期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
Functional cartography of heterogeneous combat networks using operational chain-based label propagation algorithm
1
作者 CHEN Kebin JIANG Xuping +2 位作者 ZENG Guangjun YANG Wenjing ZHENG Xue 《Journal of Systems Engineering and Electronics》 2025年第5期1202-1215,共14页
To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartogra... To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartography of heterogeneous combat networks based on the operational chain”(FCBOC).In this framework,a functional module detection algorithm named operational chain-based label propagation algorithm(OCLPA),which considers the cooperation and interactions among combat entities and can thus naturally tackle network heterogeneity,is proposed to identify the functional modules of the network.Then,the nodes and their modules are classified into different roles according to their properties.A case study shows that FCBOC can provide a simplified description of disorderly information of combat networks and enable us to identify their functional and structural network characteristics.The results provide useful information to help commanders make precise and accurate decisions regarding the protection,disintegration or optimization of combat networks.Three algorithms are also compared with OCLPA to show that FCBOC can most effectively find functional modules with practical meaning. 展开更多
关键词 functional cartography heterogeneous combat network functional module label propagation algorithm operational chain
在线阅读 下载PDF
Improving the accuracy of heart disease diagnosis with an augmented back propagation algorithm
2
作者 颜红梅 《Journal of Chongqing University》 CAS 2003年第1期31-34,共4页
A multilayer perceptron neural network system is established to support the diagnosis for five most common heart diseases (coronary heart disease, rheumatic valvular heart disease, hypertension, chronic cor pulmonale ... A multilayer perceptron neural network system is established to support the diagnosis for five most common heart diseases (coronary heart disease, rheumatic valvular heart disease, hypertension, chronic cor pulmonale and congenital heart disease). Momentum term, adaptive learning rate, the forgetting mechanics, and conjugate gradients method are introduced to improve the basic BP algorithm aiming to speed up the convergence of the BP algorithm and enhance the accuracy for diagnosis. A heart disease database consisting of 352 samples is applied to the training and testing courses of the system. The performance of the system is assessed by cross-validation method. It is found that as the basic BP algorithm is improved step by step, the convergence speed and the classification accuracy of the network are enhanced, and the system has great application prospect in supporting heart diseases diagnosis. 展开更多
关键词 multilayer perceptron back propagation algorithm heart disease momentum term adaptive learning rate the forgetting mechanics conjugate gradients method
暂未订购
A Third-Order Accurate Wave Propagation Algorithm for Hyperbolic Partial Differential Equations
3
作者 Christiane Helzel 《Communications on Applied Mathematics and Computation》 2020年第3期403-427,共25页
We extend LeVeque's wave propagation algorithm,a widely used finite volume method for hyperbolic partial differential equations,to a third-order accurate method.The resulting scheme shares main properties with the... We extend LeVeque's wave propagation algorithm,a widely used finite volume method for hyperbolic partial differential equations,to a third-order accurate method.The resulting scheme shares main properties with the original method,i.e.,it is based on a wave decomposition at grid cell interfaces,it can be used to approximate hyperbolic problems in divergence form as well as in quasilinear form and limiting is introduced in the form of a wave limiter. 展开更多
关键词 Wave propagation algorithm Hyperbolic partial differential equations Third-order accuracy
在线阅读 下载PDF
Age and Gender Classification Using Backpropagation and Bagging Algorithms
4
作者 Ammar Almomani Mohammed Alweshah +6 位作者 Waleed Alomoush Mohammad Alauthman Aseel Jabai Anwar Abbass Ghufran Hamad Meral Abdalla Brij B.Gupta 《Computers, Materials & Continua》 SCIE EI 2023年第2期3045-3062,共18页
