Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to en...Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to engineering requirements, aiming to optimize satellite heat dissipation while considering constraints on static stability, 3D geometric relationships between components, and special component positions. The 3D-SCALO problem is a challenging bilevel combinatorial optimization task, involving the optimization of discrete component assignment variables in the outer layer and continuous component position variables in the inner layer,with both influencing each other. To address this issue, first, a Mixed Integer Programming(MIP) model is proposed, which reformulates the original bilevel problem into a single-level optimization problem, enabling the exploration of a more comprehensive optimization space while avoiding iterative nested optimization. Then, to model the 3D geometric relationships between components within the MIP framework, a linearized 3D Phi-function method is proposed, which handles non-overlapping and safety distance constraints between cuboid components in an explicit and effective way. Subsequently, the Finite-Rectangle Method(FRM) is proposed to manage 3D geometric constraints for complex-shaped components by approximating them with a finite set of cuboids, extending the applicability of the geometric modeling approach. Finally, the feasibility and effectiveness of the proposed MIP model are demonstrated through two numerical examples"and a real-world engineering case, which confirms its suitability for complex-shaped components and real engineering applications.展开更多
The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a nove...The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted.展开更多
To establish the optimal reference trajectory for a near-space vehicle under free terminal time,a time-optimal model predictive static programming method is proposed with adaptive fish swarm optimization.First,the mod...To establish the optimal reference trajectory for a near-space vehicle under free terminal time,a time-optimal model predictive static programming method is proposed with adaptive fish swarm optimization.First,the model predictive static programming method is developed by incorporating neighboring terms and trust region,enabling rapid generation of precise optimal solutions.Next,an adaptive fish swarm optimization technique is employed to identify a sub-optimal solution,while a momentum gradient descent method with learning rate decay ensures the convergence to the global optimal solution.To validate the feasibility and accuracy of the proposed method,a near-space vehicle example is analyzed and simulated during its glide phase.The simulation results demonstrate that the proposed method aligns with theoretical derivations and outperforms existing methods in terms of convergence speed and accuracy.Therefore,the proposed method offers significant practical value for solving the fast trajectory optimization problem in near-space vehicle applications.展开更多
This paper proposes a Genetic Programming-Based Modeling (GPM) algorithm on chaotic time series. GP is used here to search for appropriate model structures in function space, and the Particle Swarm Optimization (PSO) ...This paper proposes a Genetic Programming-Based Modeling (GPM) algorithm on chaotic time series. GP is used here to search for appropriate model structures in function space, and the Particle Swarm Optimization (PSO) algorithm is used for Nonlinear Parameter Estimation (NPE) of dynamic model structures. In addition, GPM integrates the results of Nonlinear Time Series Analysis (NTSA) to adjust the parameters and takes them as the criteria of established models. Experiments showed the effectiveness of such improvements on chaotic time series modeling.展开更多
At the first sight it seems that advanced operation research is not used enough in continuous production systems as comparison with mass production, batch production and job shop systems, but really in a comprehensive...At the first sight it seems that advanced operation research is not used enough in continuous production systems as comparison with mass production, batch production and job shop systems, but really in a comprehensive evaluation the advanced operation research techniques can be used in continuous production systems in developing countries very widely, because of initial inadequate plant layout, stage by stage development of production lines, the purchase of second hand machineries from various countries, plurality of customers. A case of production system planning is proposed for a chemical company in which the above mentioned conditions are almost presented. The goals and constraints in this issue are as follows: (1) Minimizing deviation of customer's requirements. (2) Maximizing the profit. (3) Minimizing the frequencies of changes in formula production. (4) Minimizing the inventory of final products. (5) Balancing the production sections with regard to rate in production. (6) Limitation in inventory of raw material. The present situation is in such a way that various techniques such as goal programming, linear programming and dynamic programming can be used. But dynamic production programming issues are divided into two categories, at first one with limitation in production capacity and another with unlimited production capacity. For the first category, a systematic and acceptable solution has not been presented yet. Therefore an innovative method is used to convert the dynamic situation to a zero- one model. At last this issue is changed to a goal programming model with non-linear limitations with the use of GRG algorithm and that's how it is solved.展开更多
