In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers a...In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users.Therefore,monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance,which in turn ensures public transportation safety.Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions.Advanced technologies can be employed for the collection and analysis of such data,including various intrusive sensing techniques,image processing techniques,and machine learning methods.This review summarizes the state-ofthe-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches.展开更多
Phosphatidylserine(PS)is the part of cell structure in the body and has many beneficial functions especially in brain-related aging diseases.Although daily foods can provide PS to human body,the amount is very limited...Phosphatidylserine(PS)is the part of cell structure in the body and has many beneficial functions especially in brain-related aging diseases.Although daily foods can provide PS to human body,the amount is very limited due to its poverty in most foods.To overcome the issue,numerous studies based on PS have been reported to develop PS-related supplements.In this review,PS was comprehensively and critically reviewed from the view of resources,functions,processing techniques,patents,and prospects.For resources,animal,plant,and microorganism origins were all covered with their differences in composition profiles.For functions,benefits regarding memory,cognitive enhancement,exercise performance,reducing Alzheimer’s disease,and attention-deficit hyperactivity disorder symptoms were covered as well as the functional differences among animal-,plant-,and microorganism-based PS-related supplements.For processing techniques,traditional extracting methods from animal,plant,and microorganism tissues were comparatively discussed with enzymatic synthesis based on different reaction systems.Finally,patents of PS-related supplements were evaluated as well as their applications.This review could provide scientific and valuable support for PS industry.展开更多
The rapid developing of the fourth generation(4G)wireless communications has aroused tremendous demands for high speed data transmission due to the dissemination of various types of the intelligent user terminals as w...The rapid developing of the fourth generation(4G)wireless communications has aroused tremendous demands for high speed data transmission due to the dissemination of various types of the intelligent user terminals as well as the wireless multi-media services.It is predicted that the network throughput will increase展开更多
Low-voltage direct current(DC)microgrids have recently emerged as a promising and viable alternative to traditional alternating cur-rent(AC)microgrids,offering numerous advantages.Consequently,researchers are explorin...Low-voltage direct current(DC)microgrids have recently emerged as a promising and viable alternative to traditional alternating cur-rent(AC)microgrids,offering numerous advantages.Consequently,researchers are exploring the potential of DC microgrids across var-ious configurations.However,despite the sustainability and accuracy offered by DC microgrids,they pose various challenges when integrated into modern power distribution systems.Among these challenges,fault diagnosis holds significant importance.Rapid fault detection in DC microgrids is essential to maintain stability and ensure an uninterrupted power supply to critical loads.A primary chal-lenge is the lack of standards and guidelines for the protection and safety of DC microgrids,including fault detection,location,and clear-ing procedures for both grid-connected and islanded modes.In response,this study presents a brief overview of various approaches for protecting DC microgrids.展开更多
Leafy vegetables comprises of the majority of food intake around the world.A nuanced understanding of their phytonutrients,bioavailability and post-harvest processing will aid in understanding their utility in human h...Leafy vegetables comprises of the majority of food intake around the world.A nuanced understanding of their phytonutrients,bioavailability and post-harvest processing will aid in understanding their utility in human health better.Plant foods have a variety of dietary phytonutrients beneficial to us.With a lot of diversity in the variety of these leafy vegetables,it is of utmost importance as consumers to understand their benefits,functional properties,post processing changes that occurs until it reaches us.Some of the most popular green leafy vegetables include spinach,cabbage,lettuce and mustard greens.In this review,we provide a summary of the phytonutrients in such leafy greens with a detailed description of its bioavailability of nutrients,role of bio fortification,changes during harvest and post-harvest processing.As a low calorie food item,green leafy vegetables are ideal candidates to add valuable nutrients into our daily diets,and spinach especially is known to have multiple therapeutic implications in human health.Post-harvest processing may include addition of nutrients,increasing bio availability of important constituents,assessing effect of fertilizers and growth promoting factors on their nutrient content.All of these parameters need to be studied in depth to improve their beneficial effect in human nutrition and diet.展开更多