Voice classification is important in creating more intelligent systems that help with student exams,identifying criminals,and security systems.The main aim of the research is to develop a system able to predicate and ... Voice classification is important in creating more intelligent systems that help with student exams,identifying criminals,and security systems.The main aim of the research is to develop a system able to predicate and classify gender,age,and accent.So,a newsystem calledClassifyingVoice Gender,Age,and Accent(CVGAA)is proposed.Backpropagation and bagging algorithms are designed to improve voice recognition systems that incorporate sensory voice features such as rhythm-based features used to train the device to distinguish between the two gender categories.It has high precision compared to other algorithms used in this problem,as the adaptive backpropagation algorithm had an accuracy of 98%and the Bagging algorithm had an accuracy of 98.10%in the gender identification data.Bagging has the best accuracy among all algorithms,with 55.39%accuracy in the voice common dataset and age classification and accent accuracy in a speech accent of 78.94%. 展开更多
关键词 Classify voice gender ACCENT age bagging algorithms back propagation algorithms AI classifiers
在线阅读 下载PDF
Space debris environment engineering model 2019:Algorithms improvement and comparison with ORDEM 3.1 and MASTER-8
5
作者 Yuyan LIU Runqiang CHI +3 位作者 Baojun PANG HU Diqi Wuxiong CAO Dongfang WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第5期392-409,共18页
As an essential tool for realistic description of the current or future debris environment,the Space Debris Environment Engineering Model(SDEEM)has been developed to provide support for risk assessment of spacecraft.I... As an essential tool for realistic description of the current or future debris environment,the Space Debris Environment Engineering Model(SDEEM)has been developed to provide support for risk assessment of spacecraft.In contrast with SDEEM2015,SDEEM2019,the latest version,extends the orbital range from the Low Earth Orbit(LEO)to Geosynchronous Orbit(GEO)for the years 1958-2050.In this paper,improved modeling algorithms used by SDEEM2019 in propagating simulation,spatial density distribution,and spacecraft flux evaluation are presented.The debris fluxes of SDEEM2019 are compared with those of three typical models,i.e.,SDEEM2015,Orbital Debris Engineering Model 3.1(ORDEM 3.1),and Meteoroid and Space Debris Terrestrial Environment Reference(MASTER-8),in terms of two assessment modes.Three orbital cases,including the Geostationary Transfer Orbit(GTO),Sun-Synchronous Orbit(SSO)and International Space Station(ISS)orbit,are selected for the spacecraft assessment mode,and the LEO region is selected for the spatial density assessment mode.The analysis indicates that compared with previous algorithms,the variable step-size orbital propagating algorithm based on semi-major axis control is more precise,the spatial density algorithm based on the second zonal harmonic of the non-spherical Earth gravity(J_(2))is more applicable,and the result of the position-centered spacecraft flux algorithm is more convergent.The comparison shows that SDEEM2019 and MASTER-8 have consistent trends due to similar modeling processes,while the differences between SDEEM2019 and ORDEM 3.1 are mainly caused by different modeling approaches for uncatalogued debris. 展开更多
关键词 SDEEM2019 Space debris propagating algorithm Spatial density algorithm ORDEM 3.1 MASTER-8
原文传递
Wireless location algorithm using digital broadcasting signals based on neural network 被引量:1
6
作者 柯炜 吴乐南 殷奎喜 《Journal of Southeast University(English Edition)》 EI CAS 2010年第3期394-398,共5页
In order to enhance the accuracy and reliability of wireless location under non-line-of-sight (NLOS) environments,a novel neural network (NN) location approach using the digital broadcasting signals is presented. ... In order to enhance the accuracy and reliability of wireless location under non-line-of-sight (NLOS) environments,a novel neural network (NN) location approach using the digital broadcasting signals is presented. By the learning ability of the NN and the closely approximate unknown function to any degree of desired accuracy,the input-output mapping relationship between coordinates and the measurement data of time of arrival (TOA) and time difference of arrival (TDOA) is established. A real-time learning algorithm based on the extended Kalman filter (EKF) is used to train the multilayer