In a multi-agent system, each agent must adapt itself to the environment and coordinate with other agents dynamically. TO predict or cooperate with the behavior of oiller agents. An agent should dynamically establish ...In a multi-agent system, each agent must adapt itself to the environment and coordinate with other agents dynamically. TO predict or cooperate with the behavior of oiller agents. An agent should dynamically establish and evolve the cooperative behavior model of itself. In this paper, we represent the behavior model of an agent as a f-mite state machine and propose a new method of dynamically evolving the behavior model of an agent by evolutionary programming.展开更多
Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as ...Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as a highly efficient method for identifying hidden risks in high-risk construction environments,surpassing traditional inspection techniques.Building on this foundation,this paper delves into the optimization of UAV inspection routing and scheduling,addressing the complexity introduced by factors such as no-fly zones,monitoring-interval time windows,and multiple monitoring rounds.To tackle this challenging problem,we propose a mixed-integer linear programming(MILP)model that optimizes inspection task assignments,monitoring sequence schedules,and charging decisions.The comprehensive consideration of these factors differentiates our problem from conventional vehicle routing problem(VRP),leading to a mathematically intractable model for commercial solvers in the case of large-scale instances.To overcome this limitation,we design a tailored variable neighborhood search(VNS)metaheuristic,customizing the algorithm to efficiently solve our model.Extensive numerical experiments are conducted to validate the efficacy of our proposed algorithm,demonstrating its scalability for both large-scale and real-scale instances.Sensitivity experiments and a case study based on an actual engineering project are also conducted,providing valuable insights for engineering managers to enhance inspection work efficiency.展开更多
This paper presents a self-contained proof of Special Termination of MMP (Minimal Model Program). By refining the assumptions and simplifying the argument, it offers a more accessible approach compared to the original...This paper presents a self-contained proof of Special Termination of MMP (Minimal Model Program). By refining the assumptions and simplifying the argument, it offers a more accessible approach compared to the original proof in BCHM (Birkar-Cascini-Hacon-McKernan).展开更多
Homogeneous binary function products are frequently encountered in the sub-universes modeled by databases,spanning from genealogical trees and sports to education and healthcare,etc.Their properties must be discovered...Homogeneous binary function products are frequently encountered in the sub-universes modeled by databases,spanning from genealogical trees and sports to education and healthcare,etc.Their properties must be discovered and enforced by the software applications managing such data to guarantee plausibility.The(Elementary)Mathematical Data Model provides 17 types of dyadic-based homogeneous binary function product constraint categories.MatBase,an intelligent data and knowledge base management system prototype,allows database designers to simply declare them by only clicking corresponding checkboxes and automatically generates code for enforcing them.This paper describes the algorithms that MatBase uses for enforcing all 17 types of homogeneous binary function product constraint,which may also be employed by developers without access to MatBase.展开更多
Plant invasion refers to the phenomenon that some plants grow too fast due to they are far away from the original living environment or predators, affecting the local environment. With the development of tourism and t...Plant invasion refers to the phenomenon that some plants grow too fast due to they are far away from the original living environment or predators, affecting the local environment. With the development of tourism and trade, the harm caused by invasive plants will be more and more serious. Therefore, it is necessary to ex- plore an effective method for controlling plant invasion through qualitative and quan- titative research. In this paper, the models were established for the early and late harmful plant invasion control. The huge computation was completed by the com- puter programming to obtain the optimal solutions of the models. The real meaning of the optimal solution was further discussed. Through numerical simulations and discussion, it could be concluded that the quantitative research on the invasive plant control had a certain application value.展开更多