Power converters are essential components in modern life,being widely used in industry,automation,transportation,and household appliances.In many critical applications,their failure can lead not only to financial loss...Power converters are essential components in modern life,being widely used in industry,automation,transportation,and household appliances.In many critical applications,their failure can lead not only to financial losses due to operational downtime but also to serious risks to human safety.The capacitors forming the output filter,typically aluminumelectrolytic capacitors(AECs),are among the most critical and susceptible components in power converters.The electrolyte in AECs often evaporates over time,causing the internal resistance to rise and the capacitance to drop,ultimately leading to component failure.Detecting this fault requires measuring the current in the capacitor,rendering the method invasive and frequently impractical due to spatial constraints or operational limitations imposed by the integration of a current sensor in the capacitor branch.This article proposes the implementation of an online noninvasive fault diagnosis technique for estimating the Equivalent Series Resistance(ESR)and Capacitance(C)values of the capacitor,employing a combination of signal processing techniques(SPT)and machine learning(ML)algorithms.This solution relies solely on the converter’s input and output signals,therefore making it a non-invasive approach.The ML algorithm used was linear regression,applied to 27 attributes,21 of which were generated through feature engineering to enhance the model’s performance.The proposed solution demonstrates an R^(2) score greater than 0.99 in the estimation of both ESR and C.展开更多
Short process forming techniques for brazing and soldering materials can shorten the process,improve product quality,and increase production efficiency,which has received much attention from welding researchers.This r...Short process forming techniques for brazing and soldering materials can shorten the process,improve product quality,and increase production efficiency,which has received much attention from welding researchers.This review mainly summarized the research reports on short process forming techniques for brazing and soldering materials.Firstly,the traditional process and its shortcomings were presented.Secondly,the latest research of short process forming technologies,such as continuous casting technique,atomization powder technique,solder ball forming technique,and rapid solidification technique,was summarized,and the traditional forming performance of several brazing and soldering materials was introduced.Finally,the current restrictions and research trends of short process forming technique for brazing and solder materials were put forward,providing theoretical guidance and reference for related research and technique development in brazing and soldering field.展开更多
As a pathfinder of the SiTian project,the Mini-SiTian(MST)Array,employed three commercial CMOS cameras,represents a next-generation,cost-effective optical time-domain survey project.This paper focuses primarily on the...As a pathfinder of the SiTian project,the Mini-SiTian(MST)Array,employed three commercial CMOS cameras,represents a next-generation,cost-effective optical time-domain survey project.This paper focuses primarily on the precise data processing pipeline designed for wide-field,CMOS-based devices,including the removal of instrumental effects,astrometry,photometry,and flux calibration.When applying this pipeline to approximately3000 observations taken in the Field 02(f02)region by MST,the results demonstrate a remarkable astrometric precision of approximately 70–80 mas(about 0.1 pixel),an impressive calibration accuracy of approximately1 mmag in the MST zero points,and a photometric accuracy of about 4 mmag for bright stars.Our studies demonstrate that MST CMOS can achieve photometric accuracy comparable to that of CCDs,highlighting the feasibility of large-scale CMOS-based optical time-domain surveys and their potential applications for cost optimization in future large-scale time-domain surveys,like the SiTian project.展开更多
This paper provides a comprehensive introduction to the mini-Si Tian Real-time Image Processing pipeline(STRIP)and evaluates its operational performance.The STRIP pipeline is specifically designed for real-time alert ...This paper provides a comprehensive introduction to the mini-Si Tian Real-time Image Processing pipeline(STRIP)and evaluates its operational performance.The STRIP pipeline is specifically designed for real-time alert triggering and light curve generation for transient sources.By applying the STRIP pipeline to both simulated and real observational data of the Mini-Si Tian survey,it successfully identified various types of variable sources,including stellar flares,supernovae,variable stars,and asteroids,while meeting requirements of reduction speed within 5 minutes.For the real observational data set,the pipeline detected one flare event,127 variable stars,and14 asteroids from three monitored sky regions.Additionally,two data sets were generated:one,a real-bogus training data set comprising 218,818 training samples,and the other,a variable star light curve data set with 421instances.These data sets will be used to train machine learning algorithms,which are planned for future integration into STRIP.展开更多