perceptron (MLP) network by treating the linkweights of a network as the states of the nonlinear dynamic system. Since the EKF-based learning algorithm approximately gives the minimum variance estimate of the linkweights,the convergence is improved in comparison with the backwards error propagation (BP) algorithm. Numerical results illustrate thatthe proposedalgorithmcanachieve enhanced accuracy,and the performance ofthe algorithmis betterthanthat of the BP-based NN algorithm and the least squares (LS) algorithm in the NLOS environments. Moreover,this location method does not depend on a particular distribution of the NLOS error and does not need line-of-sight ( LOS ) or NLOS identification. 展开更多
关键词 digital broadcasting signals neural network extended Kalman filter (EKF) backwards error propagation algorithm multilayer perceptron
在线阅读 下载PDF
Index Modulation Aided OTFS for SCMA System
7
作者 He Chunlin Xiao Lixia +3 位作者 Li Shuo Liu Weidan Xiao Pei Jiang Tao 《China Communications》 2025年第8期19-28,共10页
In this paper,an index modulation(IM)aided uplink orthogonal time frequency space modulation(OTFS)structure for sparse code multiple access(SCMA)is proposed.To be more specific,the information bits are firstly partiti... In this paper,an index modulation(IM)aided uplink orthogonal time frequency space modulation(OTFS)structure for sparse code multiple access(SCMA)is proposed.To be more specific,the information bits are firstly partitioned for transmit antenna(TA)selection and sparse codeword mapping,respectively.Subsequently,the codewords deployed on the 2-dimensional(2D)delay-Doppler(DD)plane are transmitted by the selected TA,and the superimposed signals are jointly detected at the receiver.Furthermore,a low-complexity zero-embedded expectation propagation(ZE-EP)detector is conceived,where the codebooks are extended with zero vectors to reflect the silent indices.The simulation results demonstrate that the proposed IM-OTFS-SCMA system is capable of providing significant performance gain over the OTFS-SCMA counterpart. 展开更多
关键词 expectation propagation algorithm index modulation message passing algorithm OTFS SCMA
在线阅读 下载PDF
Detecting community structure using label propagation with consensus weight in complex network 被引量:3
8
作者 梁宗文 李建平 +1 位作者 杨帆 Athina Petropulu 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第9期594-601,共8页
Community detection is a fundamental work to analyse the structural and functional properties of complex networks. The label propagation algorithm (LPA) is a near linear time algorithm to find a good community struc... Community detection is a fundamental work to analyse the structural and functional properties of complex networks. The label propagation algorithm (LPA) is a near linear time algorithm to find a good community structure. Despite various subsequent advances, an important issue of this algorithm has not yet been properly addressed. Random update orders within the algorithm severely hamper the stability of the identified community structure. In this paper, we executed the basic label propagation algorithm on networks multiple times, to obtain a set of consensus partitions. Based on these consensus partitions, we created a consensus weighted graph. In this consensus weighted graph, the weight value of the edge was the proportion value that the number of node pairs allocated in the same cluster was divided by the total number of partitions. Then, we introduced consensus weight to indicate the direction of label propagation. In label update steps, by computing the mixing value of consensus weight and label frequency, a node adopted the label which has the maximum mixing value instead of the most frequent one. For extending to different networks, we introduced a proportion parameter to adjust the proportion of consensus weight and label frequency in computing mixing value. Finally, we proposed an approach named the label propagation algorithm with consensus weight (LPAcw), and the experimental results showed that the LPAcw could enhance considerably both the stability and the accuracy of community partitions. 展开更多
关键词 label propagation algorithm community detection consensus cluster complex network
原文传递
Track Association for Dynamic Target Tracking System Based on AP Algorithm
9
作者 储岳中 徐波 高有涛 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第6期643-651,共9页
