Every year, around the world, between 250,000 and 500,000 people suffer a spinal cord injury(SCI). SCI is a devastating medical condition that arises from trauma or disease-induced damage to the spinal cord, disruptin...Every year, around the world, between 250,000 and 500,000 people suffer a spinal cord injury(SCI). SCI is a devastating medical condition that arises from trauma or disease-induced damage to the spinal cord, disrupting the neural connections that allow communication between the brain and the rest of the body, which results in varying degrees of motor and sensory impairment. Disconnection in the spinal tracts is an irreversible condition owing to the poor capacity for spontaneous axonal regeneration in the affected neurons.展开更多
Three-dimensional(3D)single molecule localization microscopy(SMLM)plays an important role in biomedical applications,but its data processing is very complicated.Deep learning is a potential tool to solve this problem....Three-dimensional(3D)single molecule localization microscopy(SMLM)plays an important role in biomedical applications,but its data processing is very complicated.Deep learning is a potential tool to solve this problem.As the state of art 3D super-resolution localization algorithm based on deep learning,FD-DeepLoc algorithm reported recently still has a gap with the expected goal of online image processing,even though it has greatly improved the data processing throughput.In this paper,a new algorithm Lite-FD-DeepLoc is developed on the basis of FD-DeepLoc algorithm to meet the online image processing requirements of 3D SMLM.This new algorithm uses the feature compression method to reduce the parameters of the model,and combines it with pipeline programming to accelerate the inference process of the deep learning model.The simulated data processing results show that the image processing speed of Lite-FD-DeepLoc is about twice as fast as that of FD-DeepLoc with a slight decrease in localization accuracy,which can realize real-time processing of 256×256 pixels size images.The results of biological experimental data processing imply that Lite-FD-DeepLoc can successfully analyze the data based on astigmatism and saddle point engineering,and the global resolution of the reconstructed image is equivalent to or even better than FD-DeepLoc algorithm.展开更多
Prenatal caffeine exposure(PCE)leads to intrauterine growth retardation and altered glucose homeostasis after birth,but the underlying mechanism remains unclear.This study aims to investigate the alteration of pancrea...Prenatal caffeine exposure(PCE)leads to intrauterine growth retardation and altered glucose homeostasis after birth,but the underlying mechanism remains unclear.This study aims to investigate the alteration of pancreatic development and insulin biosynthesis in the PCE female offspring and explore the intrauterine programming mechanism.Pregnant rats were orally treated with 120 mg/(kg·day)of caffeine from gestational day(GD)9 to 20.Results showed that fetal pancreaticβ-cells in the PCE group exhibited reduced mass and impaired insulin synthesis function,as evidenced by decreased expression of developmental and functional genes and reduced pancreatic insulin content.At postnatal week(PW)12,the PCE offspring exhibited glucose intolerance,diminishedβ-cell mass,and lower blood insulin levels.However,by PW28,glucose tolerance showed some improvement.Both in vivo and in vitro findings collectively indicated that excessive serum corticosterone(CORT)levels of the PCE fetuses may act through the activation of the pancreatic glucocorticoid receptor(GR)and recruitment of histone deacetylase 9(HDAC9),leading to H3K9 deacetylation in promoter and downregulation of insulin-like growth factor 1(IGF1),thereby inhibiting pancreatic islet morphogenesis and insulin synthesis in fetal rats.Furthermore,the PCE offspring after birth exhibited decreased blood CORT levels,increased H3K9 acetylation in promoter and upregulated gene expression of the pancreatic IGF1 promoter region,accompanied by elevated insulin biosynthesis.However,when exposed to chronic stress,the above changes were totally reversed.Conclusively,“glucocorticoid-insulin like growth factor 1(GC-IGF1)axis”programming may be involved in pancreaticβ-cell dysplasia and dysfunction in the PCE female offspring.展开更多
To establish the optimal reference trajectory for a near-space vehicle under free terminal time,a time-optimal model predictive static programming method is proposed with adaptive fish swarm optimization.First,the mod...To establish the optimal reference trajectory for a near-space vehicle under free terminal time,a time-optimal model predictive static programming method is proposed with adaptive fish swarm optimization.First,the model predictive static programming method is developed by incorporating neighboring terms and trust region,enabling rapid generation of precise optimal solutions.Next,an adaptive fish swarm optimization technique is employed to identify a sub-optimal solution,while a momentum gradient descent method with learning rate decay ensures the convergence to the global optimal solution.To validate the feasibility and accuracy of the proposed method,a near-space vehicle example is analyzed and simulated during its glide phase.The simulation results demonstrate that the proposed method aligns with theoretical derivations and outperforms existing methods in terms of convergence speed and accuracy.Therefore,the proposed method offers significant practical value for solving the fast trajectory optimization problem in near-space vehicle applications.展开更多
