In many areas, reliability of the digital circuits has become the key factor to restrict circuit development. Fault-tolerant design is the commonly used method to improve the reliability of digital circuits. The curre...In many areas, reliability of the digital circuits has become the key factor to restrict circuit development. Fault-tolerant design is the commonly used method to improve the reliability of digital circuits. The current fault-tolerant design methods are based on triple modular redundancy( TMR) or multiple modular redundancy( MMR). These redundancy designs rely on the experience of the designers,and the designed circuits have poor adaptabilities to a complex environment. However, evolutionary design of digital circuits does not rely on prior knowledge. During the evolution, some novel and optimal circuit topologies can be found, and the evolved circuits can feature strong adaptive capacities. Based on Cartesian genetic programming( CGP), a novel method for designing fault-tolerant digital circuits by evolution is proposed,key steps of the evolution are introduced,influences of function sets on evolution are investigated,and as a preliminary result,an evolved full adder with high fault-tolerance is shown.展开更多
This paper proposed a bi-criteria weighting approach for fault tolerant control(FTC)of SY-II remote operated vehicle(ROV).This approach integrates the minimum kinetic energy(2-norm optimal)approach with the infinity-n...This paper proposed a bi-criteria weighting approach for fault tolerant control(FTC)of SY-II remote operated vehicle(ROV).This approach integrates the minimum kinetic energy(2-norm optimal)approach with the infinity-norm approach through a weighting coefcient,on the basis of SY-II ROV force allocation model.For the realization of fault tolerable control,this approach converts a quadratic programming problem into primaldual neural network.From the motion control simulations and experiments,bi-criteria optimization approach outperforms minimum kinetic energy optimization in FTC,SY-II ROV can realize 2-degree of freedom(DOF)horizontal fault tolerant control with one main thruster and any of horizontal ones.Therefore,this scheme is proved to be of superiority and computational efciency,both the reliability and safety for ROV have been improved.展开更多
A common software to analyze fuze fault tree is developed to simplify the trivialness in generating the fuze fault tree and reduce the manual calculation work. The overall structure, function and implementation of the...A common software to analyze fuze fault tree is developed to simplify the trivialness in generating the fuze fault tree and reduce the manual calculation work. The overall structure, function and implementation of the system are introduced. The software based on Windows platform is used to generate the fuze fault tree in graphics mode. A quantitative analysis of fuze fault tree can be obtained by the method of minimum cut sets. A calculation example is used to verify the function of the software. Consequently, the expected requirements of this software system are achieved to a certain level.展开更多
A variety of Software Reliability Growth Models (SRGM) have been presented in literature. These models suffer many problems when handling various types of project. The reason is;the nature of each project makes it dif...A variety of Software Reliability Growth Models (SRGM) have been presented in literature. These models suffer many problems when handling various types of project. The reason is;the nature of each project makes it difficult to build a model which can generalize. In this paper we propose the use of Genetic Programming (GP) as an eVolutionary computation approach to handle the software reliability modeling problem. GP deals with one of the key issues in computer science which is called automatic programming. The goal of automatic programming is to create, in an automated way, a computer program that enables a computer to solve problems. GP will be used to build a SRGM which can predict accumulated faults during the software testing process. We evaluate the GP developed model and compare its performance with other common growth models from the literature. Our experiments results show that the proposed GP model is superior compared to Yamada S-Shaped, Generalized Poisson, NHPP and Schneidewind reliability models.展开更多
Software debugging accounts for a vast majority of the financial and time costs in software developing and maintenance. Thus, approaches of software fault localization that can help automate the debugging process have...Software debugging accounts for a vast majority of the financial and time costs in software developing and maintenance. Thus, approaches of software fault localization that can help automate the debugging process have become a hot topic in the field of software engineering. Given the great demand for software fault localization, an approach based on the artificial bee colony (ABC) algorithm is proposed to be integrated with other related techniques. In this process, the source program is initially instrumented after analyzing the dependence information. The test case sets are then compiled and run on the instrumented program, and execution results are input to the ABC algorithm. The algorithm can determine the largest fitness value and best food source by calculating the average fitness of the employed bees in the iteralive process. The program unit with the highest suspicion score corresponding to the best test case set is regarded as the final fault localization. Experiments are conducted with the TCAS program in the Siemens suite. Results demonstrate that the proposed fault localization method is effective and efficient. The ABC algorithm can efficiently avoid the local optimum, and ensure the validity of the fault location to a larger extent.展开更多