A novel simulation program with an integrated circuit emphasis(SPICE) model developed for trench-gate metal-oxide-semiconductor field-effect transistor(M OSFET)devices is proposed. The drift region resistance was ...A novel simulation program with an integrated circuit emphasis(SPICE) model developed for trench-gate metal-oxide-semiconductor field-effect transistor(M OSFET)devices is proposed. The drift region resistance was modeled according to the physical characteristics and the specific structure of the trench-gate MOSFET device. For the accurate simulation of dynamic characteristics, three important capacitances, gate-to-drain capacitance Cgd, gate-to-source capacitance Cgsand drain-to-source capacitance Cds, were modeled, respectively, in the proposed model. Furthermore,the self-heating effect, temperature effect and breakdown characteristic were taken into account; the self-heating model and breakdown model were built in the proposed model; and the temperature parameters of the model were revised. The proposed model is verified by experimental results, and the errors between measured data and simulation results of the novel model are less than 5%. Therefore, the model can give an accurate description for both the static and dynamic characteristics of the trench-gate MOSFET device.展开更多
The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one opt...The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one optimum and computational difficulty for traditional algorithms to find the global optimum. Compared with deterministic algorithms, evolutionary computation provides a promising approach to tackle this problem. In this paper, a mathematical model of multi-stream heat exchangers network synthesis problem is setup. Different from the assumption of isothermal mixing of stream splits and thus linearity constraints of Yee et al., non-isothermal mixing is supported. As a consequence, nonlinear constraints are resulted and nonconvexity of the objective function is added. To solve the mathematical model, an algorithm named GA/SA (parallel genetic/simulated annealing algorithm) is detailed for application to the multi-stream heat exchanger network synthesis problem. The performance of the proposed approach is demonstrated with three examples and the obtained solutions indicate the presented approach is effective for multi-stream HENS.展开更多
In an ambiguous decision domain, the evaluation values of alternatives against attributes would be interval numbers because of the inherent, uncertain property of the problems. By using a number of linear programming ...In an ambiguous decision domain, the evaluation values of alternatives against attributes would be interval numbers because of the inherent, uncertain property of the problems. By using a number of linear programming models, Bryson and Mobolurin propose an approach to compute attribute weights and overall values of the alternatives in the form of interval numbers. The intervals of the overall values of alternatives are then transformed into points or crisp values for comparisons among the alternatives. However, the attribute weights are different because of the use of linear programming models in Bryson and Mobolurin's approach. Thus, the alternatives are not comparable because different attribute weights are employed to calculate the overall values of the alternatives. A new approach is proposed to overcome the drawbacks of Bryson and Mobolurin's approach. By transforming the decision matrix with intervals into the one with crisp values, a new linear programming model is proposed, to calculate the attribute weights for conducting alternative ranking.展开更多
Considering the decision-making variables of the capacities of branch roads and the optimization targets of lowering the saturation of arterial roads and the reconstruction expense of branch roads, the bi-level progra...Considering the decision-making variables of the capacities of branch roads and the optimization targets of lowering the saturation of arterial roads and the reconstruction expense of branch roads, the bi-level programming model for reconstructing the branch roads was set up. The upper level model was for determining the enlarged capacities of the branch roads, and the lower level model was for calculating the flows of road sections via the user equilibrium traffic assignment method. The genetic algorithm for solving the bi-level model was designed to obtain the reconstruction capacities of the branch roads. The results show that by the bi-level model and its algorithm, the optimum scheme of urban branch roads reconstruction can be gained, which reduces the saturation of arterial roads apparently, and alleviates traffic congestion. In the data analysis the arterial saturation decreases from 1.100 to 0.996, which verifies the micro-circulation transportation's function of urban branch road network.展开更多
This paper intends to complete the primary logistics planning of oil products under the imbalance of supply and demand. An integrated mathematical programming model is developed to simultaneously find the balance betw...This paper intends to complete the primary logistics planning of oil products under the imbalance of supply and demand. An integrated mathematical programming model is developed to simultaneously find the balance between supply and demand, and optimize the logistics scheme. The model takes minimum logistics cost and resource adjustment cost as the objective function, and takes supply and demand capacity, transportation capacity, mass balance, and resource adjustment rules as constraints.Three adjustment rules are considered in the model, including resource adjustment within oil suppliers,within oil consumers, and between oil consumers. The model is tested on a large-scale primary logistics of a state-owned petroleum enterprise, involving 37 affiliated refineries, 31 procurement departments,286 market depots and dedicated consumers. After the unified optimization, the supply and demand imbalance is eased by 97% and the total cost is saved by 7%, which proves the effectiveness and applicability of the proposed model.展开更多