During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive...During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive distance)to a moving target as quickly as possible,resulting in the extended minimum-time intercept problem(EMTIP).Existing research has primarily focused on the zero-distance intercept problem,MTIP,establishing the necessary or sufficient conditions for MTIP optimality,and utilizing analytic algorithms,such as root-finding algorithms,to calculate the optimal solutions.However,these approaches depend heavily on the properties of the analytic algorithm,making them inapplicable when problem settings change,such as in the case of a positive effective range or complicated target motions outside uniform rectilinear motion.In this study,an approach employing a high-accuracy and quality-guaranteed mixed-integer piecewise-linear program(QG-PWL)is proposed for the EMTIP.This program can accommodate different effective interception ranges and complicated target motions(variable velocity or complicated trajectories).The high accuracy and quality guarantees of QG-PWL originate from elegant strategies such as piecewise linearization and other developed operation strategies.The approximate error in the intercept path length is proved to be bounded to h^(2)/(4√2),where h is the piecewise length.展开更多
Machining-features of the workplace are described by using of the object-oriented (O-O) technology. Geometrical machining-features are recognized in the given cut region by using the maximum membership priciple abou...Machining-features of the workplace are described by using of the object-oriented (O-O) technology. Geometrical machining-features are recognized in the given cut region by using the maximum membership priciple about the fuzzy set. Depending on the IF-THEN rule and the fuzzy matching method, the rough information of the machining-process for high-speed milling (HSM) is extracted based on the database of machining-process for HSM. The optimization model of machining-process scheme is established to obtain shorter cut time, lower cost or higher surface quality. It is helpful to form successful cases for HSM. NC programming for HSM is realized according to optimized machining-process data from HSM cases selected by the optimization model and the extracted information of machining-process.展开更多
A subspace projected conjugate gradient method is proposed for solving large bound constrained quadratic programming. The conjugate gradient method is used to update the variables with indices outside of the active se...A subspace projected conjugate gradient method is proposed for solving large bound constrained quadratic programming. The conjugate gradient method is used to update the variables with indices outside of the active set, while the projected gradient method is used to update the active variables. At every iterative level, the search direction consists of two parts, one of which is a subspace trumcated Newton direction, another is a modified gradient direction. With the projected search the algorithm is suitable to large problems. The convergence of the method is proved and same numerical tests with dimensions ranging from 5000 to 20000 are given.展开更多
基金financially supported by Ministerio de Ciencia e Innovación projects SAF2017-82736-C2-1-R to MTMFin Universidad Autónoma de Madrid and by Fundación Universidad Francisco de Vitoria to JS+2 种基金a predoctoral scholarship from Fundación Universidad Francisco de Vitoriafinancial support from a 6-month contract from Universidad Autónoma de Madrida 3-month contract from the School of Medicine of Universidad Francisco de Vitoria。
文摘Every year, around the world, between 250,000 and 500,000 people suffer a spinal cord injury(SCI). SCI is a devastating medical condition that arises from trauma or disease-induced damage to the spinal cord, disrupting the neural connections that allow communication between the brain and the rest of the body, which results in varying degrees of motor and sensory impairment. Disconnection in the spinal tracts is an irreversible condition owing to the poor capacity for spontaneous axonal regeneration in the affected neurons.
基金supported by the Start-up Fund from Hainan University(No.KYQD(ZR)-20077)。
文摘Three-dimensional(3D)single molecule localization microscopy(SMLM)plays an important role in biomedical applications,but its data processing is very complicated.Deep learning is a potential tool to solve this problem.As the state of art 3D super-resolution localization algorithm based on deep learning,FD-DeepLoc algorithm reported recently still has a gap with the expected goal of online image processing,even though it has greatly improved the data processing throughput.In this paper,a new algorithm Lite-FD-DeepLoc is developed on the basis of FD-DeepLoc algorithm to meet the online image processing requirements of 3D SMLM.This new algorithm uses the feature compression method to reduce the parameters of the model,and combines it with pipeline programming to accelerate the inference process of the deep learning model.The simulated data processing results show that the image processing speed of Lite-FD-DeepLoc is about twice as fast as that of FD-DeepLoc with a slight decrease in localization accuracy,which can realize real-time processing of 256×256 pixels size images.The results of biological experimental data processing imply that Lite-FD-DeepLoc can successfully analyze the data based on astigmatism and saddle point engineering,and the global resolution of the reconstructed image is equivalent to or even better than FD-DeepLoc algorithm.