Track association of multi-target has been recognized as one of the key technologies in distributed multiple-sensor data fusion system,and its accuracy directly impacts on the performance of the whole tracking system.... Track association of multi-target has been recognized as one of the key technologies in distributed multiple-sensor data fusion system,and its accuracy directly impacts on the performance of the whole tracking system.A multi-sensor data association is proposed based on aftinity propagation(AP)algorithm.The proposed method needs an initial similarity,a distance between any two points,as a parameter,therefore,the similarity matrix is calculated by track position,velocity and azimuth of track data.The approach can automatically obtain the optimal classification of uncertain target based on clustering validity index.Furthermore,the same kind of data are fused based on the variance of measured data and the fusion result can be taken as a new measured data of the target.Finally,the measured data are classified to a certain target based on the nearest neighbor ideas and its characteristics,then filtering and target tracking are conducted.The experimental results show that the proposed method can effectively achieve multi-sensor and multi-target track association. 展开更多
关键词 affinity propagation algorithm data fusion target tracking track association
在线阅读 下载PDF
Neural network identification for underwater vehicle motion control system based on hybrid learning algorithm
10
作者 Sun Yushan Wang Jianguo +2 位作者 Wan Lei Hu Yunyan Jiang Chunmeng 《High Technology Letters》 EI CAS 2012年第3期243-247,共5页
Based on the structure of Elman and Jordan neural networks, a new dynamic neural network is constructed. The network can remember the past state of the hidden layer and adjust the effect of the past signal to the curr... Based on the structure of Elman and Jordan neural networks, a new dynamic neural network is constructed. The network can remember the past state of the hidden layer and adjust the effect of the past signal to the current value in real-time. And in order to enhance the signal processing capabilities, the feedback of output layer nodes is increased. A hybrid learning algorithm based on genetic algorithm (GA) and error back propagation algorithm (BP) is used to adjust the weight values of the network, which can accelerate the rate of convergence and avoid getting into local optimum. Finally, the improved neural network is utilized to identify underwater vehicle (UV) ' s hydrodynamic model, and the simulation results show that the neural network based on hybrid learning algorithm can improve the learning rate of convergence and identification nrecision. 展开更多
关键词 underwater vehicle (UV) system identification neural network genetic algo-rithm (GA) back propagation algorithm
在线阅读 下载PDF
Models for Predicting the Minimum Miscibility Pressure(MMP)of CO_(2)-Oil in Ultra-Deep Oil Reservoirs Based on Machine Learning
11
作者 Kun Li Tianfu Li +5 位作者 Xiuwei Wang Qingchun Meng Zhenjie Wang Jinyang Luo Zhaohui Wang Yuedong Yao 《Energy Engineering》 2025年第6期2215-2238,共24页
CO_(2)flooding for enhanced oil recovery(EOR)not only enables underground carbon storage but also plays a critical role in tertiary oil recovery.However,its displacement efficiency is constrained by whether CO_(2)and ... CO_(2)flooding for enhanced oil recovery(EOR)not only enables underground carbon storage but also plays a critical role in tertiary oil recovery.However,its displacement efficiency is constrained by whether CO_(2)and crude oil achieve miscibility,necessitating precise prediction of the minimum miscibility pressure(MMP)for CO_(2)-oil systems.Traditional methods,such as experimental measurements and empirical correlations,face challenges including time-consuming procedures and limited applicability.In contrast,artificial intelligence(AI)algorithms have emerged as superior alternatives due to their efficiency,broad applicability,and high prediction accuracy.This study employs four AI algorithms—Random Forest Regression(RFR),Genetic Algorithm Based Back Propagation Artificial Neural Network(GA-BPNN),Support Vector Regression(SVR),and Gaussian Process Regression(GPR)—to establish predictive models for CO_(2)-oil MMP.A comprehensive database comprising 151 data entries was utilized for model development.The performance of these models was rigorously evaluated using five distinct statistical