Recent advancements in artificial intelligence have transformed three-dimensional(3D)optical imaging and metrology,enabling high-resolution and high-precision 3D surface geometry measurements from one single fringe pa...Recent advancements in artificial intelligence have transformed three-dimensional(3D)optical imaging and metrology,enabling high-resolution and high-precision 3D surface geometry measurements from one single fringe pattern projection.However,the imaging speed of conventional fringe projection profilometry(FPP)remains limited by the native sensor refresh rates due to the inherent"one-to-one"synchronization mechanism between pattern projection and image acquisition in standard structured light techniques.Here,we present dual-frequency angular-multiplexed fringe projection profilometry(DFAMFPP),a deep learning-enabled 3D imaging technique that achieves high-speed,high-precision,and large-depth-range absolute 3D surface measurements at speeds 16 times faster than the sensor's native frame rate.By encoding multi-timeframe 3D information into a single multiplexed image using multiple pairs of dual-frequency fringes,high-accuracy absolute phase maps are reconstructed using specially trained two-stage number-theoretical-based deep neural networks.We validate the effectiveness of DFAMFPP through dynamic scene measurements,achieving 10,000 Hz 3D imaging of a running turbofan engine prototype with only a 625 Hz camera.By overcoming the sensor hardware bottleneck,DFAMFPP significantly advances high-speed and ultra-high-speed 3D imaging,opening new avenues for exploring dynamic processes across diverse scientific disciplines.展开更多
The Fringe Projection Profilometry(FPP)system with a single exposure time or a single projection intensity is limited by the dynamic range of the camera,which can lead to overexposure and underexposure of the image,re...The Fringe Projection Profilometry(FPP)system with a single exposure time or a single projection intensity is limited by the dynamic range of the camera,which can lead to overexposure and underexposure of the image,resulting in point cloud loss or reduced accuracy.To address this issue,unlike the pixel modulation method of projectors,we utilize the characteristics of color projectors where the intensity of the three-channel LED can be controlled independently.We propose a method for separating the projector's three-channel light intensity,combined with a color camera,to achieve single exposure and multi-intensity image acquisition.Further,the crosstalk coefficient is applied to predict the three-channel reflectance of the measured object.By integrating clustering and channel mapping,we establish a pixel-level mapping model between the projector's three-channel current and the camera's three-channel image intensity,which realizes the optimal projection current prediction and the high dynamic range(HDR)image acquisition.The proposed method allows for high-precision three-dimensional(3D)data acquisition of HDR scenes with a single exposure.The effectiveness of this method has been validated through experiments with standard planes and standard steps,showing a significant reduction in mean absolute error(44.6%)compared to existing singleexposure HDR methods.Additionally,the number of images required for acquisition is significantly reduced(by 70.8%)compared to multi-exposure fusion methods.This proposed method has great potential in various FPP-related fields.展开更多
Two- dimensional Fourier transform profilometry (2 -D FTP) for data acquisition of fabric surface shapes isproposed. Phase unwrapping technique based on digitalweighted filter and reliability mask are employed. Ex-per...Two- dimensional Fourier transform profilometry (2 -D FTP) for data acquisition of fabric surface shapes isproposed. Phase unwrapping technique based on digitalweighted filter and reliability mask are employed. Ex-perimentai results of shape measurement for several fab-ric appearances are given. From the measured results, itis shown that this method can make up for not only thedisadvantage of the gray level image analysis which isonly suitable for simple structure and solid - pattern fab-ric, but also the low speed and high cost of laser dotscanning technique.展开更多
Single-shot high-speed 3D imaging is important for reconstructions of dynamic objects.For fringe projection profilometry(FPP),however,it is still challenging to recover accurate 3D shapes of isolated objects by a sing...Single-shot high-speed 3D imaging is important for reconstructions of dynamic objects.For fringe projection profilometry(FPP),however,it is still challenging to recover accurate 3D shapes of isolated objects by a single fringe image.In this paper,we demonstrate that the deep neural networks can be trained to directly recover the absolute phase from a unique fringe image that involves spatially multiplexed fringe patterns of different frequencies.The extracted phase is free from spectrum-aliasing problem which is hard to avoid for traditional spatial-multiplexing methods.Experiments on both static and dynamic scenes show that the proposed approach is robust to object motion and can obtain high-quality 3D reconstructions of isolated objects within a single fringe image.展开更多
