeling of seismic responses of variable permeability on the basis of the patchy-sa^ration model provides insights into the seismic characterization of fluid mobility. We linked rock-physics models in the frequency domain and seismic modeling on the basis of the propagator matrix method. For a layered patchy-saturated reservoir, the seismic responses represent a combination of factors, including impedance contrast, the effect of dispersion and attenuation within the reservoir, and the tuning and interference of reflections at the top and bottom of the reservoir. Numerical results suggest that increasing permeability significantly reduces the P-wave velocity and induces dispersion between the high- and low-frequency elastic limit. Velocity dispersion and the layered structure of a reservoir lead to complex reflection waveforms. Seismic reflections are sensitive to permeability if the impedance of the reservoir is close to that of the surroundings. For variable layer thickness, the stacked amplitudes increase with permeability for high-velocity surrounding shale, whereas the stacked amplitudes decrease with permeability for low-velocity surrounding shale.
基金supported by the National Natural Science Foundation of China(6137116961179006)+1 种基金the Jiangsu Postdoctoral Research Funding Plan(1301013B)the Nanjing University of Aeronautics and Astronautics Funding(NZ2013208)
文摘This paper addresses the problem of four-dimensional angle and Doppler frequency estimation for bistatic multiple-input multiple-output (MIMO) radar with arbitrary arrays in spatial co- lored noise. A novel method for joint estimation of Doppler fre- quency, two-dimensional (2D) direction of departure and 2D direc- tion of arrival based on the propagator method (PM) for arbitrary arrays is discussed. A special matrix is constructed to eliminate the influence of spatial colored noise. The four-dimensional (4D) angle and Doppler frequency are extracted from the matrix and the three- dimensional (3D) coordinates of the targets are then calculated on the basis of these angles. The proposed algorithm provides a lower computational complexity and has a parameter estimation very close to that of the ESPRIT algorithm and the DOA-matrix al- gorithm in the high signal to noise ratio and the Cramer-Rao bound (CRB) is given. Furthermore, multi-dimensional parameters can be automatically paired by this algorithm to avoid performance degra- dation resulting from wrong pairing. Simulation results demonstrate the effectiveness of the proposed method.
基金the National Natural Science Foundation of China (60601016)
文摘To cope with the scenario where both uncorrelated sources and coherent sources coexist, a novel algorithm to direction of arrival (DOA) estimation for symmetric uniform linear array is presented. Under the condition of stationary colored noise field, the algorithm employs a spatial differencing method to eliminate the noise covariance matrix and uncorrelated sources, then a Toeplitz matrix is constructed for the remained coherent sources. After preprocessing, a propagator method (PM) is employed to find the DOAs without any eigendecomposition. The number of sources resolved by this approach can exceed the number of array elements at a lower computational complexity. Simulation results demonstrate the effectiveness and efficiency of the proposed method.
基金supported by the National Natural Science Foundation of China(6137116961601167)+2 种基金the Jiangsu Natural Science Foundation(BK20161489)the open research fund of State Key Laboratory of Millimeter Waves,Southeast University(K201826)the Fundamental Research Funds for the Central Universities(NE2017103)
文摘This paper links parallel factor(PARAFAC) analysis to the problem of nominal direction-of-arrival(DOA) estimation for coherently distributed(CD) sources and proposes a fast PARAFACbased algorithm by establishing the trilinear PARAFAC model.Relying on the uniqueness of the low-rank three-way array decomposition and the trilinear alternating least squares regression, the proposed algorithm achieves nominal DOA estimation and outperforms the conventional estimation of signal parameter via rotational technique CD(ESPRIT-CD) and propagator method CD(PM-CD)methods in terms of estimation accuracy. Furthermore, by means of the initialization via the propagator method, this paper accelerates the convergence procedure of the proposed algorithm with no estimation performance degradation. In addition, the proposed algorithm can be directly applied to the multiple-source scenario,where sources have different angular distribution shapes. Numerical simulation results corroborate the effectiveness and superiority of the proposed fast PARAFAC-based algorithm.
基金supported by the National Natural Science Foundations of China (Nos.61371169,61601167, 61601504)the Natural Science Foundation of Jiangsu Province (No.BK20161489)+1 种基金the Open Research Fund of State Key Laboratory of Millimeter Waves, Southeast University (No. K201826)the Fundamental Research Funds for the Central Universities (No. NE2017103)
文摘This paper presents a low?complexity method for the direction?of?arrival(DOA)estimation of noncircular signals for coprime sensor arrays.The noncircular property is exploited to improve the performance of DOA estimation.To reduce the computational complexity,the rotational invariance propagator method(RIPM)is included in the algorithm.First,the extended array output is reconstructed by combining the array output and its conjugated counterpart.Then,the RIPM is utilized to obtain two sets of DOA estimates for two subarrays.Finally,the true DOAs are estimated by combining the consistent results of the two subarrays.This illustrates the potential gain that both noncircularity and coprime arrays provide when considered together.The proposed algorithm has a lower computational complexity and a better DOA estimation performance than the standard estimation of signal parameters by the rotational invariance technique and Capon algorithm.Numerical simulation results illustrate the effectiveness and superiority of the proposed algorithm.
基金the National 863 Plan Project of Ministry of Science and Technology of China under Grant No.2006AA09Z234
文摘An acoustic vector sensor(AVS)can capture more information than a conventional acoustic pressure sensor(APS).As a result,more output channels are required when multiple AVS are formed into arrays,making processing the data stream computationally intense.This paper proposes a new algorithm based on the propagator method for wideband coherent sources that eliminates eigen-decomposition in order to reduce the computational burden.Data from simulations and lake trials showed that the new algorithm is valid:it resolves coherent sources,breaks left/right ambiguity,and allows inter element spacing to exceed a half-wavelength.
基金supported by the National Natural Science Foundation of China(Grant Nos.11862021,12072166)the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(Grant No.NJYT-19-A06)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(Grant Nos.2020MS01006,2019MS01015,2019MS01017).
文摘In this study,the nonlocal strain gradient theory is adopted to investigate the static bending deformation of a functionally graded(FG)multilayered nanoplate made of onedimensional hexagonal piezoelectric quasicrystal(PQC)materials subjected to mechanical and electrical surface loadings.The FG materials are assumed to be exponential distribution along the thickness direction.Exact closed-form solutions of an FG PQC nanoplate including nonlocality and strain gradient micro-size dependency are derived by utilizing the pseudo-Stroh formalism.The propagator matrix method is further used to solve the multilayered case by assuming that the layer interfaces are perfectly contacted.Numerical examples for two FG sandwich nanoplates made of piezoelectric crystals and PQC are provided to show the influences of nonlocal parameter,strain gradient parameter,exponential factor,length-to-width ratio,loading form,and stacking sequence on the static deformation of two FG sandwich nanoplates,which play an important role in designing new smart composite structures in engineering.