The automatic algorithm programming model can increase the dependability and efficiency of algorithm program development,including specification generation,program refinement,and formal verification.However,the existi...The automatic algorithm programming model can increase the dependability and efficiency of algorithm program development,including specification generation,program refinement,and formal verification.However,the existing model has two flaws:incompleteness of program refinement and inadequate automation of formal verification.This paper proposes an automatic algorithm programming model based on the improved Morgan’s refinement calculus.It extends the Morgan’s refinement calculus rules and designs the C++generation system for realizing the complete process of refinement.Meanwhile,the automation tools VCG(Verification Condition Generator)and Isabelle are used to improve the automation of formal verification.An example of a stock’s maximum income demonstrates the effectiveness of the proposed model.Furthermore,the proposed model has some relevance for automatic software generation.展开更多
The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and wate...The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and water sectors within a basin. With the precondition of strictly controlling maximum emissions rights, initial water rights were allocated between the first and the second levels of the hierarchy in order to promote fair and coordinated development across different regions of the basin and coordinated and efficient water use across different water sectors, realize the maximum comprehensive benefits to the basin, promote the unity of quantity and quality of initial water rights allocation, and eliminate water conflict across different regions and water sectors. According to interactive decision-making theory, a principal-subordinate hierarchical interactive iterative algorithm based on the satisfaction degree was developed and used to solve the initial water rights allocation model. A case study verified the validity of the model.展开更多
Oil product pipelines have features such as transporting multiple materials, ever-changing operating conditions, and synchronism between the oil input plan and the oil offloading plan. In this paper, an optimal model ...Oil product pipelines have features such as transporting multiple materials, ever-changing operating conditions, and synchronism between the oil input plan and the oil offloading plan. In this paper, an optimal model was established for a single-source multi-distribution oil pro- duct pipeline, and scheduling plans were made based on supply. In the model, time node constraints, oil offloading plan constraints, and migration of batch constraints were taken into consideration. The minimum deviation between the demanded oil volumes and the actual offloading volumes was chosen as the objective function, and a linear programming model was established on the basis of known time nodes' sequence. The ant colony optimization algo- rithm and simplex method were used to solve the model. The model was applied to a real pipeline and it performed well.展开更多
Aiming at three-passive-sensor location system, a generalized 3-dimension (3-D) assignment model is constructed based on property information, and a multi-target programming model is proposed based on direction-find...Aiming at three-passive-sensor location system, a generalized 3-dimension (3-D) assignment model is constructed based on property information, and a multi-target programming model is proposed based on direction-finding and property fusion information. The multi-target programming model is transformed into a single target programming problem to resolve, and its data association result is compared with the results which are solved by using one kind of information only. Simulation experiments show the effectiveness of the multi-target programming algorithm with higher data association accuracy and less calculation.展开更多
In order to balance the temporal-spatial distribution of urban traffic flow, a model is established for combined urban traffic signal control and traffic flow guidance. With consideration of the wide use of fixed sign...In order to balance the temporal-spatial distribution of urban traffic flow, a model is established for combined urban traffic signal control and traffic flow guidance. With consideration of the wide use of fixed signal control at intersections, traffic assignment under traffic flow guidance, and dynamic characteristics of urban traffic management, a tri-level programming model is presented. To reflect the impact of intersection delay on traffic assignment, the lower level model is set as a modified user equilibrium model. The middle level model, which contains several definitional constraints for different phase modes, is built for the traffic signal control optimization. To solve the problem of tide lane management, the upper level model is built up based on nonlinear 0-1 integer programming. A heuristic iterative optimization algorithm(HIOA) is set up to solve the tri-level programming model. The lower level model is solved by method of successive averages(MSA), the middle level model is solved by non-dominated sorting genetic algorithm II(NSGA II), and the upper level model is solved by genetic algorithm(GA). A case study is raised to show the efficiency and applicability of the proposed modelling and computing method.展开更多
基金supported by the National Natural Science Foundation of China(No.92371206)the Postgraduate Scientific Research Innovation Project of Hunan Province,China(No.CX2023063).
