This paper summarizes the important progress in the field of oil and gas production engineering during the"Thirteenth Five-Year Plan"period of China,analyzes the challenges faced by the current oil and gas p...This paper summarizes the important progress in the field of oil and gas production engineering during the"Thirteenth Five-Year Plan"period of China,analyzes the challenges faced by the current oil and gas production engineering in terms of technological adaptability,digital construction,energy-saving and emission reduction,and points out the future development direction.During the"Thirteenth Five-Year Plan"period,series of important progresses have been made in five major technologies,including separated-layer injection,artificial lift,reservoir stimulation,gas well de-watering,and workover,which provide key technical support for continuous potential tapping of mature oilfields and profitable production of new oilfields.Under the current complex international political and economic situation,oil and gas production engineering is facing severe challenges in three aspects:technical difficulty increases in oil and gas production,insignificant improvements in digital transformation,and lack of core technical support for energy-saving and emission reduction.This paper establishes three major strategic directions and implementation paths,including oil stabilization and gas enhancement,digital transformation,and green and low-carbon development.Five key research areas are listed including fine separated-layer injection technology,high efficiency artificial lift technology,fine reservoir stimulation technology,long term gas well de-watering technology and intelligent workover technology,so as to provide engineering technical support for the transformation,upgrading and high-quality development of China’s oil and gas industry.展开更多
An automated method based on the curve chain was proposed for dimensioning of engineering drawings for the mechanical products.According to the internal relation between the features of 3D model feature and elements o...An automated method based on the curve chain was proposed for dimensioning of engineering drawings for the mechanical products.According to the internal relation between the features of 3D model feature and elements of 2D drawing,the curve chain was established to reflect the geometric topological structure between the elements.It divides the dimensions into the absolute dimensions within the cure chain and the relative dimensions between the curve chains.The parallel and lengthy relationship between the drawing elements of the constructed X and Y parallel matrix was solved to remove redundant elements in the curve chain and labeled the absolute dimensions of the remaining valid elements.The average minimum weight coefficient was introduced to judge the dependence on the relative dimensions between curve chains.Through the analysis of the overlap between the circular rectangular areas,including all the absolute dimensions of the curve chains,overlapping curve chains were merged,and their dimensions were rearranged to avoid the cross interference between them.The method was seamlessly integrated into the drafting module of product design software NX,and it developed an automated dimensioning system.The examples show that the system has excellent interactivity and robustness in the dimensioning of product engineering drawings.The dimension information is complete,accurate and reliable.展开更多
This paper summarizes the latest achievements and technological progress in oil and gas production engineering of China National Petroleum Corporation(CNPC) and discusses the main four challenges faced: developing low...This paper summarizes the latest achievements and technological progress in oil and gas production engineering of China National Petroleum Corporation(CNPC) and discusses the main four challenges faced: developing low quality resource at low oil price; keeping stable production of mature oilfields when well oil production drops year by year; low systematic efficiency, high cost, prominent environmental protection issue and short of technological strategy for high water cut ratio and high oil recovery ratio oilfields; and lacking of high level horizontal well drilling and completion technology to develop unconventional and deep reservoirs. Three technological development directions to address these challenges are put forward: developing fracture controlling stimulation and well factory to produce low quality resource economically, developing re-fracturing technology for old wells in mature oilfields, promoting the fourth generation separate layer water injection technology to stabilize the production of mature oilfields; innovating new technologies of water flooding with nano-material, injecting and producing through one well.展开更多
The zebra mussel is an important aquatic pest that causes great damage to freshwater-dependent industries, due to biofouling. The main goal of the project discussed here is to develop improved solutions to control thi...The zebra mussel is an important aquatic pest that causes great damage to freshwater-dependent industries, due to biofouling. The main goal of the project discussed here is to develop improved solutions to control this species. Three approaches have been explored in an attempt to design innovative application strategies for existing biocides: (i) encapsulation of toxins; (ii) combination of toxins; (iii) investigation of the seasonal variation of the species' tolerance to toxins. In this paper, the principles behind these approaches and the major results on each topic are presented. The benefits of adopting a chemical product engineering approach in conducting this project are also discussed.展开更多
Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme hetero...Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme heterojunction with O and Zn vacancies(VO,Zn-ZnO/ZnS)is rationally constructed via ion-exchange and calcination treatments.In such a photocatalytic system,the hollow structure combined with the introduction of dual vacancies endows the adequate light absorption.Moreover,the O and Zn vacancies serve as the trapping sites for photo-induced electrons and holes,respectively,which are beneficial for promoting the photo-induced carrier separation.Meanwhile,the S-scheme charge transfer mechanism can not only improve the separation and transfer efficiencies of photo-induced carrier but also retain the strong redox capacity.As expected,the optimized VO,Zn-ZnO/ZnS heterojunction exhibits a superior photocatalytic H_(2) production rate of 160.91 mmol g^(-1)h^(-1),approximately 643.6 times and 214.5 times with respect to that obtained on pure ZnO and ZnS,respectively.Simultaneously,the experimental results and density functional theory calculations disclose that the photo-induced carrier transfer pathway follows the S-scheme heterojunction mechanism and the introduction of O and Zn vacancies reduces the surface reaction barrier.This work provides an innovative strategy of vacancy engineering in S-scheme heterojunction for solar-to-fuel energy conversion.展开更多
Task decomposition is a kind of powerful technique increasingly being used within industry as a pathway for achieving product's developing success. In this paper, topology's concept in modern mathematics is us...Task decomposition is a kind of powerful technique increasingly being used within industry as a pathway for achieving product's developing success. In this paper, topology's concept in modern mathematics is used for task decomposition technique's deduction in product developing process. It puts fonvard the views of resolvability, measurability and connectivity of tasks and their practi-cal principles. Combined with an example of developing the typical mechanical product, it ex-plains the implementing method of task decomposition in Concurrent Engineering (CE).展开更多
This paper presents a domain engineering approach to build a software product line that supports the change notification service in a Configuration Management Database (CMDB) according to the Information Technology In...This paper presents a domain engineering approach to build a software product line that supports the change notification service in a Configuration Management Database (CMDB) according to the Information Technology Infrastructure Library (ITIL) best practices. For the development of this product line, the proposed approach makes use of a construction of products methodology by analogy: this is a new notation which reports the variability of the products, obtaining metrics as important as the number of products and uses a language that enables, by means of the flexibilization of a product and the development of some generators, to build the rest of the product line. In addition the paper offers a standard for the analysis and design of the CMDB as well. Finally, the paper presents an economic model for the product line, where the profitability and productivity of the proposed solution are analyzed.展开更多
Quality engineers play a key role in software product development,covering various stages such as requirements analysis,design,coding,testing,and delivery.Its responsibilities include formulating quality standards,wri...Quality engineers play a key role in software product development,covering various stages such as requirements analysis,design,coding,testing,and delivery.Its responsibilities include formulating quality standards,writing test cases,conducting functional and performance tests,and optimizing the product based on feedback.In government procurement projects,quality evaluation focuses on process compliance,security,and functional compatibility.KPI evaluation trees are commonly used for quantitative assessment,and a dynamic adjustment mechanism for indicators needs to be established to cope with complex demands.In addition,risk-driven testing and agile development should be combined to set up quality access control to ensure that each iteration version meets expectations.The multi-dimensional quality assurance and verification scoring mechanism can effectively enhance product reliability and reduce project risks.展开更多
Remanufacture Engineering is an important characteristic and development trend of a manufacturing system in the 21st Century, and product information management is very important to Remanufacture Engineering. In this ...Remanufacture Engineering is an important characteristic and development trend of a manufacturing system in the 21st Century, and product information management is very important to Remanufacture Engineering. In this paper, we first compared traditional manufacturing and remanufacturing. Then, according to the features of Remanufacture Engineering, we analyzed the request of product information management system facing Remanufacture Engineering, and designed the system module. Finally, we built a kind of system structure of product information management facing Remanufacture Engineering and gave realization methods based on Web.展开更多
WebGIS is the result of combining the technology of Internet with that of Geographic Information Systems (GIS). This paper aims at some problems in the development of GIS, such as the system of development is instable...WebGIS is the result of combining the technology of Internet with that of Geographic Information Systems (GIS). This paper aims at some problems in the development of GIS, such as the system of development is instable, and presents the method of adopting component technology to accomplish WebGIS middleware which has been successfully applied to the Oil Production Engineering information visible system. It showed in practice that the WebGIS middleware can be casily embedded in the web pages to accomplish GIS application system in a network environment. On the one hand, its application can reduce complexity of system and speed up the pace of development. On the other hand, it is certain to reduce the development costs and improve the maintainability. Key words WebGIS - middleware - oil production engineering CLC number TP 31 Biography: LIU Quan (1969-), male, Ph. D. candidate, research direction: include automated resoning, WebGIS.展开更多
1 Introduction Magnesium salts are very important by-product of salt lake industry in West China.Nearly 200 million cubic meters of waste brine are released to the environment