The key to software reliability is fault-tolerant design ofapplication software.New fault-tolerant strategies andtheir design methods for application software under vari-ous computer system are introduced.It has such ...The key to software reliability is fault-tolerant design ofapplication software.New fault-tolerant strategies andtheir design methods for application software under vari-ous computer system are introduced.It has such advan-tages as simple hardware platform,independent fromapplication,stable reliability.lastly,some technicalproblems are discussed in details.展开更多
This paper investigates the fault detection problem for discrete event systems (DESs) which can be modeled by partially observed Petri nets (POPNs). To overcome the problem of low diagnosability in the POPN online fau...This paper investigates the fault detection problem for discrete event systems (DESs) which can be modeled by partially observed Petri nets (POPNs). To overcome the problem of low diagnosability in the POPN online fault diagnoser in current use, an improved online fault diagnosis algorithm that integrates generalized mutual exclusion constraints (GMECs) and integer linear programming (ILP) is proposed. Assume that the POPN structure and its initial markings are known, and the faults are modeled as unobservable transitions. First, the event sequence is observed and recorded. GMEC is used for elementary diagnosis of the system behavior, then the ILP problem of POPN is solved for further diagnosis. Finally, an example of a real DES to test the new fault diagnoser is analyzed. The proposed algorithm increases the diagnosability of the DES remarkably, and the effectiveness of the new algorithm integrating GMEC and ILP is verified.展开更多
Dependable computer based systems employing fault tolerance and robust software development techniques demand additional error detection and recovery related tasks. This results in tangling of core functionality with ...Dependable computer based systems employing fault tolerance and robust software development techniques demand additional error detection and recovery related tasks. This results in tangling of core functionality with these cross cutting non-functional concerns. In this regard current work identifies these dependability related non-functional and cross-cutting concerns and proposes design and implementation solutions in an aspect oriented framework that modularizes and separates them from core functionality. The degree of separation has been quantified using software metrics. A Lego NXT Robot based case study has been completed to evaluate the proposed design framework.展开更多
An accurate fault location algorithm for double-circuit series compensated lines is presented.Use of two-end unsynchronized measurements of current and voltage signals is considered.The algorithm applies two subroutin...An accurate fault location algorithm for double-circuit series compensated lines is presented.Use of two-end unsynchronized measurements of current and voltage signals is considered.The algorithm applies two subroutines,designated for locating faults on particular line sections,and additionally the procedure for selecting the valid subroutine.The subroutines are formulated with use of the generalized fault loop model and the distributed parameter line model is applied.Performed ATP-EMTP based evaluation has shown the validity of the derived fault location algorithm and its high accuracy.展开更多
S Zorb装置程控阀的可靠性运行是成品汽油硫含量达标的关键。程控阀的阀体、附件等在阀门的频繁动作以及恶劣现场环境下会产生一系列问题,影响装置的稳定性。使用故障模式影响与危害度分析(FMECA)方法分析程控阀各子系统故障严重性,利...S Zorb装置程控阀的可靠性运行是成品汽油硫含量达标的关键。程控阀的阀体、附件等在阀门的频繁动作以及恶劣现场环境下会产生一系列问题,影响装置的稳定性。使用故障模式影响与危害度分析(FMECA)方法分析程控阀各子系统故障严重性,利用模糊评价与层次分析法(AHP)建立程控阀维护策略,将二者组合形成FMECA-AHP方法,并应用于某石化公司S Zorb装置。结果表明:采用FMECA-AHP方法对程控阀各子系统故障进行等级划分并设计维护策略,可有效提高S Zorb装置程控阀维护效率,该方法高效、可靠,降低了成本,为企业创造了效益。展开更多
基金National Natural Science Foundations of China(Nos.61271153,61372039)
文摘In many areas, reliability of the digital circuits has become the key factor to restrict circuit development. Fault-tolerant design is the commonly used method to improve the reliability of digital circuits. The current fault-tolerant design methods are based on triple modular redundancy( TMR) or multiple modular redundancy( MMR). These redundancy designs rely on the experience of the designers,and the designed circuits have poor adaptabilities to a complex environment. However, evolutionary design of digital circuits does not rely on prior knowledge. During the evolution, some novel and optimal circuit topologies can be found, and the evolved circuits can feature strong adaptive capacities. Based on Cartesian genetic programming( CGP), a novel method for designing fault-tolerant digital circuits by evolution is proposed,key steps of the evolution are introduced,influences of function sets on evolution are investigated,and as a preliminary result,an evolved full adder with high fault-tolerance is shown.