文摘Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to engineering requirements, aiming to optimize satellite heat dissipation while considering constraints on static stability, 3D geometric relationships between components, and special component positions. The 3D-SCALO problem is a challenging bilevel combinatorial optimization task, involving the optimization of discrete component assignment variables in the outer layer and continuous component position variables in the inner layer,with both influencing each other. To address this issue, first, a Mixed Integer Programming(MIP) model is proposed, which reformulates the original bilevel problem into a single-level optimization problem, enabling the exploration of a more comprehensive optimization space while avoiding iterative nested optimization. Then, to model the 3D geometric relationships between components within the MIP framework, a linearized 3D Phi-function method is proposed, which handles non-overlapping and safety distance constraints between cuboid components in an explicit and effective way. Subsequently, the Finite-Rectangle Method(FRM) is proposed to manage 3D geometric constraints for complex-shaped components by approximating them with a finite set of cuboids, extending the applicability of the geometric modeling approach. Finally, the feasibility and effectiveness of the proposed MIP model are demonstrated through two numerical examples"and a real-world engineering case, which confirms its suitability for complex-shaped components and real engineering applications.
基金Fundamental Research Funds for the Central Universities(2024JBZX038)National Natural Science F oundation of China(62076023)。
文摘The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted.
基金supported by the National Science Foundation for Distinguished Young Scholars of China(No.52425212)National Key Research and Development Program of China(No.2021YFA0717100)National Natural Science Foundation of China(Nos.12072270,U2013206,and 52442214).
文摘To establish the optimal reference trajectory for a near-space vehicle under free terminal time,a time-optimal model predictive static programming method is proposed with adaptive fish swarm optimization.First,the model predictive static programming method is developed by incorporating neighboring terms and trust region,enabling rapid generation of precise optimal solutions.Next,an adaptive fish swarm optimization technique is employed to identify a sub-optimal solution,while a momentum gradient descent method with learning rate decay ensures the convergence to the global optimal solution.To validate the feasibility and accuracy of the proposed method,a near-space vehicle example is analyzed and simulated during its glide phase.The simulation results demonstrate that the proposed method aligns with theoretical derivations and outperforms existing methods in terms of convergence speed and accuracy.Therefore,the proposed method offers significant practical value for solving the fast trajectory optimization problem in near-space vehicle applications.
基金Project (Nos. 60174009 and 70071017) supported by the NationalNatural Science Foundation of China
文摘This paper proposes a Genetic Programming-Based Modeling (GPM) algorithm on chaotic time series. GP is used here to search for appropriate model structures in function space, and the Particle Swarm Optimization (PSO) algorithm is used for Nonlinear Parameter Estimation (NPE) of dynamic model structures. In addition, GPM integrates the results of Nonlinear Time Series Analysis (NTSA) to adjust the parameters and takes them as the criteria of established models. Experiments showed the effectiveness of such improvements on chaotic time series modeling.
文摘At the first sight it seems that advanced operation research is not used enough in continuous production systems as comparison with mass production, batch production and job shop systems, but really in a comprehensive evaluation the advanced operation research techniques can be used in continuous production systems in developing countries very widely, because of initial inadequate plant layout, stage by stage development of production lines, the purchase of second hand machineries from various countries, plurality of customers. A case of production system planning is proposed for a chemical company in which the above mentioned conditions are almost presented. The goals and constraints in this issue are as follows: (1) Minimizing deviation of customer's requirements. (2) Maximizing the profit. (3) Minimizing the frequencies of changes in formula production. (4) Minimizing the inventory of final products. (5) Balancing the production sections with regard to rate in production. (6) Limitation in inventory of raw material. The present situation is in such a way that various techniques such as goal programming, linear programming and dynamic programming can be used. But dynamic production programming issues are divided into two categories, at first one with limitation in production capacity and another with unlimited production capacity. For the first category, a systematic and acceptable solution has not been presented yet. Therefore an innovative method is used to convert the dynamic situation to a zero- one model. At last this issue is changed to a goal programming model with non-linear limitations with the use of GRG algorithm and that's how it is solved.
