Every year, around the world, between 250,000 and 500,000 people suffer a spinal cord injury(SCI). SCI is a devastating medical condition that arises from trauma or disease-induced damage to the spinal cord, disruptin...Every year, around the world, between 250,000 and 500,000 people suffer a spinal cord injury(SCI). SCI is a devastating medical condition that arises from trauma or disease-induced damage to the spinal cord, disrupting the neural connections that allow communication between the brain and the rest of the body, which results in varying degrees of motor and sensory impairment. Disconnection in the spinal tracts is an irreversible condition owing to the poor capacity for spontaneous axonal regeneration in the affected neurons.展开更多
During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive...During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive distance)to a moving target as quickly as possible,resulting in the extended minimum-time intercept problem(EMTIP).Existing research has primarily focused on the zero-distance intercept problem,MTIP,establishing the necessary or sufficient conditions for MTIP optimality,and utilizing analytic algorithms,such as root-finding algorithms,to calculate the optimal solutions.However,these approaches depend heavily on the properties of the analytic algorithm,making them inapplicable when problem settings change,such as in the case of a positive effective range or complicated target motions outside uniform rectilinear motion.In this study,an approach employing a high-accuracy and quality-guaranteed mixed-integer piecewise-linear program(QG-PWL)is proposed for the EMTIP.This program can accommodate different effective interception ranges and complicated target motions(variable velocity or complicated trajectories).The high accuracy and quality guarantees of QG-PWL originate from elegant strategies such as piecewise linearization and other developed operation strategies.The approximate error in the intercept path length is proved to be bounded to h^(2)/(4√2),where h is the piecewise length.展开更多
系统性红斑狼疮(systemic lupus erythematosus,SLE)是一种以I型干扰素(type I interferon,IFN-I)通路异常激活和病理性自身抗体大量生成为特征的自身免疫性疾病。近年来研究发现,ADP-核糖基化修饰通过调控T淋巴细胞分化、B细胞抗体分...系统性红斑狼疮(systemic lupus erythematosus,SLE)是一种以I型干扰素(type I interferon,IFN-I)通路异常激活和病理性自身抗体大量生成为特征的自身免疫性疾病。近年来研究发现,ADP-核糖基化修饰通过调控T淋巴细胞分化、B细胞抗体分泌等免疫过程。多聚ADP-核糖聚合酶家族成员14[poly(adp-ribose)polymerase family member 14,PARP14]作为多功能ADP-核糖基化转移酶,不仅能通过单ADP-核糖基化修饰动态修饰靶蛋白、DNA、RNA等生物大分子,还在DNA损伤修复、炎症调控及免疫稳态维持中发挥关键作用。本文系统综述PARP14通过表观遗传和免疫调节影响SLE发生发展的分子机制。展开更多
In this article,a novel model-free coordinated optimal regulation design methodology is proposed for the rigidly connected dual permanent magnet synchronous motor(PMSM)system via adaptive dynamic programming(ADP).Firs...In this article,a novel model-free coordinated optimal regulation design methodology is proposed for the rigidly connected dual permanent magnet synchronous motor(PMSM)system via adaptive dynamic programming(ADP).First,we adopt the classical master-slave structure to maintain torque synchronization by virtue of field-oriented control.Then,a reducedorder model of the dual-PMSM system is established through the application of singular perturbation theory(SPT),which is of significance to decrease the learning time and computational complexity in the outer speed loop design.Afterwards,we design a coordinated adaptive optimal regulator in framework of ADP to drive the speed of girth gear asymptotic tracking the reference signal and accommodate the load torque disturbance,which is independent of the knowledge of model parameters of the system.According to SPT,we analyze the suboptimality,closed-loop stability,and robustness properties of the obtained controller under mild conditions.Finally,comprehensive experimental studies are provided to verify that the proposed control strategy can achieve the speed regulation and the torque synchronization,as well as ameliorate the transient response.展开更多
Learning-based methods have become mainstream for solving residential energy scheduling problems. In order to improve the learning efficiency of existing methods and increase the utilization of renewable energy, we pr...Learning-based methods have become mainstream for solving residential energy scheduling problems. In order to improve the learning efficiency of existing methods and increase the utilization of renewable energy, we propose the Dyna actiondependent heuristic dynamic programming(Dyna-ADHDP)method, which incorporates the ideas of learning and planning from the Dyna framework in action-dependent heuristic dynamic programming. This method defines a continuous action space for precise control of an energy storage system and allows online optimization of algorithm performance during the real-time operation of the residential energy model. Meanwhile, the target network is introduced during the training process to make the training smoother and more efficient. We conducted experimental comparisons with the benchmark method using simulated and real data to verify its applicability and performance. The results confirm the method's excellent performance and generalization capabilities, as well as its excellence in increasing renewable energy utilization and extending equipment life.展开更多