metrics and visualized comparisons.Validation results confirm their accuracy.Field applications demonstrate that all four models are effective for predicting MMP in ultra-deep reservoirs(burial depth>5000 m)with complex crude oil compositions.Among them,the RFR and GA-BPNN models outperform SVR and GPR,achieving root mean square errors(RMSE)of 0.33%and 2.23%,and average absolute percentage relative errors(AAPRE)of 0.01%and 0.04%,respectively.Sensitivity analysis of MMP-influencing factors reveals that reservoir temperature(T_(R))exerts the most significant impact on MMP,while Xint(mole fraction of intermediate oil components,including C_(2)-C_(4),CO_(2),and H_(2)S)exhibits the least influence. 展开更多
关键词 MMP random forest regression genetic algorithm based back propagation artificial neural network support vector regression gaussian process regression
在线阅读 下载PDF
Aeromagnetic Compensation Algorithm Based on Levenberg-Marquard Neural Network
12
作者 Li LIU Qingfeng XU +3 位作者 Hui GU Lei ZHOU Zhenfu LIU Lili CAO 《Journal of Geodesy and Geoinformation Science》 2021年第4期74-83,共10页
The magnetic compensation of aeromagnetic survey is an important calibration work,which has a great impact on the accuracy of measurement.In an aeromagnetic survey flight,measurement data consists of diurnal variation... The magnetic compensation of aeromagnetic survey is an important calibration work,which has a great impact on the accuracy of measurement.In an aeromagnetic survey flight,measurement data consists of diurnal variation,aircraft maneuver interference field,and geomagnetic field.In this paper,appropriate physical features and the modular feedforward neural network(MFNN)with Levenberg-Marquard(LM)back propagation algorithm are adopted to supervised learn fluctuation of measuring signals and separate the interference magnetic field from the measurement data.LM algorithm is a kind of least square estimation algorithm of nonlinear parameters.It iteratively calculates the jacobian matrix of error performance and the adjustment value of gradient with the regularization method.LM algorithm’s computing efficiency is high and fitting error is very low.The fitting performance and the compensation accuracy of LM-MFNN algorithm are proved to be much better than those of TOLLES-LAWSON(T-L)model with the linear least square(LS)solution by fitting experiments with five different aeromagnetic surveys’data. 展开更多
关键词 modular feedforward neural network aeromagnetic compensation LM back propagation algorithm
在线阅读 下载PDF
Rail profile optimization through balancing of wear and fatigue
13
作者 Binjie XU Zhiyong SHI +2 位作者 Yun YANG Jianxi WANG Kaiyun WANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第10期967-982,共16页
Rail profile optimization is a critical strategy for mitigating wear and extending service life.However,damage at the wheel-rail contact surface goes beyond simple rail wear,as it also involves fatigue phenomena.Focus... Rail profile optimization is a critical strategy for mitigating wear and extending service life.However,damage at the wheel-rail contact surface goes beyond simple rail wear,as it also involves fatigue phenomena.Focusing solely on wear and not addressing fatigue in profile optimization can lead to the propagation of rail cracks,the peeling of material off the rail,and even rail fractures.Therefore,we propose an optimization approach that balances rail wear and fatigue for heavy-haul railway rails to mitigate rail fatigue damage.Initially,we performed a field investigation to acquire essential data and understand the characteristics of track damage.Based on theory and measured data,a simulation model for wear and fatigue was then established.Subsequently,the control points of the rail profile according to cubic non-uniform rational B-spline(NURBS)theory were set as the research variables.The rail’s wear rate and fatigue crack propagation rate were adopted as the objective functions.A multi-objective,multi-variable,and multi-constraint nonlinear optimization model was then constructed,specifically using a Levenberg Marquardt-back propagation neural network as optimized by the particle swarm optimization algorithm(PSO-LM-BP neural network).Ultimately,optimal solutions from the model were identified using a chaos microvariation adaptive genetic algorithm,and the effectiveness of the optimization was validated using a dynamics model and a rail damage model. 展开更多