文摘In a multi-agent system, each agent must adapt itself to the environment and coordinate with other agents dynamically. TO predict or cooperate with the behavior of oiller agents. An agent should dynamically establish and evolve the cooperative behavior model of itself. In this paper, we represent the behavior model of an agent as a f-mite state machine and propose a new method of dynamically evolving the behavior model of an agent by evolutionary programming.
基金supported by the National Natural Science Foundation of China(72201229,72025103,72394360,72394362,72361137001,72071173,and 71831008).
文摘Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as a highly efficient method for identifying hidden risks in high-risk construction environments,surpassing traditional inspection techniques.Building on this foundation,this paper delves into the optimization of UAV inspection routing and scheduling,addressing the complexity introduced by factors such as no-fly zones,monitoring-interval time windows,and multiple monitoring rounds.To tackle this challenging problem,we propose a mixed-integer linear programming(MILP)model that optimizes inspection task assignments,monitoring sequence schedules,and charging decisions.The comprehensive consideration of these factors differentiates our problem from conventional vehicle routing problem(VRP),leading to a mathematically intractable model for commercial solvers in the case of large-scale instances.To overcome this limitation,we design a tailored variable neighborhood search(VNS)metaheuristic,customizing the algorithm to efficiently solve our model.Extensive numerical experiments are conducted to validate the efficacy of our proposed algorithm,demonstrating its scalability for both large-scale and real-scale instances.Sensitivity experiments and a case study based on an actual engineering project are also conducted,providing valuable insights for engineering managers to enhance inspection work efficiency.
文摘This paper presents a self-contained proof of Special Termination of MMP (Minimal Model Program). By refining the assumptions and simplifying the argument, it offers a more accessible approach compared to the original proof in BCHM (Birkar-Cascini-Hacon-McKernan).
文摘Homogeneous binary function products are frequently encountered in the sub-universes modeled by databases,spanning from genealogical trees and sports to education and healthcare,etc.Their properties must be discovered and enforced by the software applications managing such data to guarantee plausibility.The(Elementary)Mathematical Data Model provides 17 types of dyadic-based homogeneous binary function product constraint categories.MatBase,an intelligent data and knowledge base management system prototype,allows database designers to simply declare them by only clicking corresponding checkboxes and automatically generates code for enforcing them.This paper describes the algorithms that MatBase uses for enforcing all 17 types of homogeneous binary function product constraint,which may also be employed by developers without access to MatBase.
文摘Plant invasion refers to the phenomenon that some plants grow too fast due to they are far away from the original living environment or predators, affecting the local environment. With the development of tourism and trade, the harm caused by invasive plants will be more and more serious. Therefore, it is necessary to ex- plore an effective method for controlling plant invasion through qualitative and quan- titative research. In this paper, the models were established for the early and late harmful plant invasion control. The huge computation was completed by the com- puter programming to obtain the optimal solutions of the models. The real meaning of the optimal solution was further discussed. Through numerical simulations and discussion, it could be concluded that the quantitative research on the invasive plant control had a certain application value.
基金The National Natural Science Foundation of China(No.61604038)China Postdoctoral Science Foundation(No.2015M580376)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20160691)Jiangsu Postdoctoral Science Foundation(No.1501010A)
文摘A novel simulation program with an integrated circuit emphasis(SPICE) model developed for trench-gate metal-oxide-semiconductor field-effect transistor(M OSFET)devices is proposed. The drift region resistance was modeled according to the physical characteristics and the specific structure of the trench-gate MOSFET device. For the accurate simulation of dynamic characteristics, three important capacitances, gate-to-drain capacitance Cgd, gate-to-source capacitance Cgsand drain-to-source capacitance Cds, were modeled, respectively, in the proposed model. Furthermore,the self-heating effect, temperature effect and breakdown characteristic were taken into account; the self-heating model and breakdown model were built in the proposed model; and the temperature parameters of the model were revised. The proposed model is verified by experimental results, and the errors between measured data and simulation results of the novel model are less than 5%. Therefore, the model can give an accurate description for both the static and dynamic characteristics of the trench-gate MOSFET device.
