This study attempts to trace back iconographic origins of an Early Christian scene depicting a procession of women moving towards a temple. The scene makes part of the pictorial program of the so-called Chapel of Exod...This study attempts to trace back iconographic origins of an Early Christian scene depicting a procession of women moving towards a temple. The scene makes part of the pictorial program of the so-called Chapel of Exodus-a Coptic mausoleum from Kharga Oasis in Egypt. Never being among the most popular subjects of the Early Christian art, the images of the female processions are found in the monuments throughout the Late Roman Empire, from Roman catacombs to a small house-church at the Eastern border of the Pax Romana (Dura Europos, Syria). The extant scenes are dated back to different periods and belong to the different cultural milieu. The iconographic ambiguity of the procession scene from the Exodus Chapel triggered an intense scholar discussion and gave way to multiple interpretations. Still, the meaning of the episode and the reasons for its inclusion into the pictorial ensemble concept is not quite clear. The study aims to fill these particular gaps in the previous works. The semiotic and contextual analysis allows examining the scene in its relationship with juxtaposed compositions, to compare its iconographic features with descriptions of contemporary religious practices, and clarify the function of the image in the iconographic program of the Chapel of Exodus.展开更多
This paper proposes a fermionic linear optical scheme for the teleportation and entanglement concentration via entanglement swapping based on charge detection. It also proves that this method is useful in generating e...This paper proposes a fermionic linear optical scheme for the teleportation and entanglement concentration via entanglement swapping based on charge detection. It also proves that this method is useful in generating entangled states such as GHZ states, W states, and cluster states by using fermionic polarizing beam splitters and single spin rotations assisted by a parity check on the fermionic qubits. This scheme is nearly deterministic (i.e., with 100% successful probability) and does not need the joint Bell state measurement required in the previous schemes.展开更多
Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing addit...Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties.展开更多
Calcium carboaluminate was successfully prepared by a simple and efficient one-step method,and the effects of temperature,time,raw material ratio,carbonate type and heavy CaCO_(3)particle size on the products were inv...Calcium carboaluminate was successfully prepared by a simple and efficient one-step method,and the effects of temperature,time,raw material ratio,carbonate type and heavy CaCO_(3)particle size on the products were investigated in detail.The results show that increasing the temperature and extending the reaction time can enhance the yield and crystallisation degree of calcium carboaluminate.The proportion of Ca(OH)_(2),Al(OH)_(3)and CaCO_(3)is a pivotal factor in the synthesis of calcium carboaluminate.When the ratio of Ca(OH)_(2),Al(OH)_(3)and CaCO_(3)is 3:2:1,the diffraction peaks of calcium carboaluminate in the products are relatively sharp and strong.Furthermore,the purity and crystallinity of the synthesized calcium carboaluminate are higher when heavy CaCO_(3)with the particle size of 120 mesh is used as the carbonate raw material,in comparison to CO_(2),Na_(2)CO_(3)and light CaCO_(3).As results,a simple and efficient method for the synthesis of calcium carboaluminate is proposed,which will provide a solid experimental foundation and technical support for the industrial application of calcium carboaluminate in marine concrete.展开更多
The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurode...The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function.展开更多
To explore the best preparation process for terminal blend(TB)composite-modified asphalt and to filter its formulation with excellent performance,this study evaluates the performance of TB composite modified asphalt b...To explore the best preparation process for terminal blend(TB)composite-modified asphalt and to filter its formulation with excellent performance,this study evaluates the performance of TB composite modified asphalt by physical property index,microscopic morphology,rheological testing,and infrared spectroscopy on multiple scales.The results show that the best preparation process for TB-modified asphalt is stirring at 260℃ for 4 h at 400 rpm,which significantly reduces the modification time of the asphalt.From a physical property viewpoint,the TB composite-modified asphalt sample with 5% styrene-butadiene-styrene(SBS)+1% aromatics+0.1% sulfur exhibits high-comprehensive,high-and low-temperature properties.More-over,its crosslinked mesh structure comprises black rubber particles uniformly interwoven in the middle,which further enhances the performance of the asphalt and results in an excellent performance formulation.In addition,the sample with 5%SBS content has a higher G*value and smaller δ value than that with 3%SBS content,indicating that its high-temperature resistance is improved.The effect of adding 3%SBS content on the viscoelastic ratio is,to some extent,less than that caused by 20% rubber powder.展开更多