Digital structured light (SL) profilometry is increasingly used in three-dimensional (3D) measurement technology. However, the nonlinearity of the off-the-shelf projectors and cameras seriously reduces the measure...Digital structured light (SL) profilometry is increasingly used in three-dimensional (3D) measurement technology. However, the nonlinearity of the off-the-shelf projectors and cameras seriously reduces the measurement accuracy. In this paper, first, we review the nonlinear effects of the projector-camera system in the phase-shifting structured light depth measurement method. We show that high order harmonic wave components lead to phase error in the phase-shifting method. Then a practical method based on frequency domain filtering is proposed for nonlinear error reduction. By using this method, the nonlinear calibration of the SL system is not required. Moreover, both the nonlinear effects of the projector and the camera can be effectively reduced. The simulations and experiments have verified our nonlinear correction method.展开更多
2π phase ambiguity problem is very important in phase measurement when a deformed object has a large out of plane displacement. The dual-frequency projection grating phaseshifting profilometry (PSP) can be used to ...2π phase ambiguity problem is very important in phase measurement when a deformed object has a large out of plane displacement. The dual-frequency projection grating phaseshifting profilometry (PSP) can be used to solve such an issue. In the measurement, two properchosen frequency gratings are utilized to synthesize an equivalent wavelength grating which ensures the computed phase in a principal phase range. Thus, the error caused by the phase unwrapping process with the conventional phase reconstruct algorithm can be eliminated. Finally, experimental result of a specimen with large plastic deformation is given to prove that the proposed method is effective to handle the phase discontinuity.展开更多
The technique of phase measuring profilometry using a single phase step method is proposed.This method can automatically obtain phase value at each pixel by using a discret cosine transform algorithm.The method is abl...The technique of phase measuring profilometry using a single phase step method is proposed.This method can automatically obtain phase value at each pixel by using a discret cosine transform algorithm.The method is able to automatically recognize any position between depression and elevation on an object surface.Theoretical analysis and experimental verification are presented.展开更多
BACKGROUND Artificial urethral sphincter(AUS)implantation is currently the gold standard for treating moderate and severe urinary incontinence.Currently,cuffs are chosen based on the surgeon’s experience,and adjustin...BACKGROUND Artificial urethral sphincter(AUS)implantation is currently the gold standard for treating moderate and severe urinary incontinence.Currently,cuffs are chosen based on the surgeon’s experience,and adjusting cuff tightness is crucial.The TDOC air-charged catheter has not been proven to be inferior to traditional catheters.We report how intraoperative urethral pressure profilometry is performed using a T-DOC air-charged catheter with ambulatory urodynamic equipment,to guide cuff selection and adjustment.CASE SUMMARY A 67-year-old man presented to our hospital with complete urinary incontinence following transurethral prostatectomy,using five pads/d to maintain local dryness.Preoperatively,the maximum urethral pressure(MUP)and maximum urethral closure pressure(MUCP)were 52 cmH2O and 17 cmH2O,respectively.An AUS was implanted.Intraoperatively,in the inactivated state,the MUP and MUCP were 53 cmH2O and 50 cmH2O,respectively;in the activated state,they were 112 cmH2O and 109 cmH2O,respectively.The pump was activated 6 wk postoperatively.Re-measurement of the urethral pressure on the same day showed that in the inactivated state,MUP and MUCP were 89 cmH2O and 51 cmH2O,respectively,and in the activated state,120 cmH2O and 92 cmH2O,respectively.One month after device activation,telephonic follow-up revealed that pad use had decreased from five pads/d to one pad/d,which met the standard for social continence(0-1 pad per day).There were no complications.CONCLUSION The relationship between intraoperative urethral pressure and urinary continence post-surgery can provide data for standardizing AUS implantation and evaluating efficacy.展开更多
An optical technique for 3 D shape measurement is presented. This technique, based on a deformed projected grating pattern which carries 3 D information of the measured object, can automatically and accurately obtain ...An optical technique for 3 D shape measurement is presented. This technique, based on a deformed projected grating pattern which carries 3 D information of the measured object, can automatically and accurately obtain the phase map of a measured object by using one step phase shift algorithm.In comparison with traditional phase shift technique, the technique is much faster, with the equivalent accuracy. Only one frame image is sufficient for measuring. Experimental result of typical object is presented.展开更多