基金Supported by the Deutsche Forschungsgemeinschaft (DFG No. RO294/9).
文摘The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one optimum and computational difficulty for traditional algorithms to find the global optimum. Compared with deterministic algorithms, evolutionary computation provides a promising approach to tackle this problem. In this paper, a mathematical model of multi-stream heat exchangers network synthesis problem is setup. Different from the assumption of isothermal mixing of stream splits and thus linearity constraints of Yee et al., non-isothermal mixing is supported. As a consequence, nonlinear constraints are resulted and nonconvexity of the objective function is added. To solve the mathematical model, an algorithm named GA/SA (parallel genetic/simulated annealing algorithm) is detailed for application to the multi-stream heat exchanger network synthesis problem. The performance of the proposed approach is demonstrated with three examples and the obtained solutions indicate the presented approach is effective for multi-stream HENS.
基金the National Natural Science Foundation of China (70571041).
文摘In an ambiguous decision domain, the evaluation values of alternatives against attributes would be interval numbers because of the inherent, uncertain property of the problems. By using a number of linear programming models, Bryson and Mobolurin propose an approach to compute attribute weights and overall values of the alternatives in the form of interval numbers. The intervals of the overall values of alternatives are then transformed into points or crisp values for comparisons among the alternatives. However, the attribute weights are different because of the use of linear programming models in Bryson and Mobolurin's approach. Thus, the alternatives are not comparable because different attribute weights are employed to calculate the overall values of the alternatives. A new approach is proposed to overcome the drawbacks of Bryson and Mobolurin's approach. By transforming the decision matrix with intervals into the one with crisp values, a new linear programming model is proposed, to calculate the attribute weights for conducting alternative ranking.
基金Project(2006CB705507) supported by the National Basic Research and Development Program of ChinaProject(20060533036) supported by the Specialized Research Foundation for the Doctoral Program of Higher Education of China
文摘Considering the decision-making variables of the capacities of branch roads and the optimization targets of lowering the saturation of arterial roads and the reconstruction expense of branch roads, the bi-level programming model for reconstructing the branch roads was set up. The upper level model was for determining the enlarged capacities of the branch roads, and the lower level model was for calculating the flows of road sections via the user equilibrium traffic assignment method. The genetic algorithm for solving the bi-level model was designed to obtain the reconstruction capacities of the branch roads. The results show that by the bi-level model and its algorithm, the optimum scheme of urban branch roads reconstruction can be gained, which reduces the saturation of arterial roads apparently, and alleviates traffic congestion. In the data analysis the arterial saturation decreases from 1.100 to 0.996, which verifies the micro-circulation transportation's function of urban branch road network.
基金partially supported by the National Natural Science Foundation of China (51874325)the Science Foundation of China University of PetroleumBeijing (2462021BJRC009)。
文摘This paper intends to complete the primary logistics planning of oil products under the imbalance of supply and demand. An integrated mathematical programming model is developed to simultaneously find the balance between supply and demand, and optimize the logistics scheme. The model takes minimum logistics cost and resource adjustment cost as the objective function, and takes supply and demand capacity, transportation capacity, mass balance, and resource adjustment rules as constraints.Three adjustment rules are considered in the model, including resource adjustment within oil suppliers,within oil consumers, and between oil consumers. The model is tested on a large-scale primary logistics of a state-owned petroleum enterprise, involving 37 affiliated refineries, 31 procurement departments,286 market depots and dedicated consumers. After the unified optimization, the supply and demand imbalance is eased by 97% and the total cost is saved by 7%, which proves the effectiveness and applicability of the proposed model.