Unwarranted death of neurons is a major cause of neurodegenerative diseases.Since mature neurons are postmitotic and do not replicate,their death usually constitutes an irreversible step in pathology.A logical strateg...Unwarranted death of neurons is a major cause of neurodegenerative diseases.Since mature neurons are postmitotic and do not replicate,their death usually constitutes an irreversible step in pathology.A logical strategy to prevent neurodegeneration would then be to save all neurons that are still alive,i.e.protecting the ones that are still healthy as well as trying to rescue the ones that are damaged and in the process of dying.Regarding the latter,recent experiments have indicated that the possibility of reversing the cell death process and rescuing dying cells is more significant than previously anticipated.In many situations,the elimination of the cell death trigger alone enables dying cells to spontaneously repair their damage,recover,and survive.In this review,we explore the factors,which determine the fate of neurons engaged in the cell death process.A deeper insight into cell death mechanisms and the intrinsic capacity of cells to recover could pave the way for novel therapeutic approaches to neurodegenerative diseases.展开更多
This study examines the methods to plan the development of offshore oilfields over the years,which are used to support the decision-making on the development of offshore oilfields.About 100 papers are analysed and cat...This study examines the methods to plan the development of offshore oilfields over the years,which are used to support the decision-making on the development of offshore oilfields.About 100 papers are analysed and categorised into different groups of main early-stage decisions.The present study stands in contrast to the contributions of the operations research and system engineering review articles,on the one hand,and the petroleum engineering review articles,on the other.This is because it does not focus on one methodological approach,nor does it limit the literature analysis by offshore oilfield characteristics.Consequently,the present analysis may offer valuable insights,for instance,by identifying environmental planning decisions as a recent yet highly significant concern that is currently being imposed on decision-making process.Thus,it is evident that the incorporation of safety criteria within the technical-economic decision-making process for the design of production systems would be a crucial requirement at development phase.展开更多
The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer r...The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer rise earthquakes have been observed along the Sunda arc,following the estimated rupture area of the 2005 M_(W)8.6 Nias earthquakes.Here,we used kinematic waveform inversion(KIWI)to obtain the source parameters of the 14 May 2021 M_(W)6.6 event off the west coast of northern Sumatra and to define the fault plane that triggered this outer rise event.The KIWI algorithm allows two types of seismic source to be configured:the moment tensor model to describe the type of shear with six moment tensor components and the Eikonal model for the rupture of pure double-couple sources.This method was chosen for its flexibility to be applied for different sources of seismicity and also for the automated full-moment tensor solution with real-time monitoring.We used full waveform traces from 8 broadband seismic stations within 1000 km epicentral distances sourced from the Incorporated Research Institutions for Seismology(IRIS-IDA)and Geofon GFZ seismic record databases.The initial origin time and hypocenter values are obtained from the IRIS-IDA.The synthetic seismograms used in the inversion process are based on the existing regional green function database model and were accessed from the KIWI Tools Green's Function Database.The obtained scalar seismic moment value is 1.18×10^(19)N·m,equivalent to a moment magnitude M_(W)6.6.The source parameters are 140°,44°,and−99°for the strike,dip,and rake values at a centroid depth of 10.2 km,indicating that this event is a normal fault earthquake that occurred in the outer rise area.The outer rise events with normal faults typically occur at the shallow part of the plate,with nodal-plane dips predominantly in the range of 30°-60°on the weak oceanic lithosphere due to hydrothermal alteration.The stress regime around the plate subduction zone varies both temporally and spatially due to the cyclic influences of megathrust earthquakes.Tensional outer rise earthquakes tend to occur after the megathrust events.The relative timing of these events is not known due to the viscous relaxation of the down going slab and poroelastic response in the trench slope region.The occurrence of the 14 May 2021 earthquake shows the seismicity in the outer rise region in the strongly coupled Sunda arc subduction zone due to elastic bending stress within the duration of the seismic cycle.展开更多
Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening pa...Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%.展开更多
Neurodevelopmental processes represent a finely tuned interplay between genetic and environmental factors,shaping the dynamic landscape of the developing brain.A major component of the developing brain that enables th...Neurodevelopmental processes represent a finely tuned interplay between genetic and environmental factors,shaping the dynamic landscape of the developing brain.A major component of the developing brain that enables this dynamic is the white matter(WM),known to be affected in neurodevelopmental disorders(NDDs)(Rokach et al.,2024).WM formation is mediated by myelination,a multifactorial process driven by neuro-glia interactions dependent on proper neuronal functionality(Simons and Trajkovic,2006).Another key aspect of neurodevelopmental abnormalities involves neuronal dynamics and function,with recent advances significantly enhancing our understanding of both neuronal and glial mitochondrial function(Devine and Kittler,2018;Rojas-Charry et al.,2021).Energy homeostasis in neurons,attributed largely to mitochondrial function,is critical for proper functionality and interactions with oligodendrocytes(OLs),the cells forming myelin in the brain’s WM.We herein discuss the interplay between these processes and speculate on potential dysfunction in NDDs.展开更多