This paper relates to the fabrication of aluminium matrix composites with various amounts of Al 2O 3 fiber and SiC whiskers by rheocasting, powder metallurgy process and liquid metal infiltration process. To analy...This paper relates to the fabrication of aluminium matrix composites with various amounts of Al 2O 3 fiber and SiC whiskers by rheocasting, powder metallurgy process and liquid metal infiltration process. To analyze wetting characteristics, the cross sections of composites are examined by scanning electron microscopy(SEM). The bending tests and microhardness tests are performed to evaluate mechanical properties of composites. The results show that the composites produced by liquid metal infiltration give better properties than those produced by rheocasting or powder metallurgy process, primarily due to the decrease of porosity and reinforcement cluster. For liquid metal infiltration composites, a good adhesion between the fiber and matrix is found. Three points bending test results show that there is an increase in flexural modulus with reinforcement contents. In addition, a series of microhardness tests are conducted to determine the effect of heat treatment on the mechanical property of Al 2O 3/Al composites.展开更多
The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear...The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear,pose significant challenges to the reliability and performance of communication systems.This review paper navigates the landscape of antenna defect detection,emphasizing the need for a nuanced understanding of various defect types and the associated challenges in visual detection.This review paper serves as a valuable resource for researchers,engineers,and practitioners engaged in the design and maintenance of communication systems.The insights presented here pave the way for enhanced reliability in antenna systems through targeted defect detection measures.In this study,a comprehensive literature analysis on computer vision algorithms that are employed in end-of-line visual inspection of antenna parts is presented.The PRISMA principles will be followed throughout the review,and its goals are to provide a summary of recent research,identify relevant computer vision techniques,and evaluate how effective these techniques are in discovering defects during inspections.It contains articles from scholarly journals as well as papers presented at conferences up until June 2023.This research utilized search phrases that were relevant,and papers were chosen based on whether or not they met certain inclusion and exclusion criteria.In this study,several different computer vision approaches,such as feature extraction and defect classification,are broken down and analyzed.Additionally,their applicability and performance are discussed.The review highlights the significance of utilizing a wide variety of datasets and measurement criteria.The findings of this study add to the existing body of knowledge and point researchers in the direction of promising new areas of investigation,such as real-time inspection systems and multispectral imaging.This review,on its whole,offers a complete study of computer vision approaches for quality control in antenna parts.It does so by providing helpful insights and drawing attention to areas that require additional exploration.展开更多
[Objectives]To compare the effects of traditional processing and fresh processing on the quality of Polygonatum odoratum decoction piece.[Methods]The effects of fresh processing and traditional processing on the quali...[Objectives]To compare the effects of traditional processing and fresh processing on the quality of Polygonatum odoratum decoction piece.[Methods]The effects of fresh processing and traditional processing on the quality of P.odoratum decoction piece were compared and analyzed with appearance characteristics,total ash content,extract content,total polysaccharides content,and total flavonoids content as the evaluation indexes.[Results]Fresh processing method in different production areas has different effects on P.odoratum decoction piece.P.odoratum was dried in oven of 50℃.When moisture content was 41.44%-59.67%,it was cut.After complete drying at 50℃,the moisture content of dried P.odoratum was 8.94%-9.60%,and ethanol-soluble extract content was 77.29%-78.20%,and water-soluble extract was 77.7%-78.14%.At this time,the appearance characteristics of section of P.odoratum decoction piece were better than that of traditional processing,which was yellowish white.The total polysaccharide content was higher than that of traditional processing,and the content of total flavonoids was statistically significant different from that of traditional processing.[Conclusions]The quality of P.odoratum decoction piece by fresh processing is better than that of the traditional processing,and it is feasible to use fresh processing.展开更多
Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometri...Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometric observations,outliers may exist in the obtained light curves due to various reasons.Therefore,preprocessing is required to remove these outliers to obtain high quality light curves.Through statistical analysis,the reasons leading to outliers can be categorized into two main types:first,the brightness of the object significantly increases due to the passage of a star nearby,referred to as“stellar contamination,”and second,the brightness markedly decreases due to cloudy cover,referred to as“cloudy contamination.”The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive.However,we propose the utilization of machine learning methods as a substitute.Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination,achieving F1 scores of 1.00 and 0.98 on a test set,respectively.We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine,then conduct comparative analyses of the results.展开更多