Product development process management plays an important role in concurrent engineering (CE). The integration platform is a useful tool for effectively supporting the software development and integration. Based on th...Product development process management plays an important role in concurrent engineering (CE). The integration platform is a useful tool for effectively supporting the software development and integration. Based on the analysis of practical requirements for product development process management for CE, a CORBA-based integration platform of product development process management (IP-PDPM) is designed and developed. The design principles for IP-PDPM are described. The system architecture and functions of the platform are given, the key technologies for the implementation of IP-PDPM are presented, the application integration mechanism and its implementation techniques are also detailed.展开更多
Computer-integrated manufacturing (CIM) and revers e engineering (RE) have changed drastically the concept of product re-design, pla nning and manufacture of components. However, the main problems currently facing the...Computer-integrated manufacturing (CIM) and revers e engineering (RE) have changed drastically the concept of product re-design, pla nning and manufacture of components. However, the main problems currently facing the developers of reverse engineering system, is the time consuming digitis ation of 3D data and the conversion of large amounts of data into a concise and manageable format and linking it to a CAD/CAM system. Automated 3-D profile gen eration, measurements and inspection of manufactured component represents one of the important functions in reverse engineering and in the improvements in produ ct quality in rapid product developments. The paper presents a novel methodology for the development of a reverse enginee ring technique for use in the rapid product development in a CIM environment . The system developed provides integration, data capture and manipulation, dat a transfer between a CAD, CAM, Computer-aided inspection (CAI) and a 3-D profi le scanning system. An efficient scanning strategy has been developed for scann ing and surfaces data acquisition. The products were scanned using a laser scann ing system with a dedicated scan control card and the associated software packag es. A versatile rig was developed for the ease of data gathering of the profile scanning process. The surface data collected was then used to build a mathematic al surface model, which was then used to develop a virtual 3-D model of the pro duct. The resulting surface model provides the geometrical input to the subseque nt machining operation using either a CNC system or other manufacturing operatio n e.g. dies casting/mould casting etc. The prototypes developed were inspected u sing a state-of-the art CNC-CMM that was integrated to the CAD/CAM system. Si nce the scanning/digitised data captured by laser scanning probes requires no ma nual editing, significant time saving over most non-contact probe systems was a chieved. Since the creation of an accurate CAD model of a redesigned component o r a prototype constitute a major element of the total turnaround time; maximum r eturn can be achieved by increasing the efficiency of the redesigning process. T he paper also outlines with a case study the application of the developed system . The system developed offers the flexibility of using the concept of reverse en gineering of a variety of components with the complimentary facility of integrat ion between CAD/CAM Computer-aided Inspection (CAI) systems and a scanning syst em. The developed reverse engineering application in an integrated manufacturing system can increase the consistency, improve cost-efficiency, reduce produ ct turn around and skill levels required to redesign, reengineer and prototyping components and products.展开更多
A simulation tool named BITSIM orienting production engineering is developed in order to improve enterprise's productivity and making up the scarcity of computer application. The architecture of BITSIM is presented f...A simulation tool named BITSIM orienting production engineering is developed in order to improve enterprise's productivity and making up the scarcity of computer application. The architecture of BITSIM is presented first. Hierarchical technique, control strategy based on multi-agent and simulation output analysis are depicted in detail then. In the end, an application example is taken out to prove that this system could be used to analyzing different hypothetical situation and configuring the auxiliary manufacturing system before production.展开更多
More than 90%of natural gas hydrates(hereinafter,hydrate for short)in the South China Sea are non-diagenetic ore bodies,so they cannot be exploited easily by means of the conventional methods.In this paper,the solid f...More than 90%of natural gas hydrates(hereinafter,hydrate for short)in the South China Sea are non-diagenetic ore bodies,so they cannot be exploited easily by means of the conventional methods.In this paper,the solid fluidization method,as one of the revolutionary technologies in efficient exploitation of non-diagenetic natural gas hydrates,was,for the first time,put forward by Academician Zhou Shouwei.And it is successfully applied in the Shenhu Area of the South China Sea based on the technologies,equipment and processes which rely on domestic independent intellectual property rights.During the production test of fluidization,the ore bodies of hydrates are broken by the jet at the bottom hole into fine particles and carried upward by the drilling fluid.When the phase equilibrium state is reached with the increase of temperature and the decrease of pressure affected by the operation parameters,which is different from conventional phase equilibrium state,the hydrates bearing solid particles are decomposed,and consequently liquid-solid flow in the annulus becomes complex gas-liquid-solid multiphase flow.Therefore,it is necessary to optimize the construction parameters design so as to meet the high-level requirements of well control safety.In this paper,the engineering parameters are optimally designed based on the engineering geological characteristics of the target block,combined with the analysis on complex multiphase flow in the wellbore.Then,a theoretical model and a numerical calculation method for the multiphase flow,temperature and pressure of complex media in wellbores and the phase equilibrium and decomposition of natural gas hydrates were established.And the multiphase flow in the wellbore during the production test of fluidization was analyzed under different operating parameters by means of numerical simulation,software emulation and experimental verification.And thus,the design optimization scheme of on-site engineering parameters of production test of marine natural gas hydrate fluidization was prepared.It is pointed out that the diameter of jet fluidization well section shall not be excessively large;and that it is necessary to increase the flow rate and density of drilling fluid and apply wellhead back pressure to ensure the cutting carrying safety and to mitigate well control risks.The results of this basic theoretical study can provide significant support to field operation and improvement of output in production tests.展开更多