Over the last two decades,the dogma that cell fate is immutable has been increasingly challenged,with important implications for regenerative medicine.The brea kth rough discovery that induced pluripotent stem cells c...Over the last two decades,the dogma that cell fate is immutable has been increasingly challenged,with important implications for regenerative medicine.The brea kth rough discovery that induced pluripotent stem cells could be generated from adult mouse fibroblasts is powerful proof that cell fate can be changed.An exciting extension of the discovery of cell fate impermanence is the direct cellular reprogram ming hypothesis-that terminally differentiated cells can be reprogrammed into other adult cell fates without first passing through a stem cell state.展开更多
The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functio...The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functioning(Soles et al.,2023).Synthesized by neural and glial cells,the brain's ECM regulates a myriad of homeostatic cellular processes,including neuronal plasticity and firing(Miyata et al.,2012),cation buffering(Moraws ki et al.,2015),and glia-neuron interactions(Anderson et al.,2016).Considering the diversity of functions,dynamic remodeling of the brain's ECM indicates that this understudied medium is an active participant in both normal physiology and neurological diseases.展开更多
Generating dynamically feasible trajectory for fixed-wing Unmanned Aerial Vehicles(UAVs)in dense obstacle environments remains computationally intractable.This paper proposes a Safe Flight Corridor constrained Sequent...Generating dynamically feasible trajectory for fixed-wing Unmanned Aerial Vehicles(UAVs)in dense obstacle environments remains computationally intractable.This paper proposes a Safe Flight Corridor constrained Sequential Convex Programming(SFC-SCP)to improve the computation efficiency and reliability of trajectory generation.SFC-SCP combines the front-end convex polyhedron SFC construction and back-end SCP-based trajectory optimization.A Sparse A^(*)Search(SAS)driven SFC construction method is designed to efficiently generate polyhedron SFC according to the geometric relation among obstacles and collision-free waypoints.Via transforming the nonconvex obstacle-avoidance constraints to linear inequality constraints,SFC can mitigate infeasibility of trajectory planning and reduce computation complexity.Then,SCP casts the nonlinear trajectory optimization subject to SFC into convex programming subproblems to decrease the problem complexity.In addition,a convex optimizer based on interior point method is customized,where the search direction is calculated via successive elimination to further improve efficiency.Simulation experiments on dense obstacle scenarios show that SFC-SCP can generate dynamically feasible safe trajectory rapidly.Comparative studies with state-of-the-art SCP-based methods demonstrate the efficiency and reliability merits of SFC-SCP.Besides,the customized convex optimizer outperforms off-the-shelf optimizers in terms of computation time.展开更多
Due to the small size,active mobility,and intrinsic softness,miniature soft robots hold promising po-tentials in reaching the deep region inside living bodies otherwise inaccessible with compelling agility,adaptabilit...Due to the small size,active mobility,and intrinsic softness,miniature soft robots hold promising po-tentials in reaching the deep region inside living bodies otherwise inaccessible with compelling agility,adaptability and safety.Various materials and actuation strategies have been developed for creating soft robots,among which,ferromagnetic soft materials that self-actuate in response to external magnetic fields have attracted worldwide attention due to their remote controllability and excellent compatibil-ity with biological tissues.This review presents comprehensive and systematic research advancements in the design,fabrication,and applications of ferromagnetic soft materials for miniature robots,providing in-sights into their potential use in biomedical fields and beyond.The programming strategies of ferromag-netic soft materials are summarized and classified,including mold-assisted programming,3D printing-assisted programming,microassembly-assisted programming,and magnetization reprogramming.Each approach possesses unique advantages in manipulating the magnetic responsiveness of ferromagnetic soft materials to achieve outstanding actuation and deformation performances.We then discuss the biomedi-cal applications of ferromagnetic soft material-based soft robots(e.g.,minimally invasive surgery,targeted delivery,and tissue engineering),highlighting their potentials in revolutionizing biomedical technologies.This review also points out the current challenges and provides insights into future research directions,which we hope can serve as a useful reference for the development of next-generation adaptive miniature robots.展开更多