关键词 Heavy-haul railway Rail wear Rail fatigue Levenberg Marquardt-back propagation neural network as optimized by the particle swarm optimization algorithm(PSO-LM-BP neural network) Rail profile optimization Multi-objective optimization
原文传递
FORCE RIPPLE SUPPRESSION TECHNOLOGY FOR LINEAR MOTORS BASED ON BACK PROPAGATION NEURAL NETWORK 被引量:7
14
作者 ZHANG Dailin CHEN Youping +2 位作者 AI Wu ZHOU Zude KONG Ching Tom 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第2期13-16,共4页
Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. I... Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. In order to suppress the force ripple, back propagation(BP) neural network is proposed to learn the function of the force ripple of linear motors, and the acquisition method of training samples is proposed based on a disturbance observer. An off-line BP neural network is used mainly because of its high running efficiency and the real-time requirement of the servo control system of a linear motor. By using the function, the force ripple is on-line compensated according to the position of the LM. The experimental results show that the force ripple is effectively suppressed by the compensation of the BP neural network. 展开更多
关键词 Linear motor (LM) Back propagation(BP) algorithm Neural network Anti-disturbance technology
在线阅读 下载PDF
Development of tomographic reconstruction for three-dimensional optical imaging:From the inversion of light propagation to artificial intelligence
15
作者 Xin Cao Kang Li +3 位作者 Xue-Li Xu Karen M von Deneen Guo-Hua Geng Xue-Li Chen 《Artificial Intelligence in Medical Imaging》 2020年第2期78-86,共9页
Optical molecular tomography(OMT)is an imaging modality which uses an optical signal,especially near-infrared light,to reconstruct the three-dimensional information of the light source in biological tissue.With the ad... Optical molecular tomography(OMT)is an imaging modality which uses an optical signal,especially near-infrared light,to reconstruct the three-dimensional information of the light source in biological tissue.With the advantages of being low-cost,noninvasive and having high sensitivity,OMT has been applied in preclinical and clinical research.However,due to its serious ill-posedness and illcondition,the solution of OMT requires heavy data analysis and the reconstruction quality is limited.Recently,the artificial intelligence(commonly known as AI)-based methods have been proposed to provide a different tool to solve the OMT problem.In this paper,we review the progress on OMT algorithms,from conventional methods to AI-based methods,and we also give a prospective towards future developments in this domain. 展开更多
关键词 Optical molecular tomography Deep learning Artificial intelligence Light propagation based algorithm Tomographic reconstruction
暂未订购
Performance and Complexity Trade-Off between Short-Length Regular and Irregular LDPC
16
作者 Ziyuan Peng Ruizhe Yang 《Journal of Computer and Communications》 2024年第9期208-215,共8页
In this paper, both the high-complexity near-ML list decoding and the low-complexity belief propagation decoding are tested for some well-known regular and irregular LDPC codes. The complexity and performance trade-of... In this paper, both the high-complexity near-ML list decoding and the low-complexity belief propagation decoding are tested for some well-known regular and irregular LDPC codes. The complexity and performance trade-off is shown clearly and demonstrated with the paradigm of hybrid decoding. For regular LDPC code, the SNR-threshold performance and error-floor performance could be improved to the optimal level of ML decoding if the decoding complexity is progressively increased, usually corresponding to the near-ML decoding with progressively increased size of list. For irregular LDPC code, the SNR-threshold performance and error-floor performance could only be improved to a bottle-neck even with unlimited decoding complexity. However, with the technique of CRC-aided hybrid decoding, the ML performance could be greatly improved and approached with reasonable complexity thanks to the improved code-weight distribution from the concatenation of CRC and irregular LDPC code. Finally, CRC-aided 5GNR-LDPC code is evaluated and the capacity-approaching capability is shown. 展开更多
关键词 Regular LDPC Irregular LDPC Near-ML Decoding List Decoding Belief propagation algorithm Sum-Product algorithm CRC-Aided Hybrid Decoding