In the article titled“Inhibiting SHP2 reduces glycolysis,promotes microglial M1 polarization,and alleviates secondary inflammation following spinal cord injury in a mouse model,”published in Neural Regeneration Rese...In the article titled“Inhibiting SHP2 reduces glycolysis,promotes microglial M1 polarization,and alleviates secondary inflammation following spinal cord injury in a mouse model,”published in Neural Regeneration Research(Ding et al.,2025),the title was incorrectly presented due to an error during the language polishing process.展开更多
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a...Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.展开更多
S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB...S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.展开更多
Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a w...Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a wide range of factors, spanning from genetic to environmental factors, and even includes the gut microbiome(GM)(Mayer et al., 2022). All these processes coincide at some point in the inflammatory process, oxidative stress, and apoptosis, at different degrees in various organs and systems that constitute a living organism(Mayer et al., 2022;AguilarHernández et al., 2023).展开更多
Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network act...Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs.展开更多
Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the p...Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.展开更多
文摘This study attempts to trace back iconographic origins of an Early Christian scene depicting a procession of women moving towards a temple. The scene makes part of the pictorial program of the so-called Chapel of Exodus-a Coptic mausoleum from Kharga Oasis in Egypt. Never being among the most popular subjects of the Early Christian art, the images of the female processions are found in the monuments throughout the Late Roman Empire, from Roman catacombs to a small house-church at the Eastern border of the Pax Romana (Dura Europos, Syria). The extant scenes are dated back to different periods and belong to the different cultural milieu. The iconographic ambiguity of the procession scene from the Exodus Chapel triggered an intense scholar discussion and gave way to multiple interpretations. Still, the meaning of the episode and the reasons for its inclusion into the pictorial ensemble concept is not quite clear. The study aims to fill these particular gaps in the previous works. The semiotic and contextual analysis allows examining the scene in its relationship with juxtaposed compositions, to compare its iconographic features with descriptions of contemporary religious practices, and clarify the function of the image in the iconographic program of the Chapel of Exodus.
文摘This paper proposes a fermionic linear optical scheme for the teleportation and entanglement concentration via entanglement swapping based on charge detection. It also proves that this method is useful in generating entangled states such as GHZ states, W states, and cluster states by using fermionic polarizing beam splitters and single spin rotations assisted by a parity check on the fermionic qubits. This scheme is nearly deterministic (i.e., with 100% successful probability) and does not need the joint Bell state measurement required in the previous schemes.
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
基金National Key Research and Development Program of China(2022YFB4600902)Shandong Provincial Science Foundation for Outstanding Young Scholars(ZR2024YQ020)。
文摘Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties.
基金Funded by the National Nature Science Foundation of China(No.52078321)。
文摘Calcium carboaluminate was successfully prepared by a simple and efficient one-step method,and the effects of temperature,time,raw material ratio,carbonate type and heavy CaCO_(3)particle size on the products were investigated in detail.The results show that increasing the temperature and extending the reaction time can enhance the yield and crystallisation degree of calcium carboaluminate.The proportion of Ca(OH)_(2),Al(OH)_(3)and CaCO_(3)is a pivotal factor in the synthesis of calcium carboaluminate.When the ratio of Ca(OH)_(2),Al(OH)_(3)and CaCO_(3)is 3:2:1,the diffraction peaks of calcium carboaluminate in the products are relatively sharp and strong.Furthermore,the purity and crystallinity of the synthesized calcium carboaluminate are higher when heavy CaCO_(3)with the particle size of 120 mesh is used as the carbonate raw material,in comparison to CO_(2),Na_(2)CO_(3)and light CaCO_(3).As results,a simple and efficient method for the synthesis of calcium carboaluminate is proposed,which will provide a solid experimental foundation and technical support for the industrial application of calcium carboaluminate in marine concrete.
文摘The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function.