In this paper, the generalized feature concept is put forward according to concurrent engineering. An integrated product model is established based on the generalized feature according to STEP in order to provide enri...In this paper, the generalized feature concept is put forward according to concurrent engineering. An integrated product model is established based on the generalized feature according to STEP in order to provide enrichment information for product concurrent development process. The integration of the information and function of CAD/CAPP can be realized based on the integrated product model that supports concurrent engineering. IPM has been used successfully in product concurrent development.展开更多
Conductor and suction anchor are the key equipment providing bearing capacity in the field of deep-water drilling or offshore engineering,which have the advantages of high operation efficiency and short construction p...Conductor and suction anchor are the key equipment providing bearing capacity in the field of deep-water drilling or offshore engineering,which have the advantages of high operation efficiency and short construction period.In order to drill a horizontal well in the shallow hydrate reservoir in the deep water,the suction anchor wellhead assembly is employed to undertake the main vertical bearing capacity in the second round of hydrate trial production project,so as to reduce the conductor running depth and heighten the kick-off point position.However,the deformation law of the deep-water suction anchor wellhead assembly under the moving load of the riser is not clear,and it is necessary to understand the lateral bearing characteristics to guide the design of its structural scheme.Based on 3D solid finite element method,the solid finite element model of the suction anchor wellhead assembly is established.In the model,the seabed soil is divided into seven layers,the contact between the wellhead assembly and the soil is simulated,and the vertical load and bending moment are applied to the wellhead node to simulate the riser movement when working in the deep water.The lateral bearing stability of conventional wellhead assembly and suction anchor wellhead assembly under the influence of wellhead load is discussed.The analysis results show that the bending moment is the main factor affecting the lateral deformation of the wellhead string;the anti-bending performance from increasing the outer conductor diameter is better than that from increasing the conductor wall thickness;for the subsea wellhead,the suction anchor obviously improves the lateral bearing capacity and reduces the lateral deformation.The conduct of the suction anchor wellhead assembly still needs to be lowered to a certain depth that below the maximum disturbed depth to ensure the lateral bearing stability,Thus,a method for the minimum conductor running depth for the suction anchor wellhead assembly is developed.The field implementations show that compared with the first round of hydrate trial production project,the conductor running depth is increased by 9.42 m,and there is no risk of wellhead overturning during the trial production.The method for determining the minimum conductor running depth in this paper is feasible and will still play an important role in the subsequent hydrate exploration and development.展开更多
The waste referred to includes solid waste and sludge. Solid waste is mainly from urban garbage and industrial waste. Sludge is from water treatment factories, paper mills, chemical factories, pharmaceutical factories...The waste referred to includes solid waste and sludge. Solid waste is mainly from urban garbage and industrial waste. Sludge is from water treatment factories, paper mills, chemical factories, pharmaceutical factories, rivers and lakes. The waste and sludge are very harmful to water organisms, human health and drinking water, and directly affect the environment. Sludge and waste also occupy large areas of land. There are several methods to treat waste and sludge, such as burial, chemical treatment and incineration. Incineration is more effective than the展开更多
In the process of promoting chemical production, only by ensuring the process of chemical production can we truly reduce the waste of resources and promote the sustainable development of the chemical industry. However...In the process of promoting chemical production, only by ensuring the process of chemical production can we truly reduce the waste of resources and promote the sustainable development of the chemical industry. However, there are some problems facing the development of chemical industry. Therefore, it is necessary to further optimize the construction process of chemical production in chemical engineering, improve the safety performance and environmental protection performance of chemical production, and comprehensively promote the sustainable development of chemical industry. This paper mainly focuses on the analysis and discussion of chemical production process in chemical engineering, firstly introduces the problems existing in the development process of chemical industry, then analyzes the characteristics of chemical engineering technology, further optimizes and improves the related process of chemical production, and finally puts forward the development trend of chemical production process.展开更多