This study proposes a novel approach to optimizing individual work schedules for book digitization using mixed-integer programming (MIP). By leveraging the power of MIP solvers, we aimed to minimize the overall digiti...This study proposes a novel approach to optimizing individual work schedules for book digitization using mixed-integer programming (MIP). By leveraging the power of MIP solvers, we aimed to minimize the overall digitization time while considering various constraints and process dependencies. The book digitization process involves three key steps: cutting, scanning, and binding. Each step has specific requirements and limitations such as the number of pages that can be processed simultaneously and potential bottlenecks. To address these complexities, we formulate the problem as a one-machine job shop scheduling problem with additional constraints to capture the unique characteristics of book digitization. We conducted a series of experiments to evaluate the performance of our proposed approach. By comparing the optimized schedules with the baseline approach, we demonstrated significant reductions in the overall processing time. In addition, we analyzed the impact of different weighting schemes on the optimization results, highlighting the importance of identifying and prioritizing critical processes. Our findings suggest that MIP-based optimization can be a valuable tool for improving the efficiency of individual work schedules, even in seemingly simple tasks, such as book digitization. By carefully considering specific constraints and objectives, we can save time and leverage resources by carefully considering specific constraints and objectives.展开更多
With the rapid development of artificial intelligence technology,AIGC(Artificial Intelligence-Generated Content)has triggered profound changes in the field of high-level language programming courses.This paper deeply ...With the rapid development of artificial intelligence technology,AIGC(Artificial Intelligence-Generated Content)has triggered profound changes in the field of high-level language programming courses.This paper deeply explored the application principles,advantages,and limitations of AIGC in intelligent code generation,analyzed the new mode of human-computer collaboration in high-level language programming courses driven by AIGC,discussed the impact of human-computer collaboration on programming efficiency and code quality through practical case studies,and looks forward to future development trends.This research aims to provide theoretical and practical guidance for high-level language programming courses and promote innovative development of high-level language programming courses under the human-computer collaboration paradigm.展开更多
Computing-in-memory(CIM)has been a promising candidate for artificial-intelligent applications thanks to the absence of data transfer between computation and storage blocks.Resistive random access memory(RRAM)based CI...Computing-in-memory(CIM)has been a promising candidate for artificial-intelligent applications thanks to the absence of data transfer between computation and storage blocks.Resistive random access memory(RRAM)based CIM has the advantage of high computing density,non-volatility as well as high energy efficiency.However,previous CIM research has predominantly focused on realizing high energy efficiency and high area efficiency for inference,while little attention has been devoted to addressing the challenges of on-chip programming speed,power consumption,and accuracy.In this paper,a fabri-cated 28 nm 576K RRAM-based CIM macro featuring optimized on-chip programming schemes is proposed to address the issues mentioned above.Different strategies of mapping weights to RRAM arrays are compared,and a novel direct-current ADC design is designed for both programming and inference stages.Utilizing the optimized hybrid programming scheme,4.67×programming speed,0.15×power saving and 4.31×compact weight distribution are realized.Besides,this macro achieves a normalized area efficiency of 2.82 TOPS/mm2 and a normalized energy efficiency of 35.6 TOPS/W.展开更多
With the widespread application of large language models(LLMs)in natural language processing and code generation,traditional High-Level Language Programming courses are facing unprecedented challenges and opportunitie...With the widespread application of large language models(LLMs)in natural language processing and code generation,traditional High-Level Language Programming courses are facing unprecedented challenges and opportunities.As a core programming language for computer science majors,C language remains irreplaceable due to its foundational nature and engineering adaptability.This paper,based on the rapid development of large model technologies,proposes a systematic reform design for C language teaching,focusing on teaching objectives,content structure,teaching methods,and evaluation systems.The article suggests a teaching framework centered on“human-computer collaborative programming,”integrating prompt training,AI-assisted debugging,and code generation analysis,aiming to enhance students’problem modeling ability,programming expression skills,and AI collaboration literacy.展开更多
基金financially supported by Ministerio de Ciencia e Innovación projects SAF2017-82736-C2-1-R to MTMFin Universidad Autónoma de Madrid and by Fundación Universidad Francisco de Vitoria to JS+2 种基金a predoctoral scholarship from Fundación Universidad Francisco de Vitoriafinancial support from a 6-month contract from Universidad Autónoma de Madrida 3-month contract from the School of Medicine of Universidad Francisco de Vitoria。
文摘Every year, around the world, between 250,000 and 500,000 people suffer a spinal cord injury(SCI). SCI is a devastating medical condition that arises from trauma or disease-induced damage to the spinal cord, disrupting the neural connections that allow communication between the brain and the rest of the body, which results in varying degrees of motor and sensory impairment. Disconnection in the spinal tracts is an irreversible condition owing to the poor capacity for spontaneous axonal regeneration in the affected neurons.