基金Funded by the National Natural Science Foundation of China(No.52278446)。
文摘To explore the best preparation process for terminal blend(TB)composite-modified asphalt and to filter its formulation with excellent performance,this study evaluates the performance of TB composite modified asphalt by physical property index,microscopic morphology,rheological testing,and infrared spectroscopy on multiple scales.The results show that the best preparation process for TB-modified asphalt is stirring at 260℃ for 4 h at 400 rpm,which significantly reduces the modification time of the asphalt.From a physical property viewpoint,the TB composite-modified asphalt sample with 5% styrene-butadiene-styrene(SBS)+1% aromatics+0.1% sulfur exhibits high-comprehensive,high-and low-temperature properties.More-over,its crosslinked mesh structure comprises black rubber particles uniformly interwoven in the middle,which further enhances the performance of the asphalt and results in an excellent performance formulation.In addition,the sample with 5%SBS content has a higher G*value and smaller δ value than that with 3%SBS content,indicating that its high-temperature resistance is improved.The effect of adding 3%SBS content on the viscoelastic ratio is,to some extent,less than that caused by 20% rubber powder.
基金supported by the following foundations:“Stichting Oogfonds Nederland(No.2023-26)”the“Landelijke Stichting voor Blinden en Slechtzienden(No.2023-24)”that contributed through UitZicht,ZonMw grant(No.435005020)a grant of the Chinese Scholarship Council(No.201809110169)(to TGMFG,CPMR,and WY).
文摘Unwarranted death of neurons is a major cause of neurodegenerative diseases.Since mature neurons are postmitotic and do not replicate,their death usually constitutes an irreversible step in pathology.A logical strategy to prevent neurodegeneration would then be to save all neurons that are still alive,i.e.protecting the ones that are still healthy as well as trying to rescue the ones that are damaged and in the process of dying.Regarding the latter,recent experiments have indicated that the possibility of reversing the cell death process and rescuing dying cells is more significant than previously anticipated.In many situations,the elimination of the cell death trigger alone enables dying cells to spontaneously repair their damage,recover,and survive.In this review,we explore the factors,which determine the fate of neurons engaged in the cell death process.A deeper insight into cell death mechanisms and the intrinsic capacity of cells to recover could pave the way for novel therapeutic approaches to neurodegenerative diseases.
基金the Strategic Research Plan of the Centre for Marine Technology and Ocean Engineering(CENTEC),which is financed by the Portuguese Foundation for Science and Technology(Fundação para a Ciência e a Tecnologia FCT)under contract UIDB/UIDP/00134/2020.
文摘This study examines the methods to plan the development of offshore oilfields over the years,which are used to support the decision-making on the development of offshore oilfields.About 100 papers are analysed and categorised into different groups of main early-stage decisions.The present study stands in contrast to the contributions of the operations research and system engineering review articles,on the one hand,and the petroleum engineering review articles,on the other.This is because it does not focus on one methodological approach,nor does it limit the literature analysis by offshore oilfield characteristics.Consequently,the present analysis may offer valuable insights,for instance,by identifying environmental planning decisions as a recent yet highly significant concern that is currently being imposed on decision-making process.Thus,it is evident that the incorporation of safety criteria within the technical-economic decision-making process for the design of production systems would be a crucial requirement at development phase.
基金supported by the National Natural Science Foundation of China(Grant No.42130312)。
文摘The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer rise earthquakes have been observed along the Sunda arc,following the estimated rupture area of the 2005 M_(W)8.6 Nias earthquakes.Here,we used kinematic waveform inversion(KIWI)to obtain the source parameters of the 14 May 2021 M_(W)6.6 event off the west coast of northern Sumatra and to define the fault plane that triggered this outer rise event.The KIWI algorithm allows two types of seismic source to be configured:the moment tensor model to describe the type of shear with six moment tensor components and the Eikonal model for the rupture of pure double-couple sources.This method was chosen for its flexibility to be applied for different sources of seismicity and also for the automated full-moment tensor solution with real-time monitoring.We used full waveform traces from 8 broadband seismic stations within 1000 km epicentral distances sourced from the Incorporated Research Institutions for Seismology(IRIS-IDA)and Geofon GFZ seismic record databases.The initial origin time and hypocenter values are obtained from the IRIS-IDA.The synthetic seismograms used in the inversion process are based on the existing regional green function database model and were accessed from the KIWI Tools Green's Function Database.The obtained scalar seismic moment value is 1.18×10^(19)N·m,equivalent to a moment magnitude M_(W)6.6.The source parameters are 140°,44°,and−99°for the strike,dip,and rake values at a centroid depth of 10.2 km,indicating that this event is a normal fault earthquake that occurred in the outer rise area.The outer rise events with normal faults typically occur at the shallow part of the plate,with nodal-plane dips predominantly in the range of 30°-60°on the weak oceanic lithosphere due to hydrothermal alteration.The stress regime around the plate subduction zone varies both temporally and spatially due to the cyclic influences of megathrust earthquakes.Tensional outer rise earthquakes tend to occur after the megathrust events.The relative timing of these events is not known due to the viscous relaxation of the down going slab and poroelastic response in the trench slope region.The occurrence of the 14 May 2021 earthquake shows the seismicity in the outer rise region in the strongly coupled Sunda arc subduction zone due to elastic bending stress within the duration of the seismic cycle.