Mg alloys with a combination of high strength and excellent ductility are increasingly required for structural applications.This study investigates the influence of advanced processing techniques on the mechanical pro...Mg alloys with a combination of high strength and excellent ductility are increasingly required for structural applications.This study investigates the influence of advanced processing techniques on the mechanical properties and microstructural evolution of Mg-Gd-Y-Zn-Zr alloys.Utilizing a combination of double extrusion and stepwise hot rolling followed by aging treatments,significant enhancements in the mechanical performance of these alloys are demonstrated.The processing techniques applied lead to notable refinement in grain-size and modifications in the microstructure,including the transformation of LPSO phases from 18R to 24R and the dispersion of β phase particles.These microstructural transformations contribute to a substantial increase in yield-strength,ultimate-tensile-strength,and ductility.Furthermore,findings reveal that these improvements are also supported by alterations in material texture,which influence dislocation dynamics as indicated by changes in Kernel Average Misorientation(KAM)values.The combined effect of grain boundary(GB)strengthening,phase distribution,and texture modification elucidates the observed mechanical enhancements.This research provides valuable insights into the design and optimization of Mg-Gd-Y-Zn-Zr alloys for critical applications in aerospace and automotive industries where high strength and ductility are paramount.展开更多
[Objective] The aim was to compare the effects of three-phase technique, quality and aromatic-flavor improvement technique and Zimbabwe technique on to-bacco quality to select a suitable technique in tobacco productio...[Objective] The aim was to compare the effects of three-phase technique, quality and aromatic-flavor improvement technique and Zimbabwe technique on to-bacco quality to select a suitable technique in tobacco production. [Method] Tobacco leaves in down, middle and upper parts of a tobacco variety KRK26 were col ected to analyze raw tobacco quality characters. [Result] With quality and aromatic-flavor improvement technique, the proportions of high-quality and middle/high quality tobac-cos improved by 4.68% and 1.97% and average price enhanced by 1.15 yuan/kg, increasing by 10.33%, 9.07% and 3.12 yuan/kg, compared with three-phase tech-nique. It is proved that the technique would better improve tobacco fragrance and quality and coordinate tobacco fragrance, taste and throat-irritation. [Conclusion] Quality and aromatic-flavor improvement technique provides references for tobacco production.展开更多
Based on the dual source cumulative rotation technique in the time-domain proposed by Zeng and MacBeth(1993),a new algebraic processing technique for extracting shear-wave splitting parameters from multi-component V...Based on the dual source cumulative rotation technique in the time-domain proposed by Zeng and MacBeth(1993),a new algebraic processing technique for extracting shear-wave splitting parameters from multi-component VSP data in frequency-dependent medium has been developed.By using this dual source cumulative rotation technique in the frequency-domain(DCTF),anisotropic parameters,including polarization direction of the shear-waves and timedelay between the fast and slow shear-waves,can be estimated for each frequency component in the frequency domain.It avoids the possible error which comes from using a narrow-band filter in the current commonly used method.By using synthetic seismograms,the feasibility and validity of the technique was tested and a comparison with the currently used method was also given.The results demonstrate that the shear-wave splitting parameters frequency dependence can be extracted directly from four-component seismic data using the DCTF.In the presence of larger scale fractures,substantial frequency dependence would be found in the seismic frequency range,which implies that dispersion would occur at seismic frequencies.Our study shows that shear-wave anisotropy decreases as frequency increases.展开更多
This study was conducted to investigate the recipe and process of instant pickle by multiple steps with dry daylily as a raw material, and an orthogonal test was adopted to obtain the optimal recipe and process. The p...This study was conducted to investigate the recipe and process of instant pickle by multiple steps with dry daylily as a raw material, and an orthogonal test was adopted to obtain the optimal recipe and process. The pickling process of the instant flavored daylily was conducted at an optimal crisp-keeping Ca Cl2 concentration at 0.050%, cooking time of 5 min, pickling time of 6 h and a salt concentration of 4%. The effects of various factors on product taste were in order of salt concentrationcooking timepickling timeCa Cl2 concentration.The obtained product has the characteristics of strong fragrance, crisp delicious taste and unique flavor with stomachic effect.展开更多
