Sensitivity encoding(SENSE)is a parallel magnetic resonance imaging(MRI)reconstruction model by utilizing the sensitivity information of receiver coils to achieve image reconstruction.The existing SENSE-based reconstr...Sensitivity encoding(SENSE)is a parallel magnetic resonance imaging(MRI)reconstruction model by utilizing the sensitivity information of receiver coils to achieve image reconstruction.The existing SENSE-based reconstruction algorithms usually used nonadaptive sparsifying transforms,resulting in a limited reconstruction accuracy.Therefore,we proposed a new model for accurate parallel MRI reconstruction by combining the L0 norm regularization term based on the efficient sum of outer products dictionary learning(SOUPDIL)with the SENSE model,called SOUPDIL-SENSE.The SOUPDIL-SENSE model is mainly solved by utilizing the variable splitting and alternating direction method of multipliers techniques.The experimental results on four human datasets show that the proposed algorithm effectively promotes the image sparsity,eliminates the noise and artifacts of the reconstructed images,and improves the reconstruction accuracy.展开更多
Second language acquisition can not be understood without addressing the interaction between language and cognition. Cognitive theory can extend to describe learning strategies as complex cognitive skills. Theoretical...Second language acquisition can not be understood without addressing the interaction between language and cognition. Cognitive theory can extend to describe learning strategies as complex cognitive skills. Theoretical developments in Anderson’s production systems cover a broader range of behavior than other theories, including comprehension and production of oral and written texts as well as comprehension, problem solving, and verbal learning.Thus Anderson’s cognitive theory can be served as a rationale for learning strategy studies in second language acquisition.展开更多
基金the National Natural Science Foundation of China(No.61861023)the Yunnan Fundamental Research Project(No.202301AT070452)。
文摘Sensitivity encoding(SENSE)is a parallel magnetic resonance imaging(MRI)reconstruction model by utilizing the sensitivity information of receiver coils to achieve image reconstruction.The existing SENSE-based reconstruction algorithms usually used nonadaptive sparsifying transforms,resulting in a limited reconstruction accuracy.Therefore,we proposed a new model for accurate parallel MRI reconstruction by combining the L0 norm regularization term based on the efficient sum of outer products dictionary learning(SOUPDIL)with the SENSE model,called SOUPDIL-SENSE.The SOUPDIL-SENSE model is mainly solved by utilizing the variable splitting and alternating direction method of multipliers techniques.The experimental results on four human datasets show that the proposed algorithm effectively promotes the image sparsity,eliminates the noise and artifacts of the reconstructed images,and improves the reconstruction accuracy.
文摘Second language acquisition can not be understood without addressing the interaction between language and cognition. Cognitive theory can extend to describe learning strategies as complex cognitive skills. Theoretical developments in Anderson’s production systems cover a broader range of behavior than other theories, including comprehension and production of oral and written texts as well as comprehension, problem solving, and verbal learning.Thus Anderson’s cognitive theory can be served as a rationale for learning strategy studies in second language acquisition.