基金financial support of the National Natural Science Foundation of China(No.52371103)the Fundamental Research Funds for the Central Universities,China(No.2242023K40028)+1 种基金the Open Research Fund of Jiangsu Key Laboratory for Advanced Metallic Materials,China(No.AMM2023B01).financial support of the Research Fund of Shihezi Key Laboratory of AluminumBased Advanced Materials,China(No.2023PT02)financial support of Guangdong Province Science and Technology Major Project,China(No.2021B0301030005)。
文摘Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%.
文摘Neurodevelopmental processes represent a finely tuned interplay between genetic and environmental factors,shaping the dynamic landscape of the developing brain.A major component of the developing brain that enables this dynamic is the white matter(WM),known to be affected in neurodevelopmental disorders(NDDs)(Rokach et al.,2024).WM formation is mediated by myelination,a multifactorial process driven by neuro-glia interactions dependent on proper neuronal functionality(Simons and Trajkovic,2006).Another key aspect of neurodevelopmental abnormalities involves neuronal dynamics and function,with recent advances significantly enhancing our understanding of both neuronal and glial mitochondrial function(Devine and Kittler,2018;Rojas-Charry et al.,2021).Energy homeostasis in neurons,attributed largely to mitochondrial function,is critical for proper functionality and interactions with oligodendrocytes(OLs),the cells forming myelin in the brain’s WM.We herein discuss the interplay between these processes and speculate on potential dysfunction in NDDs.
文摘In the article titled“Inhibiting SHP2 reduces glycolysis,promotes microglial M1 polarization,and alleviates secondary inflammation following spinal cord injury in a mouse model,”published in Neural Regeneration Research(Ding et al.,2025),the title was incorrectly presented due to an error during the language polishing process.
基金supported by the General Program of the National Natural Science Foundation of China(No.52274326)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202109)the Seventh Batch of Ten Thousand Talents Plan of China(No.ZX20220553).
文摘Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.
基金financially supported by the National Natural Science Foundation of China(Nos.51602018 and 51902018)the Natural Science Foundation of Beijing Municipality(No.2154052)+3 种基金the China Postdoctoral Science Foundation(No.2014M560044)the Fundamental Research Funds for the Central Universities(No.FRF-MP-20-22)USTB Research Center for International People-to-people Exchange in Science,Technology and Civilization(No.2022KFYB007)Education and Teaching Reform Foundation at University of Science and Technology Beijing(Nos.2023JGC027,KC2022QYW06,and KC2022TS09)。
文摘S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.
基金funded by CONAHCYT grant(252808)to GFCONAHCYT’s“Estancias Posdoctorales por México”program(662350)to HTB。
文摘Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a wide range of factors, spanning from genetic to environmental factors, and even includes the gut microbiome(GM)(Mayer et al., 2022). All these processes coincide at some point in the inflammatory process, oxidative stress, and apoptosis, at different degrees in various organs and systems that constitute a living organism(Mayer et al., 2022;AguilarHernández et al., 2023).
基金Technology Development Program of Jilin Province(YDZJ202201ZYTS640)the National Key Research and Development Program of China(2022YFB4200400)funded by MOST+4 种基金the National Natural Science Foundation of China(52172048 and 52103221)Shandong Provincial Natural Science Foundation(ZR2021QB024 and ZR2021ZD06)Guangdong Basic and Applied Basic Research Foundation(2023A1515012323,2023A1515010943,and 2024A1515010023)the Qingdao New Energy Shandong Laboratory open Project(QNESL OP 202309)the Fundamental Research Funds of Shandong University.
文摘Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs.
基金supported by the National Natural Science Foundation of China(51767017)the Basic Research Innovation Group Project of Gansu Province(18JR3RA133)the Industrial Support and Guidance Project of Universities in Gansu Province(2022CYZC-22).
文摘Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.