The in-flight calibration and performance of the Solar Disk Imager(SDI),which is a pivotal instrument of the LyαSolar Telescope onboard the Advanced Space-based Solar Observatory mission,suggested a much lower spatia...The in-flight calibration and performance of the Solar Disk Imager(SDI),which is a pivotal instrument of the LyαSolar Telescope onboard the Advanced Space-based Solar Observatory mission,suggested a much lower spatial resolution than expected.In this paper,we developed the SDI point-spread function(PSF)and Image Bivariate Optimization Algorithm(SPIBOA)to improve the quality of SDI images.The bivariate optimization method smartly combines deep learning with optical system modeling.Despite the lack of information about the real image taken by SDI and the optical system function,this algorithm effectively estimates the PSF of the SDI imaging system directly from a large sample of observational data.We use the estimated PSF to conduct deconvolution correction to observed SDI images,and the resulting images show that the spatial resolution after correction has increased by a factor of more than three with respect to the observed ones.Meanwhile,our method also significantly reduces the inherent noise in the observed SDI images.The SPIBOA has now been successfully integrated into the routine SDI data processing,providing important support for the scientific studies based on the data.The development and application of SPIBOA also paves new ways to identify astronomical telescope systems and enhance observational image quality.Some essential factors and precautions in applying the SPIBOA method are also discussed.展开更多
The China Space Station Telescope(CSST)is a 2 m three-mirror anastigmat equipped with a Fast Steering Mirror(FSM),which is part of its precision image stabilization system.The FSM is used to compensate for residuals f...The China Space Station Telescope(CSST)is a 2 m three-mirror anastigmat equipped with a Fast Steering Mirror(FSM),which is part of its precision image stabilization system.The FSM is used to compensate for residuals from the previous stage of the image stabilization system.However,a new type of image stabilization residual caused by image rotation and projection distortion is introduced when the FSM performs tip-tilt adjustments,reducing both the image stabilization accuracy and the absolute pointing accuracy of the CSST.In this paper,we propose a scheme to compute the image stabilization residuals across the full field of view(FOV)by using a reference star as the target for stabilization control,which can be utilized for subsequent image position correction.To achieve this,we developed a linear optical model for image point displacement by simplifying an existing image point displacement model and incorporating more readily available parameters.The computational accuracy of the new model is equivalent to that of the original,with computational differences of less than 0.03μm.Based on this linear model,we established a calculation model for image stabilization residuals,including those due to image rotation and projection distortion caused by FSM tip-tilt adjustments.This model provides a theoretical foundation for quantifying such residuals during the image stabilization process.Finally,the results of testing using this scheme are provided.Experimental results demonstrate that within the observation FOV of the CSST,when the FSM tilts by(1″,1″),the maximum absolute value of the image stabilization residuals accounts for 20%of the total image stabilization accuracy requirement.This finding underscores the necessity of computing and correcting these residuals to meet performance requirements.展开更多
The Mini-SiTian(MST)project is a pathfinder for China's next-generation large-scale time-domain survey,SiTian,aimed at discovering variable stars,transients,and explosive events.MST generates hundreds of thousands...The Mini-SiTian(MST)project is a pathfinder for China's next-generation large-scale time-domain survey,SiTian,aimed at discovering variable stars,transients,and explosive events.MST generates hundreds of thousands of transient alerts every night,approximately 99%of which are false alarms,posing a significant challenge to its scientific goals.To mitigate the impact of false positives,we propose a deep learning–based solution and systematically evaluate 13 convolutional neural networks.The results show that ResNet achieves exceptional specificity(99.70%),EfficientNet achieves the highest recall rate(98.68%),and DenseNet provides balanced performance with a recall rate of 94.55%and specificity of 98.66%.Leveraging these complementary strengths,we developed a bagging-based ensemble classifier that integrates ResNet18,DenseNet121,and EfficientNet_B0 using a soft voting strategy.This classifier achieved the best AUC value(0.9961)among all models,with a recall rate of95.37%and specificity of 99.25%.It has now been successfully deployed in the MST real-time data processing pipeline.Validation using 5000 practically processed samples with a classification threshold of 0.798 showed that the classifier achieved 88.31%accuracy,91.89%recall rate,and 99.82%specificity,confirming its effectiveness and robustness under real application conditions.展开更多
基金supported by the National Key R&D Program of China(2017YFF0205600)the International Research Cooperation Seed Fund of Beijing University of Technology(2018A08)+1 种基金Science and Technology Project of Beijing Municipal Commission of Transport(2018-kjc-01-213)the Construction of Service Capability of Scientific and Technological Innovation-Municipal Level of Fundamental Research Funds(Scientific Research Categories)of Beijing City(PXM2019_014204_500032).