Urban gas projects play an important role in the development of urbanization in China. The safe construction and management of urban gas production and operation have great influence on the safe use and quality of urb...Urban gas projects play an important role in the development of urbanization in China. The safe construction and management of urban gas production and operation have great influence on the safe use and quality of urban gas. In the process of urbanization, the continuous construction and development of gas engineering not only greatly promotes the development of society, but also greatly facilitates people's daily production and life. However, it also has some security risks. Therefore, it is necessary to give high priority to urban gas engineering construction and safe production operation management, comprehensively utilize daily operation management, institutional safety and high-tech capabilities, and effectively improve the safety of urban gas production operation.展开更多
基金Supported by the Basic Science Center Project of National Natural Science Foundation of China(72088101)National Natural Science Funded Project(52074345)CNPC Scientific Research and Technology Development Project(2020D-5001-21)。
文摘This paper summarizes the important progress in the field of oil and gas production engineering during the"Thirteenth Five-Year Plan"period of China,analyzes the challenges faced by the current oil and gas production engineering in terms of technological adaptability,digital construction,energy-saving and emission reduction,and points out the future development direction.During the"Thirteenth Five-Year Plan"period,series of important progresses have been made in five major technologies,including separated-layer injection,artificial lift,reservoir stimulation,gas well de-watering,and workover,which provide key technical support for continuous potential tapping of mature oilfields and profitable production of new oilfields.Under the current complex international political and economic situation,oil and gas production engineering is facing severe challenges in three aspects:technical difficulty increases in oil and gas production,insignificant improvements in digital transformation,and lack of core technical support for energy-saving and emission reduction.This paper establishes three major strategic directions and implementation paths,including oil stabilization and gas enhancement,digital transformation,and green and low-carbon development.Five key research areas are listed including fine separated-layer injection technology,high efficiency artificial lift technology,fine reservoir stimulation technology,long term gas well de-watering technology and intelligent workover technology,so as to provide engineering technical support for the transformation,upgrading and high-quality development of China’s oil and gas industry.
基金This work is supported by the Science and Technology Planning Project of Ronggui(grant number RGJF(2017)27H-8).
文摘An automated method based on the curve chain was proposed for dimensioning of engineering drawings for the mechanical products.According to the internal relation between the features of 3D model feature and elements of 2D drawing,the curve chain was established to reflect the geometric topological structure between the elements.It divides the dimensions into the absolute dimensions within the cure chain and the relative dimensions between the curve chains.The parallel and lengthy relationship between the drawing elements of the constructed X and Y parallel matrix was solved to remove redundant elements in the curve chain and labeled the absolute dimensions of the remaining valid elements.The average minimum weight coefficient was introduced to judge the dependence on the relative dimensions between curve chains.Through the analysis of the overlap between the circular rectangular areas,including all the absolute dimensions of the curve chains,overlapping curve chains were merged,and their dimensions were rearranged to avoid the cross interference between them.The method was seamlessly integrated into the drafting module of product design software NX,and it developed an automated dimensioning system.The examples show that the system has excellent interactivity and robustness in the dimensioning of product engineering drawings.The dimension information is complete,accurate and reliable.
基金Supported by the China National Science and Technology Major Project(2016ZX05023 2017ZX05013-005)
文摘This paper summarizes the latest achievements and technological progress in oil and gas production engineering of China National Petroleum Corporation(CNPC) and discusses the main four challenges faced: developing low quality resource at low oil price; keeping stable production of mature oilfields when well oil production drops year by year; low systematic efficiency, high cost, prominent environmental protection issue and short of technological strategy for high water cut ratio and high oil recovery ratio oilfields; and lacking of high level horizontal well drilling and completion technology to develop unconventional and deep reservoirs. Three technological development directions to address these challenges are put forward: developing fracture controlling stimulation and well factory to produce low quality resource economically, developing re-fracturing technology for old wells in mature oilfields, promoting the fourth generation separate layer water injection technology to stabilize the production of mature oilfields; innovating new technologies of water flooding with nano-material, injecting and producing through one well.
基金the Portuguese Foundation for Science and Technology (scholarship SFRH/BD/18731/2004 and Research Project Grant POCI/EQU/59305/2004).
文摘The zebra mussel is an important aquatic pest that causes great damage to freshwater-dependent industries, due to biofouling. The main goal of the project discussed here is to develop improved solutions to control this species. Three approaches have been explored in an attempt to design innovative application strategies for existing biocides: (i) encapsulation of toxins; (ii) combination of toxins; (iii) investigation of the seasonal variation of the species' tolerance to toxins. In this paper, the principles behind these approaches and the major results on each topic are presented. The benefits of adopting a chemical product engineering approach in conducting this project are also discussed.