在线阅读 下载PDF
A REALIZATION OF FUZZY LOGIC BY A NEURAL NETWORK 被引量:1
17
作者 杨忠 鲍明 赵淳生 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1995年第1期104-108,共5页
This paper proposes a Fuzzy Neural Network (FNN) model, which uses a propagation algorithm. A logical operation is defined by a set of weights which are independent of inputs. The realization of the basic And,Or and N... This paper proposes a Fuzzy Neural Network (FNN) model, which uses a propagation algorithm. A logical operation is defined by a set of weights which are independent of inputs. The realization of the basic And,Or and Negation fuzzy logical operations is shown by the fuzzy neuron. A example in fault diagnosis is put forward and the result witnesses some effectiveness of the new FNN model. 展开更多
关键词 fuzzy logic NEURON neural network propagation algorithm fault diagnosis
在线阅读 下载PDF
Robust Control Strategy for the Speed Control of Brushless DC Motor 被引量:9
18
作者 Zhi Liu Bai-Fen Liu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第2期90-94,共5页
Brushless DC motor ( BLDCM) speed servo system is multivariable,nonlinear and strong coupling. The parameter variation, the cogging torque and the load disturbance easily influence its performance. Therefore,it is dif... Brushless DC motor ( BLDCM) speed servo system is multivariable,nonlinear and strong coupling. The parameter variation, the cogging torque and the load disturbance easily influence its performance. Therefore,it is difficult to achieve superior performance by using the conventional PID controller. To solve the deficiency,the paper represents the algorithm of active-disturbance rejection control ( ADRC) based on back-propagation ( BP) neural network. The ADRC is independent on accurate system and its extended-state observer can estimate the disturbance of the system accurately. However,the parameters of Nonlinear Feedback ( NF) in ADRC are difficult to obtain. So in this paper,these parameters are self-turned by the BP neural network. The simulation and experiment results indicate that the ADRC based on BP neural network can improve the performances of the servo system in rapidity,control accuracy,adaptability and robustness. 展开更多
关键词 brushless DC motor ( BLDCM) BP ( back propagation algorithms) ADRC ( active-disturbance rejection control) parameters self-turning.
在线阅读 下载PDF
Feature Extraction and Classification of Echo Signal of Ground Penetrating Radar 被引量:5
19
作者 ZHOU Hui-lin TIAN Mao CHEN Xiao-li 《Wuhan University Journal of Natural Sciences》 EI CAS 2005年第6期1009-1012,共4页
Automatic feature extraction and classification algorithm of echo signal of ground penetrating radar is presented. Dyadic wavelet transform and the average energy of the wavelet coefficients are applied in this paper ... Automatic feature extraction and classification algorithm of echo signal of ground penetrating radar is presented. Dyadic wavelet transform and the average energy of the wavelet coefficients are applied in this paper to decompose and extract feature of the echo signal. Then, the extracted feature vector is fed up to a feed forward muhi layer perceptron classifier. Experimental results based on the measured GPR, echo signals obtained from the Mei shan railway are presented. 展开更多
关键词 ground penetrating radar nonstationary signal dyadic wavelet transform feed-forward multi-layer perceptron back propagation algorithm
在线阅读 下载PDF
Research on Prediction of Red Tide Based on Fuzzy Neural Network
20
作者 张容 阎红 杜丽萍 《Marine Science Bulletin》 CAS 2006年第1期83-91,共9页
In this paper, a four-layer fuzzy neural network using the Back Propagation (BP) Algorithm and the fuzzy logic was built to study the nonlinear relationships between different physical -chemical factors and the dens... In this paper, a four-layer fuzzy neural network using the Back Propagation (BP) Algorithm and the fuzzy logic was built to study the nonlinear relationships between different physical -chemical factors and the denseness of red tide algae, and to anticipate the denseness of the red tide algae. For the first time, the fuzzy neural network technology was applied to research the prediction of red tide. Compared with BP network and RBF network, the outcome of this method is better. 展开更多
关键词 red tide prediction fuzzy neural network (FNN) Back propagation algorithm
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部