文摘In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users.Therefore,monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance,which in turn ensures public transportation safety.Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions.Advanced technologies can be employed for the collection and analysis of such data,including various intrusive sensing techniques,image processing techniques,and machine learning methods.This review summarizes the state-ofthe-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches.
基金financially supported by the Innovative Funds Plan of Henan University of Technology(2020ZKCJ10)Cultivation Programme for Young Backbone Teachers in Henan University of Technology.
文摘Phosphatidylserine(PS)is the part of cell structure in the body and has many beneficial functions especially in brain-related aging diseases.Although daily foods can provide PS to human body,the amount is very limited due to its poverty in most foods.To overcome the issue,numerous studies based on PS have been reported to develop PS-related supplements.In this review,PS was comprehensively and critically reviewed from the view of resources,functions,processing techniques,patents,and prospects.For resources,animal,plant,and microorganism origins were all covered with their differences in composition profiles.For functions,benefits regarding memory,cognitive enhancement,exercise performance,reducing Alzheimer’s disease,and attention-deficit hyperactivity disorder symptoms were covered as well as the functional differences among animal-,plant-,and microorganism-based PS-related supplements.For processing techniques,traditional extracting methods from animal,plant,and microorganism tissues were comparatively discussed with enzymatic synthesis based on different reaction systems.Finally,patents of PS-related supplements were evaluated as well as their applications.This review could provide scientific and valuable support for PS industry.
文摘The rapid developing of the fourth generation(4G)wireless communications has aroused tremendous demands for high speed data transmission due to the dissemination of various types of the intelligent user terminals as well as the wireless multi-media services.It is predicted that the network throughput will increase
文摘Low-voltage direct current(DC)microgrids have recently emerged as a promising and viable alternative to traditional alternating cur-rent(AC)microgrids,offering numerous advantages.Consequently,researchers are exploring the potential of DC microgrids across var-ious configurations.However,despite the sustainability and accuracy offered by DC microgrids,they pose various challenges when integrated into modern power distribution systems.Among these challenges,fault diagnosis holds significant importance.Rapid fault detection in DC microgrids is essential to maintain stability and ensure an uninterrupted power supply to critical loads.A primary chal-lenge is the lack of standards and guidelines for the protection and safety of DC microgrids,including fault detection,location,and clear-ing procedures for both grid-connected and islanded modes.In response,this study presents a brief overview of various approaches for protecting DC microgrids.
文摘Leafy vegetables comprises of the majority of food intake around the world.A nuanced understanding of their phytonutrients,bioavailability and post-harvest processing will aid in understanding their utility in human health better.Plant foods have a variety of dietary phytonutrients beneficial to us.With a lot of diversity in the variety of these leafy vegetables,it is of utmost importance as consumers to understand their benefits,functional properties,post processing changes that occurs until it reaches us.Some of the most popular green leafy vegetables include spinach,cabbage,lettuce and mustard greens.In this review,we provide a summary of the phytonutrients in such leafy greens with a detailed description of its bioavailability of nutrients,role of bio fortification,changes during harvest and post-harvest processing.As a low calorie food item,green leafy vegetables are ideal candidates to add valuable nutrients into our daily diets,and spinach especially is known to have multiple therapeutic implications in human health.Post-harvest processing may include addition of nutrients,increasing bio availability of important constituents,assessing effect of fertilizers and growth promoting factors on their nutrient content.All of these parameters need to be studied in depth to improve their beneficial effect in human nutrition and diet.