文摘Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme heterojunction with O and Zn vacancies(VO,Zn-ZnO/ZnS)is rationally constructed via ion-exchange and calcination treatments.In such a photocatalytic system,the hollow structure combined with the introduction of dual vacancies endows the adequate light absorption.Moreover,the O and Zn vacancies serve as the trapping sites for photo-induced electrons and holes,respectively,which are beneficial for promoting the photo-induced carrier separation.Meanwhile,the S-scheme charge transfer mechanism can not only improve the separation and transfer efficiencies of photo-induced carrier but also retain the strong redox capacity.As expected,the optimized VO,Zn-ZnO/ZnS heterojunction exhibits a superior photocatalytic H_(2) production rate of 160.91 mmol g^(-1)h^(-1),approximately 643.6 times and 214.5 times with respect to that obtained on pure ZnO and ZnS,respectively.Simultaneously,the experimental results and density functional theory calculations disclose that the photo-induced carrier transfer pathway follows the S-scheme heterojunction mechanism and the introduction of O and Zn vacancies reduces the surface reaction barrier.This work provides an innovative strategy of vacancy engineering in S-scheme heterojunction for solar-to-fuel energy conversion.
基金the State High-Tech Developmets Plan of Cina(No.863-511-9930-007)
文摘Task decomposition is a kind of powerful technique increasingly being used within industry as a pathway for achieving product's developing success. In this paper, topology's concept in modern mathematics is used for task decomposition technique's deduction in product developing process. It puts fonvard the views of resolvability, measurability and connectivity of tasks and their practi-cal principles. Combined with an example of developing the typical mechanical product, it ex-plains the implementing method of task decomposition in Concurrent Engineering (CE).
文摘This paper presents a domain engineering approach to build a software product line that supports the change notification service in a Configuration Management Database (CMDB) according to the Information Technology Infrastructure Library (ITIL) best practices. For the development of this product line, the proposed approach makes use of a construction of products methodology by analogy: this is a new notation which reports the variability of the products, obtaining metrics as important as the number of products and uses a language that enables, by means of the flexibilization of a product and the development of some generators, to build the rest of the product line. In addition the paper offers a standard for the analysis and design of the CMDB as well. Finally, the paper presents an economic model for the product line, where the profitability and productivity of the proposed solution are analyzed.
文摘Quality engineers play a key role in software product development,covering various stages such as requirements analysis,design,coding,testing,and delivery.Its responsibilities include formulating quality standards,writing test cases,conducting functional and performance tests,and optimizing the product based on feedback.In government procurement projects,quality evaluation focuses on process compliance,security,and functional compatibility.KPI evaluation trees are commonly used for quantitative assessment,and a dynamic adjustment mechanism for indicators needs to be established to cope with complex demands.In addition,risk-driven testing and agile development should be combined to set up quality access control to ensure that each iteration version meets expectations.The multi-dimensional quality assurance and verification scoring mechanism can effectively enhance product reliability and reduce project risks.
文摘Remanufacture Engineering is an important characteristic and development trend of a manufacturing system in the 21st Century, and product information management is very important to Remanufacture Engineering. In this paper, we first compared traditional manufacturing and remanufacturing. Then, according to the features of Remanufacture Engineering, we analyzed the request of product information management system facing Remanufacture Engineering, and designed the system module. Finally, we built a kind of system structure of product information management facing Remanufacture Engineering and gave realization methods based on Web.
文摘WebGIS is the result of combining the technology of Internet with that of Geographic Information Systems (GIS). This paper aims at some problems in the development of GIS, such as the system of development is instable, and presents the method of adopting component technology to accomplish WebGIS middleware which has been successfully applied to the Oil Production Engineering information visible system. It showed in practice that the WebGIS middleware can be casily embedded in the web pages to accomplish GIS application system in a network environment. On the one hand, its application can reduce complexity of system and speed up the pace of development. On the other hand, it is certain to reduce the development costs and improve the maintainability. Key words WebGIS - middleware - oil production engineering CLC number TP 31 Biography: LIU Quan (1969-), male, Ph. D. candidate, research direction: include automated resoning, WebGIS.
基金supported by the National Natural Science Foundationthe National Key Technologies R&D Program (2011BAE28B01)the 863 Program (2013AA032501)
文摘1 Introduction Magnesium salts are very important by-product of salt lake industry in West China.Nearly 200 million cubic meters of waste brine are released to the environment
文摘Product development process management plays an important role in concurrent engineering (CE). The integration platform is a useful tool for effectively supporting the software development and integration. Based on the analysis of practical requirements for product development process management for CE, a CORBA-based integration platform of product development process management (IP-PDPM) is designed and developed. The design principles for IP-PDPM are described. The system architecture and functions of the platform are given, the key technologies for the implementation of IP-PDPM are presented, the application integration mechanism and its implementation techniques are also detailed.