基金supported by the National Natural Sci‐ence Foundation of China(Grant No.62306325)。
文摘During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive distance)to a moving target as quickly as possible,resulting in the extended minimum-time intercept problem(EMTIP).Existing research has primarily focused on the zero-distance intercept problem,MTIP,establishing the necessary or sufficient conditions for MTIP optimality,and utilizing analytic algorithms,such as root-finding algorithms,to calculate the optimal solutions.However,these approaches depend heavily on the properties of the analytic algorithm,making them inapplicable when problem settings change,such as in the case of a positive effective range or complicated target motions outside uniform rectilinear motion.In this study,an approach employing a high-accuracy and quality-guaranteed mixed-integer piecewise-linear program(QG-PWL)is proposed for the EMTIP.This program can accommodate different effective interception ranges and complicated target motions(variable velocity or complicated trajectories).The high accuracy and quality guarantees of QG-PWL originate from elegant strategies such as piecewise linearization and other developed operation strategies.The approximate error in the intercept path length is proved to be bounded to h^(2)/(4√2),where h is the piecewise length.
文摘系统性红斑狼疮(systemic lupus erythematosus,SLE)是一种以I型干扰素(type I interferon,IFN-I)通路异常激活和病理性自身抗体大量生成为特征的自身免疫性疾病。近年来研究发现,ADP-核糖基化修饰通过调控T淋巴细胞分化、B细胞抗体分泌等免疫过程。多聚ADP-核糖聚合酶家族成员14[poly(adp-ribose)polymerase family member 14,PARP14]作为多功能ADP-核糖基化转移酶,不仅能通过单ADP-核糖基化修饰动态修饰靶蛋白、DNA、RNA等生物大分子,还在DNA损伤修复、炎症调控及免疫稳态维持中发挥关键作用。本文系统综述PARP14通过表观遗传和免疫调节影响SLE发生发展的分子机制。
基金supported by the National Natural Science Foundation of China(62073327,62403467,62373090,62273350,62521001)the Natural Science Foundation of Jiangsu Province(BK20241635)+2 种基金the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(CPSF)(GZB20240827)Jiangsu Funding Program for Excellent Postdoctoral Talent(2024ZB604)the China Postdoctoral Science Foundation(2024M763545,2025T054ZGMK).
文摘In this article,a novel model-free coordinated optimal regulation design methodology is proposed for the rigidly connected dual permanent magnet synchronous motor(PMSM)system via adaptive dynamic programming(ADP).First,we adopt the classical master-slave structure to maintain torque synchronization by virtue of field-oriented control.Then,a reducedorder model of the dual-PMSM system is established through the application of singular perturbation theory(SPT),which is of significance to decrease the learning time and computational complexity in the outer speed loop design.Afterwards,we design a coordinated adaptive optimal regulator in framework of ADP to drive the speed of girth gear asymptotic tracking the reference signal and accommodate the load torque disturbance,which is independent of the knowledge of model parameters of the system.According to SPT,we analyze the suboptimality,closed-loop stability,and robustness properties of the obtained controller under mild conditions.Finally,comprehensive experimental studies are provided to verify that the proposed control strategy can achieve the speed regulation and the torque synchronization,as well as ameliorate the transient response.
基金supported in part by the National Key Research and Development Program of China(2024YFB4709100,2021YFE0206100)the National Natural Science Foundation of China(62073321)+1 种基金the National Defense Basic Scientific Research Program(JCKY2019203C029)the Science and Technology Development Fund,Macao SAR,China(0015/2020/AMJ)
文摘Learning-based methods have become mainstream for solving residential energy scheduling problems. In order to improve the learning efficiency of existing methods and increase the utilization of renewable energy, we propose the Dyna actiondependent heuristic dynamic programming(Dyna-ADHDP)method, which incorporates the ideas of learning and planning from the Dyna framework in action-dependent heuristic dynamic programming. This method defines a continuous action space for precise control of an energy storage system and allows online optimization of algorithm performance during the real-time operation of the residential energy model. Meanwhile, the target network is introduced during the training process to make the training smoother and more efficient. We conducted experimental comparisons with the benchmark method using simulated and real data to verify its applicability and performance. The results confirm the method's excellent performance and generalization capabilities, as well as its excellence in increasing renewable energy utilization and extending equipment life.