基金the National Natural Science Foundation of China(Nos.51279039 and 1209050)the Harbin Special Funds for Technological Innovation Research(No.2013RFQXJ117)the Technology Programof Educational Department of Heilongjiang Province(No.11553065)
文摘This paper proposed a bi-criteria weighting approach for fault tolerant control(FTC)of SY-II remote operated vehicle(ROV).This approach integrates the minimum kinetic energy(2-norm optimal)approach with the infinity-norm approach through a weighting coefcient,on the basis of SY-II ROV force allocation model.For the realization of fault tolerable control,this approach converts a quadratic programming problem into primaldual neural network.From the motion control simulations and experiments,bi-criteria optimization approach outperforms minimum kinetic energy optimization in FTC,SY-II ROV can realize 2-degree of freedom(DOF)horizontal fault tolerant control with one main thruster and any of horizontal ones.Therefore,this scheme is proved to be of superiority and computational efciency,both the reliability and safety for ROV have been improved.
文摘A common software to analyze fuze fault tree is developed to simplify the trivialness in generating the fuze fault tree and reduce the manual calculation work. The overall structure, function and implementation of the system are introduced. The software based on Windows platform is used to generate the fuze fault tree in graphics mode. A quantitative analysis of fuze fault tree can be obtained by the method of minimum cut sets. A calculation example is used to verify the function of the software. Consequently, the expected requirements of this software system are achieved to a certain level.
文摘A variety of Software Reliability Growth Models (SRGM) have been presented in literature. These models suffer many problems when handling various types of project. The reason is;the nature of each project makes it difficult to build a model which can generalize. In this paper we propose the use of Genetic Programming (GP) as an eVolutionary computation approach to handle the software reliability modeling problem. GP deals with one of the key issues in computer science which is called automatic programming. The goal of automatic programming is to create, in an automated way, a computer program that enables a computer to solve problems. GP will be used to build a SRGM which can predict accumulated faults during the software testing process. We evaluate the GP developed model and compare its performance with other common growth models from the literature. Our experiments results show that the proposed GP model is superior compared to Yamada S-Shaped, Generalized Poisson, NHPP and Schneidewind reliability models.
文摘Software debugging accounts for a vast majority of the financial and time costs in software developing and maintenance. Thus, approaches of software fault localization that can help automate the debugging process have become a hot topic in the field of software engineering. Given the great demand for software fault localization, an approach based on the artificial bee colony (ABC) algorithm is proposed to be integrated with other related techniques. In this process, the source program is initially instrumented after analyzing the dependence information. The test case sets are then compiled and run on the instrumented program, and execution results are input to the ABC algorithm. The algorithm can determine the largest fitness value and best food source by calculating the average fitness of the employed bees in the iteralive process. The program unit with the highest suspicion score corresponding to the best test case set is regarded as the final fault localization. Experiments are conducted with the TCAS program in the Siemens suite. Results demonstrate that the proposed fault localization method is effective and efficient. The ABC algorithm can efficiently avoid the local optimum, and ensure the validity of the fault location to a larger extent.
文摘The key to software reliability is fault-tolerant design ofapplication software.New fault-tolerant strategies andtheir design methods for application software under vari-ous computer system are introduced.It has such advan-tages as simple hardware platform,independent fromapplication,stable reliability.lastly,some technicalproblems are discussed in details.
基金supported by the National Natural Science Foundation of China(61473144)
文摘This paper investigates the fault detection problem for discrete event systems (DESs) which can be modeled by partially observed Petri nets (POPNs). To overcome the problem of low diagnosability in the POPN online fault diagnoser in current use, an improved online fault diagnosis algorithm that integrates generalized mutual exclusion constraints (GMECs) and integer linear programming (ILP) is proposed. Assume that the POPN structure and its initial markings are known, and the faults are modeled as unobservable transitions. First, the event sequence is observed and recorded. GMEC is used for elementary diagnosis of the system behavior, then the ILP problem of POPN is solved for further diagnosis. Finally, an example of a real DES to test the new fault diagnoser is analyzed. The proposed algorithm increases the diagnosability of the DES remarkably, and the effectiveness of the new algorithm integrating GMEC and ILP is verified.
文摘Dependable computer based systems employing fault tolerance and robust software development techniques demand additional error detection and recovery related tasks. This results in tangling of core functionality with these cross cutting non-functional concerns. In this regard current work identifies these dependability related non-functional and cross-cutting concerns and proposes design and implementation solutions in an aspect oriented framework that modularizes and separates them from core functionality. The degree of separation has been quantified using software metrics. A Lego NXT Robot based case study has been completed to evaluate the proposed design framework.
文摘An accurate fault location algorithm for double-circuit series compensated lines is presented.Use of two-end unsynchronized measurements of current and voltage signals is considered.The algorithm applies two subroutines,designated for locating faults on particular line sections,and additionally the procedure for selecting the valid subroutine.The subroutines are formulated with use of the generalized fault loop model and the distributed parameter line model is applied.Performed ATP-EMTP based evaluation has shown the validity of the derived fault location algorithm and its high accuracy.