基金supported by grants from the National Key Research and Development Program of China(2020YFA0803900)the National Natural Science Foundation of China(U23A20407,82414020,81703631)the Hubei Provincial Natural Science Foundation of China(2024AFB742)。
文摘Prenatal caffeine exposure(PCE)leads to intrauterine growth retardation and altered glucose homeostasis after birth,but the underlying mechanism remains unclear.This study aims to investigate the alteration of pancreatic development and insulin biosynthesis in the PCE female offspring and explore the intrauterine programming mechanism.Pregnant rats were orally treated with 120 mg/(kg·day)of caffeine from gestational day(GD)9 to 20.Results showed that fetal pancreaticβ-cells in the PCE group exhibited reduced mass and impaired insulin synthesis function,as evidenced by decreased expression of developmental and functional genes and reduced pancreatic insulin content.At postnatal week(PW)12,the PCE offspring exhibited glucose intolerance,diminishedβ-cell mass,and lower blood insulin levels.However,by PW28,glucose tolerance showed some improvement.Both in vivo and in vitro findings collectively indicated that excessive serum corticosterone(CORT)levels of the PCE fetuses may act through the activation of the pancreatic glucocorticoid receptor(GR)and recruitment of histone deacetylase 9(HDAC9),leading to H3K9 deacetylation in promoter and downregulation of insulin-like growth factor 1(IGF1),thereby inhibiting pancreatic islet morphogenesis and insulin synthesis in fetal rats.Furthermore,the PCE offspring after birth exhibited decreased blood CORT levels,increased H3K9 acetylation in promoter and upregulated gene expression of the pancreatic IGF1 promoter region,accompanied by elevated insulin biosynthesis.However,when exposed to chronic stress,the above changes were totally reversed.Conclusively,“glucocorticoid-insulin like growth factor 1(GC-IGF1)axis”programming may be involved in pancreaticβ-cell dysplasia and dysfunction in the PCE female offspring.
基金supported by the National Science Foundation for Distinguished Young Scholars of China(No.52425212)National Key Research and Development Program of China(No.2021YFA0717100)National Natural Science Foundation of China(Nos.12072270,U2013206,and 52442214).
文摘To establish the optimal reference trajectory for a near-space vehicle under free terminal time,a time-optimal model predictive static programming method is proposed with adaptive fish swarm optimization.First,the model predictive static programming method is developed by incorporating neighboring terms and trust region,enabling rapid generation of precise optimal solutions.Next,an adaptive fish swarm optimization technique is employed to identify a sub-optimal solution,while a momentum gradient descent method with learning rate decay ensures the convergence to the global optimal solution.To validate the feasibility and accuracy of the proposed method,a near-space vehicle example is analyzed and simulated during its glide phase.The simulation results demonstrate that the proposed method aligns with theoretical derivations and outperforms existing methods in terms of convergence speed and accuracy.Therefore,the proposed method offers significant practical value for solving the fast trajectory optimization problem in near-space vehicle applications.
基金supported by the National Natural Sci‐ence Foundation of China(Grant No.62306325)。
文摘During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive distance)to a moving target as quickly as possible,resulting in the extended minimum-time intercept problem(EMTIP).Existing research has primarily focused on the zero-distance intercept problem,MTIP,establishing the necessary or sufficient conditions for MTIP optimality,and utilizing analytic algorithms,such as root-finding algorithms,to calculate the optimal solutions.However,these approaches depend heavily on the properties of the analytic algorithm,making them inapplicable when problem settings change,such as in the case of a positive effective range or complicated target motions outside uniform rectilinear motion.In this study,an approach employing a high-accuracy and quality-guaranteed mixed-integer piecewise-linear program(QG-PWL)is proposed for the EMTIP.This program can accommodate different effective interception ranges and complicated target motions(variable velocity or complicated trajectories).The high accuracy and quality guarantees of QG-PWL originate from elegant strategies such as piecewise linearization and other developed operation strategies.The approximate error in the intercept path length is proved to be bounded to h^(2)/(4√2),where h is the piecewise length.
文摘Machining-features of the workplace are described by using of the object-oriented (O-O) technology. Geometrical machining-features are recognized in the given cut region by using the maximum membership priciple about the fuzzy set. Depending on the IF-THEN rule and the fuzzy matching method, the rough information of the machining-process for high-speed milling (HSM) is extracted based on the database of machining-process for HSM. The optimization model of machining-process scheme is established to obtain shorter cut time, lower cost or higher surface quality. It is helpful to form successful cases for HSM. NC programming for HSM is realized according to optimized machining-process data from HSM cases selected by the optimization model and the extracted information of machining-process.
基金This research was supported by Chinese NNSF grant and NSF grant of Jiangsu Province
文摘A subspace projected conjugate gradient method is proposed for solving large bound constrained quadratic programming. The conjugate gradient method is used to update the variables with indices outside of the active set, while the projected gradient method is used to update the active variables. At every iterative level, the search direction consists of two parts, one of which is a subspace trumcated Newton direction, another is a modified gradient direction. With the projected search the algorithm is suitable to large problems. The convergence of the method is proved and same numerical tests with dimensions ranging from 5000 to 20000 are given.