基金supported by Canada First Research Excellence Fund,Medicine by Design(to CMM)。
文摘Over the last two decades,the dogma that cell fate is immutable has been increasingly challenged,with important implications for regenerative medicine.The brea kth rough discovery that induced pluripotent stem cells could be generated from adult mouse fibroblasts is powerful proof that cell fate can be changed.An exciting extension of the discovery of cell fate impermanence is the direct cellular reprogram ming hypothesis-that terminally differentiated cells can be reprogrammed into other adult cell fates without first passing through a stem cell state.
基金supported by National Institute on Aging(NIH-NIA)R21 AG074152(to KMA)National Institute of Allergy and Infectious Diseases(NIAID)grant DP2 AI171150(to KMA)Department of Defense(DoD)grant AZ210089(to KMA)。
文摘The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functioning(Soles et al.,2023).Synthesized by neural and glial cells,the brain's ECM regulates a myriad of homeostatic cellular processes,including neuronal plasticity and firing(Miyata et al.,2012),cation buffering(Moraws ki et al.,2015),and glia-neuron interactions(Anderson et al.,2016).Considering the diversity of functions,dynamic remodeling of the brain's ECM indicates that this understudied medium is an active participant in both normal physiology and neurological diseases.
基金supported by the National Natural Science Foundation of China(No.62203256)。
文摘Generating dynamically feasible trajectory for fixed-wing Unmanned Aerial Vehicles(UAVs)in dense obstacle environments remains computationally intractable.This paper proposes a Safe Flight Corridor constrained Sequential Convex Programming(SFC-SCP)to improve the computation efficiency and reliability of trajectory generation.SFC-SCP combines the front-end convex polyhedron SFC construction and back-end SCP-based trajectory optimization.A Sparse A^(*)Search(SAS)driven SFC construction method is designed to efficiently generate polyhedron SFC according to the geometric relation among obstacles and collision-free waypoints.Via transforming the nonconvex obstacle-avoidance constraints to linear inequality constraints,SFC can mitigate infeasibility of trajectory planning and reduce computation complexity.Then,SCP casts the nonlinear trajectory optimization subject to SFC into convex programming subproblems to decrease the problem complexity.In addition,a convex optimizer based on interior point method is customized,where the search direction is calculated via successive elimination to further improve efficiency.Simulation experiments on dense obstacle scenarios show that SFC-SCP can generate dynamically feasible safe trajectory rapidly.Comparative studies with state-of-the-art SCP-based methods demonstrate the efficiency and reliability merits of SFC-SCP.Besides,the customized convex optimizer outperforms off-the-shelf optimizers in terms of computation time.
基金the National Key R&D Program of China(No.2023YFE0208700)National Natural Sci-ence Foundation of China(No.92163109 and 52072095)+7 种基金Shenzhen Science and Technology Program(No.RCJC20231211090000001,GXWD20231129101105001)the National Natural Science Foundation of China(No.52205590)the Natural Science Foundation of Jiangsu Province(No.BK20220834)the Start-up Research Fund of Southeast University(No.RF1028623098)the State Key Laboratory of Robotics and Systems(HIT)(No.SKLRS-2024-KF-11)National Natural Science Foundation of China(No.52202348)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515011491)Shenzhen Science and Technology Program(Nos.GXWD20220818224716001,KJZD20231023100302006).