基金Supported by the National Natural Science Foundation of China(61862033,61902162)Key Project of Science and Technology Research of Department of Education of Jiangxi Province(GJJ210307)Postgraduate Innovation Fund Project of Education Department of Jiangxi Province(YC2021-S306)。
文摘The automatic algorithm programming model can increase the dependability and efficiency of algorithm program development,including specification generation,program refinement,and formal verification.However,the existing model has two flaws:incompleteness of program refinement and inadequate automation of formal verification.This paper proposes an automatic algorithm programming model based on the improved Morgan’s refinement calculus.It extends the Morgan’s refinement calculus rules and designs the C++generation system for realizing the complete process of refinement.Meanwhile,the automation tools VCG(Verification Condition Generator)and Isabelle are used to improve the automation of formal verification.An example of a stock’s maximum income demonstrates the effectiveness of the proposed model.Furthermore,the proposed model has some relevance for automatic software generation.
基金supported by the Public Welfare Industry Special Fund Project of the Ministry of Water Resources of China (Grant No. 200701028)the Humanities and Social Science Foundation Program of Hohai University (Grant No. 2008421411)
文摘The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and water sectors within a basin. With the precondition of strictly controlling maximum emissions rights, initial water rights were allocated between the first and the second levels of the hierarchy in order to promote fair and coordinated development across different regions of the basin and coordinated and efficient water use across different water sectors, realize the maximum comprehensive benefits to the basin, promote the unity of quantity and quality of initial water rights allocation, and eliminate water conflict across different regions and water sectors. According to interactive decision-making theory, a principal-subordinate hierarchical interactive iterative algorithm based on the satisfaction degree was developed and used to solve the initial water rights allocation model. A case study verified the validity of the model.
基金part of the Program of"Study on the mechanism of complex heat and mass transfer during batch transport process in products pipelines"funded under the National Natural Science Foundation of China(grant number 51474228)
文摘Oil product pipelines have features such as transporting multiple materials, ever-changing operating conditions, and synchronism between the oil input plan and the oil offloading plan. In this paper, an optimal model was established for a single-source multi-distribution oil pro- duct pipeline, and scheduling plans were made based on supply. In the model, time node constraints, oil offloading plan constraints, and migration of batch constraints were taken into consideration. The minimum deviation between the demanded oil volumes and the actual offloading volumes was chosen as the objective function, and a linear programming model was established on the basis of known time nodes' sequence. The ant colony optimization algo- rithm and simplex method were used to solve the model. The model was applied to a real pipeline and it performed well.
基金This project was supported by the National Natural Science Foundation of China (60172033) the Excellent Ph.D.PaperAuthor Foundation of China (200036 ,200237) .
文摘Aiming at three-passive-sensor location system, a generalized 3-dimension (3-D) assignment model is constructed based on property information, and a multi-target programming model is proposed based on direction-finding and property fusion information. The multi-target programming model is transformed into a single target programming problem to resolve, and its data association result is compared with the results which are solved by using one kind of information only. Simulation experiments show the effectiveness of the multi-target programming algorithm with higher data association accuracy and less calculation.
基金Project(2014BAG01B0403)supported by the High-Tech Research and Development Program of China
文摘In order to balance the temporal-spatial distribution of urban traffic flow, a model is established for combined urban traffic signal control and traffic flow guidance. With consideration of the wide use of fixed signal control at intersections, traffic assignment under traffic flow guidance, and dynamic characteristics of urban traffic management, a tri-level programming model is presented. To reflect the impact of intersection delay on traffic assignment, the lower level model is set as a modified user equilibrium model. The middle level model, which contains several definitional constraints for different phase modes, is built for the traffic signal control optimization. To solve the problem of tide lane management, the upper level model is built up based on nonlinear 0-1 integer programming. A heuristic iterative optimization algorithm(HIOA) is set up to solve the tri-level programming model. The lower level model is solved by method of successive averages(MSA), the middle level model is solved by non-dominated sorting genetic algorithm II(NSGA II), and the upper level model is solved by genetic algorithm(GA). A case study is raised to show the efficiency and applicability of the proposed modelling and computing method.