基金supported by National Key Research and Development Program of China(2022YFB2804603,2022YFB2804605)National Natural Science Foundation of China(U21B2033)+4 种基金Fundamental Research Funds forthe Central Universities(2023102001,2024202002)National Key Laborato-ry of Shock Wave and Detonation Physics(JCKYS2024212111)China Post-doctoral Science Fund(2023T160318)Open Research Fund of JiangsuKey Laboratory of Spectral Imaging&Intelligent Sense(JSGP202105,JSGP202201)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX25_0695,SJCX25_0188)。
文摘Recent advancements in artificial intelligence have transformed three-dimensional(3D)optical imaging and metrology,enabling high-resolution and high-precision 3D surface geometry measurements from one single fringe pattern projection.However,the imaging speed of conventional fringe projection profilometry(FPP)remains limited by the native sensor refresh rates due to the inherent"one-to-one"synchronization mechanism between pattern projection and image acquisition in standard structured light techniques.Here,we present dual-frequency angular-multiplexed fringe projection profilometry(DFAMFPP),a deep learning-enabled 3D imaging technique that achieves high-speed,high-precision,and large-depth-range absolute 3D surface measurements at speeds 16 times faster than the sensor's native frame rate.By encoding multi-timeframe 3D information into a single multiplexed image using multiple pairs of dual-frequency fringes,high-accuracy absolute phase maps are reconstructed using specially trained two-stage number-theoretical-based deep neural networks.We validate the effectiveness of DFAMFPP through dynamic scene measurements,achieving 10,000 Hz 3D imaging of a running turbofan engine prototype with only a 625 Hz camera.By overcoming the sensor hardware bottleneck,DFAMFPP significantly advances high-speed and ultra-high-speed 3D imaging,opening new avenues for exploring dynamic processes across diverse scientific disciplines.
文摘The Fringe Projection Profilometry(FPP)system with a single exposure time or a single projection intensity is limited by the dynamic range of the camera,which can lead to overexposure and underexposure of the image,resulting in point cloud loss or reduced accuracy.To address this issue,unlike the pixel modulation method of projectors,we utilize the characteristics of color projectors where the intensity of the three-channel LED can be controlled independently.We propose a method for separating the projector's three-channel light intensity,combined with a color camera,to achieve single exposure and multi-intensity image acquisition.Further,the crosstalk coefficient is applied to predict the three-channel reflectance of the measured object.By integrating clustering and channel mapping,we establish a pixel-level mapping model between the projector's three-channel current and the camera's three-channel image intensity,which realizes the optimal projection current prediction and the high dynamic range(HDR)image acquisition.The proposed method allows for high-precision three-dimensional(3D)data acquisition of HDR scenes with a single exposure.The effectiveness of this method has been validated through experiments with standard planes and standard steps,showing a significant reduction in mean absolute error(44.6%)compared to existing singleexposure HDR methods.Additionally,the number of images required for acquisition is significantly reduced(by 70.8%)compared to multi-exposure fusion methods.This proposed method has great potential in various FPP-related fields.
文摘Two- dimensional Fourier transform profilometry (2 -D FTP) for data acquisition of fabric surface shapes isproposed. Phase unwrapping technique based on digitalweighted filter and reliability mask are employed. Ex-perimentai results of shape measurement for several fab-ric appearances are given. From the measured results, itis shown that this method can make up for not only thedisadvantage of the gray level image analysis which isonly suitable for simple structure and solid - pattern fab-ric, but also the low speed and high cost of laser dotscanning technique.
基金This work was supported by National Natural Science Foundation of China(62075096,62005121,U21B2033)Leading Technology of Jiangsu Basic Research Plan(BK20192003)+4 种基金“333 Engineering”Research Project of Jiangsu Province(BRA2016407)Jiangsu Provincial“One belt and one road”innovation cooperation project(BZ2020007)Fundamental Research Funds for the Central Universities(30921011208,30919011222,30920032101)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX21_0273)Open Research Fund of Jiangsu Key Laboratory of Spectral Imaging&Intelligent Sense(JSGP202105).