文摘Computer-integrated manufacturing (CIM) and revers e engineering (RE) have changed drastically the concept of product re-design, pla nning and manufacture of components. However, the main problems currently facing the developers of reverse engineering system, is the time consuming digitis ation of 3D data and the conversion of large amounts of data into a concise and manageable format and linking it to a CAD/CAM system. Automated 3-D profile gen eration, measurements and inspection of manufactured component represents one of the important functions in reverse engineering and in the improvements in produ ct quality in rapid product developments. The paper presents a novel methodology for the development of a reverse enginee ring technique for use in the rapid product development in a CIM environment . The system developed provides integration, data capture and manipulation, dat a transfer between a CAD, CAM, Computer-aided inspection (CAI) and a 3-D profi le scanning system. An efficient scanning strategy has been developed for scann ing and surfaces data acquisition. The products were scanned using a laser scann ing system with a dedicated scan control card and the associated software packag es. A versatile rig was developed for the ease of data gathering of the profile scanning process. The surface data collected was then used to build a mathematic al surface model, which was then used to develop a virtual 3-D model of the pro duct. The resulting surface model provides the geometrical input to the subseque nt machining operation using either a CNC system or other manufacturing operatio n e.g. dies casting/mould casting etc. The prototypes developed were inspected u sing a state-of-the art CNC-CMM that was integrated to the CAD/CAM system. Si nce the scanning/digitised data captured by laser scanning probes requires no ma nual editing, significant time saving over most non-contact probe systems was a chieved. Since the creation of an accurate CAD model of a redesigned component o r a prototype constitute a major element of the total turnaround time; maximum r eturn can be achieved by increasing the efficiency of the redesigning process. T he paper also outlines with a case study the application of the developed system . The system developed offers the flexibility of using the concept of reverse en gineering of a variety of components with the complimentary facility of integrat ion between CAD/CAM Computer-aided Inspection (CAI) systems and a scanning syst em. The developed reverse engineering application in an integrated manufacturing system can increase the consistency, improve cost-efficiency, reduce produ ct turn around and skill levels required to redesign, reengineer and prototyping components and products.
文摘A simulation tool named BITSIM orienting production engineering is developed in order to improve enterprise's productivity and making up the scarcity of computer application. The architecture of BITSIM is presented first. Hierarchical technique, control strategy based on multi-agent and simulation output analysis are depicted in detail then. In the end, an application example is taken out to prove that this system could be used to analyzing different hypothetical situation and configuring the auxiliary manufacturing system before production.
基金Project supported by National Key Research and Development Program“New Technology for Marine Gas Hydrate Fluidization Test”(No.:2016YFC0304008)National Natural Science Foundation of China Key Program“Research on the Theoretical Aspects and Key Issues in Managed Pressure Drilling Measuring and Controlling”(No.:51334003).
文摘More than 90%of natural gas hydrates(hereinafter,hydrate for short)in the South China Sea are non-diagenetic ore bodies,so they cannot be exploited easily by means of the conventional methods.In this paper,the solid fluidization method,as one of the revolutionary technologies in efficient exploitation of non-diagenetic natural gas hydrates,was,for the first time,put forward by Academician Zhou Shouwei.And it is successfully applied in the Shenhu Area of the South China Sea based on the technologies,equipment and processes which rely on domestic independent intellectual property rights.During the production test of fluidization,the ore bodies of hydrates are broken by the jet at the bottom hole into fine particles and carried upward by the drilling fluid.When the phase equilibrium state is reached with the increase of temperature and the decrease of pressure affected by the operation parameters,which is different from conventional phase equilibrium state,the hydrates bearing solid particles are decomposed,and consequently liquid-solid flow in the annulus becomes complex gas-liquid-solid multiphase flow.Therefore,it is necessary to optimize the construction parameters design so as to meet the high-level requirements of well control safety.In this paper,the engineering parameters are optimally designed based on the engineering geological characteristics of the target block,combined with the analysis on complex multiphase flow in the wellbore.Then,a theoretical model and a numerical calculation method for the multiphase flow,temperature and pressure of complex media in wellbores and the phase equilibrium and decomposition of natural gas hydrates were established.And the multiphase flow in the wellbore during the production test of fluidization was analyzed under different operating parameters by means of numerical simulation,software emulation and experimental verification.And thus,the design optimization scheme of on-site engineering parameters of production test of marine natural gas hydrate fluidization was prepared.It is pointed out that the diameter of jet fluidization well section shall not be excessively large;and that it is necessary to increase the flow rate and density of drilling fluid and apply wellhead back pressure to ensure the cutting carrying safety and to mitigate well control risks.The results of this basic theoretical study can provide significant support to field operation and improvement of output in production tests.