文摘Due to the small size,active mobility,and intrinsic softness,miniature soft robots hold promising po-tentials in reaching the deep region inside living bodies otherwise inaccessible with compelling agility,adaptability and safety.Various materials and actuation strategies have been developed for creating soft robots,among which,ferromagnetic soft materials that self-actuate in response to external magnetic fields have attracted worldwide attention due to their remote controllability and excellent compatibil-ity with biological tissues.This review presents comprehensive and systematic research advancements in the design,fabrication,and applications of ferromagnetic soft materials for miniature robots,providing in-sights into their potential use in biomedical fields and beyond.The programming strategies of ferromag-netic soft materials are summarized and classified,including mold-assisted programming,3D printing-assisted programming,microassembly-assisted programming,and magnetization reprogramming.Each approach possesses unique advantages in manipulating the magnetic responsiveness of ferromagnetic soft materials to achieve outstanding actuation and deformation performances.We then discuss the biomedi-cal applications of ferromagnetic soft material-based soft robots(e.g.,minimally invasive surgery,targeted delivery,and tissue engineering),highlighting their potentials in revolutionizing biomedical technologies.This review also points out the current challenges and provides insights into future research directions,which we hope can serve as a useful reference for the development of next-generation adaptive miniature robots.
文摘This study proposes a novel approach to optimizing individual work schedules for book digitization using mixed-integer programming (MIP). By leveraging the power of MIP solvers, we aimed to minimize the overall digitization time while considering various constraints and process dependencies. The book digitization process involves three key steps: cutting, scanning, and binding. Each step has specific requirements and limitations such as the number of pages that can be processed simultaneously and potential bottlenecks. To address these complexities, we formulate the problem as a one-machine job shop scheduling problem with additional constraints to capture the unique characteristics of book digitization. We conducted a series of experiments to evaluate the performance of our proposed approach. By comparing the optimized schedules with the baseline approach, we demonstrated significant reductions in the overall processing time. In addition, we analyzed the impact of different weighting schemes on the optimization results, highlighting the importance of identifying and prioritizing critical processes. Our findings suggest that MIP-based optimization can be a valuable tool for improving the efficiency of individual work schedules, even in seemingly simple tasks, such as book digitization. By carefully considering specific constraints and objectives, we can save time and leverage resources by carefully considering specific constraints and objectives.
基金Education and Teaching Research Project of Beijing University of Technology(ER2024KCB08)。
文摘With the rapid development of artificial intelligence technology,AIGC(Artificial Intelligence-Generated Content)has triggered profound changes in the field of high-level language programming courses.This paper deeply explored the application principles,advantages,and limitations of AIGC in intelligent code generation,analyzed the new mode of human-computer collaboration in high-level language programming courses driven by AIGC,discussed the impact of human-computer collaboration on programming efficiency and code quality through practical case studies,and looks forward to future development trends.This research aims to provide theoretical and practical guidance for high-level language programming courses and promote innovative development of high-level language programming courses under the human-computer collaboration paradigm.
基金supported in part by the National Natural Science Foundation of China (62422405, 62025111,62495100, 92464302)the STI 2030-Major Projects(2021ZD0201200)+1 种基金the Shanghai Municipal Science and Technology Major Projectthe Beijing Advanced Innovation Center for Integrated Circuits
文摘Computing-in-memory(CIM)has been a promising candidate for artificial-intelligent applications thanks to the absence of data transfer between computation and storage blocks.Resistive random access memory(RRAM)based CIM has the advantage of high computing density,non-volatility as well as high energy efficiency.However,previous CIM research has predominantly focused on realizing high energy efficiency and high area efficiency for inference,while little attention has been devoted to addressing the challenges of on-chip programming speed,power consumption,and accuracy.In this paper,a fabri-cated 28 nm 576K RRAM-based CIM macro featuring optimized on-chip programming schemes is proposed to address the issues mentioned above.Different strategies of mapping weights to RRAM arrays are compared,and a novel direct-current ADC design is designed for both programming and inference stages.Utilizing the optimized hybrid programming scheme,4.67×programming speed,0.15×power saving and 4.31×compact weight distribution are realized.Besides,this macro achieves a normalized area efficiency of 2.82 TOPS/mm2 and a normalized energy efficiency of 35.6 TOPS/W.
基金Education and Teaching Research Project of Beijing University of Technology(ER2024KCB08)。
文摘With the widespread application of large language models(LLMs)in natural language processing and code generation,traditional High-Level Language Programming courses are facing unprecedented challenges and opportunities.As a core programming language for computer science majors,C language remains irreplaceable due to its foundational nature and engineering adaptability.This paper,based on the rapid development of large model technologies,proposes a systematic reform design for C language teaching,focusing on teaching objectives,content structure,teaching methods,and evaluation systems.The article suggests a teaching framework centered on“human-computer collaborative programming,”integrating prompt training,AI-assisted debugging,and code generation analysis,aiming to enhance students’problem modeling ability,programming expression skills,and AI collaboration literacy.