文摘Single-shot high-speed 3D imaging is important for reconstructions of dynamic objects.For fringe projection profilometry(FPP),however,it is still challenging to recover accurate 3D shapes of isolated objects by a single fringe image.In this paper,we demonstrate that the deep neural networks can be trained to directly recover the absolute phase from a unique fringe image that involves spatially multiplexed fringe patterns of different frequencies.The extracted phase is free from spectrum-aliasing problem which is hard to avoid for traditional spatial-multiplexing methods.Experiments on both static and dynamic scenes show that the proposed approach is robust to object motion and can obtain high-quality 3D reconstructions of isolated objects within a single fringe image.
基金Project supported by the Science and Technology Major Projects of Zhejiang Province,China(Grant No.2013C03043-5)
文摘Digital structured light (SL) profilometry is increasingly used in three-dimensional (3D) measurement technology. However, the nonlinearity of the off-the-shelf projectors and cameras seriously reduces the measurement accuracy. In this paper, first, we review the nonlinear effects of the projector-camera system in the phase-shifting structured light depth measurement method. We show that high order harmonic wave components lead to phase error in the phase-shifting method. Then a practical method based on frequency domain filtering is proposed for nonlinear error reduction. By using this method, the nonlinear calibration of the SL system is not required. Moreover, both the nonlinear effects of the projector and the camera can be effectively reduced. The simulations and experiments have verified our nonlinear correction method.
基金the National Natural Science Foundation of China(No.10672065).
文摘2π phase ambiguity problem is very important in phase measurement when a deformed object has a large out of plane displacement. The dual-frequency projection grating phaseshifting profilometry (PSP) can be used to solve such an issue. In the measurement, two properchosen frequency gratings are utilized to synthesize an equivalent wavelength grating which ensures the computed phase in a principal phase range. Thus, the error caused by the phase unwrapping process with the conventional phase reconstruct algorithm can be eliminated. Finally, experimental result of a specimen with large plastic deformation is given to prove that the proposed method is effective to handle the phase discontinuity.
文摘The technique of phase measuring profilometry using a single phase step method is proposed.This method can automatically obtain phase value at each pixel by using a discret cosine transform algorithm.The method is able to automatically recognize any position between depression and elevation on an object surface.Theoretical analysis and experimental verification are presented.
基金National Key R and D Program of China,No.2018YFC2002202
文摘BACKGROUND Artificial urethral sphincter(AUS)implantation is currently the gold standard for treating moderate and severe urinary incontinence.Currently,cuffs are chosen based on the surgeon’s experience,and adjusting cuff tightness is crucial.The TDOC air-charged catheter has not been proven to be inferior to traditional catheters.We report how intraoperative urethral pressure profilometry is performed using a T-DOC air-charged catheter with ambulatory urodynamic equipment,to guide cuff selection and adjustment.CASE SUMMARY A 67-year-old man presented to our hospital with complete urinary incontinence following transurethral prostatectomy,using five pads/d to maintain local dryness.Preoperatively,the maximum urethral pressure(MUP)and maximum urethral closure pressure(MUCP)were 52 cmH2O and 17 cmH2O,respectively.An AUS was implanted.Intraoperatively,in the inactivated state,the MUP and MUCP were 53 cmH2O and 50 cmH2O,respectively;in the activated state,they were 112 cmH2O and 109 cmH2O,respectively.The pump was activated 6 wk postoperatively.Re-measurement of the urethral pressure on the same day showed that in the inactivated state,MUP and MUCP were 89 cmH2O and 51 cmH2O,respectively,and in the activated state,120 cmH2O and 92 cmH2O,respectively.One month after device activation,telephonic follow-up revealed that pad use had decreased from five pads/d to one pad/d,which met the standard for social continence(0-1 pad per day).There were no complications.CONCLUSION The relationship between intraoperative urethral pressure and urinary continence post-surgery can provide data for standardizing AUS implantation and evaluating efficacy.
文摘An optical technique for 3 D shape measurement is presented. This technique, based on a deformed projected grating pattern which carries 3 D information of the measured object, can automatically and accurately obtain the phase map of a measured object by using one step phase shift algorithm.In comparison with traditional phase shift technique, the technique is much faster, with the equivalent accuracy. Only one frame image is sufficient for measuring. Experimental result of typical object is presented.