The singular value decomposition is derived when the Radon transform is restricted to functions which are square integrable on the unit ball in R-n with respect to the weight W-lambda(x). It fulfilles mainly by means ...The singular value decomposition is derived when the Radon transform is restricted to functions which are square integrable on the unit ball in R-n with respect to the weight W-lambda(x). It fulfilles mainly by means of the projection-slice theorem. The range of the Radon transform is spanned by products of Gegenbauer polynomials and spherical harmonics. The inverse transform of the those basis functions are given. This immediately leads to an inversion formula by series expansion and range characterizations.展开更多
文摘The singular value decomposition is derived when the Radon transform is restricted to functions which are square integrable on the unit ball in R-n with respect to the weight W-lambda(x). It fulfilles mainly by means of the projection-slice theorem. The range of the Radon transform is spanned by products of Gegenbauer polynomials and spherical harmonics. The inverse transform of the those basis functions are given. This immediately leads to an inversion formula by series expansion and range characterizations.