文摘In this paper, the generalized feature concept is put forward according to concurrent engineering. An integrated product model is established based on the generalized feature according to STEP in order to provide enrichment information for product concurrent development process. The integration of the information and function of CAD/CAPP can be realized based on the integrated product model that supports concurrent engineering. IPM has been used successfully in product concurrent development.
基金This research was jointly supported by the National Key R&D Program of China(2021YFC2800801)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0501)+3 种基金the Guangzhou Basic and Applied Basic Foundation(202102020611)the project of Guangzhou Marine Geological Survey of the China Geology Survey(DD20221700)the Key-Area Research and Development Program of Guangdong Province(2020B1111030003)the High-tech Ship Research Project of the Ministry of Industry and Information Technology(CJ05N20).
文摘Conductor and suction anchor are the key equipment providing bearing capacity in the field of deep-water drilling or offshore engineering,which have the advantages of high operation efficiency and short construction period.In order to drill a horizontal well in the shallow hydrate reservoir in the deep water,the suction anchor wellhead assembly is employed to undertake the main vertical bearing capacity in the second round of hydrate trial production project,so as to reduce the conductor running depth and heighten the kick-off point position.However,the deformation law of the deep-water suction anchor wellhead assembly under the moving load of the riser is not clear,and it is necessary to understand the lateral bearing characteristics to guide the design of its structural scheme.Based on 3D solid finite element method,the solid finite element model of the suction anchor wellhead assembly is established.In the model,the seabed soil is divided into seven layers,the contact between the wellhead assembly and the soil is simulated,and the vertical load and bending moment are applied to the wellhead node to simulate the riser movement when working in the deep water.The lateral bearing stability of conventional wellhead assembly and suction anchor wellhead assembly under the influence of wellhead load is discussed.The analysis results show that the bending moment is the main factor affecting the lateral deformation of the wellhead string;the anti-bending performance from increasing the outer conductor diameter is better than that from increasing the conductor wall thickness;for the subsea wellhead,the suction anchor obviously improves the lateral bearing capacity and reduces the lateral deformation.The conduct of the suction anchor wellhead assembly still needs to be lowered to a certain depth that below the maximum disturbed depth to ensure the lateral bearing stability,Thus,a method for the minimum conductor running depth for the suction anchor wellhead assembly is developed.The field implementations show that compared with the first round of hydrate trial production project,the conductor running depth is increased by 9.42 m,and there is no risk of wellhead overturning during the trial production.The method for determining the minimum conductor running depth in this paper is feasible and will still play an important role in the subsequent hydrate exploration and development.
文摘The waste referred to includes solid waste and sludge. Solid waste is mainly from urban garbage and industrial waste. Sludge is from water treatment factories, paper mills, chemical factories, pharmaceutical factories, rivers and lakes. The waste and sludge are very harmful to water organisms, human health and drinking water, and directly affect the environment. Sludge and waste also occupy large areas of land. There are several methods to treat waste and sludge, such as burial, chemical treatment and incineration. Incineration is more effective than the
文摘In the process of promoting chemical production, only by ensuring the process of chemical production can we truly reduce the waste of resources and promote the sustainable development of the chemical industry. However, there are some problems facing the development of chemical industry. Therefore, it is necessary to further optimize the construction process of chemical production in chemical engineering, improve the safety performance and environmental protection performance of chemical production, and comprehensively promote the sustainable development of chemical industry. This paper mainly focuses on the analysis and discussion of chemical production process in chemical engineering, firstly introduces the problems existing in the development process of chemical industry, then analyzes the characteristics of chemical engineering technology, further optimizes and improves the related process of chemical production, and finally puts forward the development trend of chemical production process.
文摘Urban gas projects play an important role in the development of urbanization in China. The safe construction and management of urban gas production and operation have great influence on the safe use and quality of urban gas. In the process of urbanization, the continuous construction and development of gas engineering not only greatly promotes the development of society, but also greatly facilitates people's daily production and life. However, it also has some security risks. Therefore, it is necessary to give high priority to urban gas engineering construction and safe production operation management, comprehensively utilize daily operation management, institutional safety and high-tech capabilities, and effectively improve the safety of urban gas production operation.