文摘Power converters are essential components in modern life,being widely used in industry,automation,transportation,and household appliances.In many critical applications,their failure can lead not only to financial losses due to operational downtime but also to serious risks to human safety.The capacitors forming the output filter,typically aluminumelectrolytic capacitors(AECs),are among the most critical and susceptible components in power converters.The electrolyte in AECs often evaporates over time,causing the internal resistance to rise and the capacitance to drop,ultimately leading to component failure.Detecting this fault requires measuring the current in the capacitor,rendering the method invasive and frequently impractical due to spatial constraints or operational limitations imposed by the integration of a current sensor in the capacitor branch.This article proposes the implementation of an online noninvasive fault diagnosis technique for estimating the Equivalent Series Resistance(ESR)and Capacitance(C)values of the capacitor,employing a combination of signal processing techniques(SPT)and machine learning(ML)algorithms.This solution relies solely on the converter’s input and output signals,therefore making it a non-invasive approach.The ML algorithm used was linear regression,applied to 27 attributes,21 of which were generated through feature engineering to enhance the model’s performance.The proposed solution demonstrates an R^(2) score greater than 0.99 in the estimation of both ESR and C.
基金National Key Research and Development Program(2021YFB3401101)。
文摘Short process forming techniques for brazing and soldering materials can shorten the process,improve product quality,and increase production efficiency,which has received much attention from welding researchers.This review mainly summarized the research reports on short process forming techniques for brazing and soldering materials.Firstly,the traditional process and its shortcomings were presented.Secondly,the latest research of short process forming technologies,such as continuous casting technique,atomization powder technique,solder ball forming technique,and rapid solidification technique,was summarized,and the traditional forming performance of several brazing and soldering materials was introduced.Finally,the current restrictions and research trends of short process forming technique for brazing and solder materials were put forward,providing theoretical guidance and reference for related research and technique development in brazing and soldering field.
基金supported by the National Key Basic R&D Program of China via 2023YFA1608303the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0550103)+3 种基金the National Science Foundation of China 12422303,12403024,12222301,12173007,and 12261141690the Postdoctoral Fellowship Program of CPSF under grant Number GZB20240731the Young Data Scientist Project of the National Astronomical Data Center,and the China Post-doctoral Science Foundation No.2023M743447support from the NSFC through grant No.12303039 and No.12261141690.
文摘As a pathfinder of the SiTian project,the Mini-SiTian(MST)Array,employed three commercial CMOS cameras,represents a next-generation,cost-effective optical time-domain survey project.This paper focuses primarily on the precise data processing pipeline designed for wide-field,CMOS-based devices,including the removal of instrumental effects,astrometry,photometry,and flux calibration.When applying this pipeline to approximately3000 observations taken in the Field 02(f02)region by MST,the results demonstrate a remarkable astrometric precision of approximately 70–80 mas(about 0.1 pixel),an impressive calibration accuracy of approximately1 mmag in the MST zero points,and a photometric accuracy of about 4 mmag for bright stars.Our studies demonstrate that MST CMOS can achieve photometric accuracy comparable to that of CCDs,highlighting the feasibility of large-scale CMOS-based optical time-domain surveys and their potential applications for cost optimization in future large-scale time-domain surveys,like the SiTian project.
基金supported from the Strategic Pioneer Program of the Astronomy Large-Scale Scientific FacilityChinese Academy of Sciences and the Science and Education Integration Funding of University of Chinese Academy of Sciences+9 种基金the supports from the National Key Basic R&D Program of China via 2023YFA1608303the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0550103)the supports from the Strategic Priority Research Program of the Chinese Academy of Sciences under grant No.XDB0550000the National Natural Science Foundation of China(NSFC,grant Nos.12422303 and12261141690)the supports from the NSFC(grant No.12403024)supports from the NSFC through grant Nos.11988101 and 11933004the Postdoctoral Fellowship Program of CPSF under grant No.GZB20240731the Young Data Scientist Project of the National Astronomical Data Centerthe China Post-doctoral Science Foundation(No.2023M743447)supports from the New Cornerstone Science Foundation through the New Cornerstone Investigator Program and the XPLORER PRIZE。
文摘This paper provides a comprehensive introduction to the mini-Si Tian Real-time Image Processing pipeline(STRIP)and evaluates its operational performance.The STRIP pipeline is specifically designed for real-time alert triggering and light curve generation for transient sources.By applying the STRIP pipeline to both simulated and real observational data of the Mini-Si Tian survey,it successfully identified various types of variable sources,including stellar flares,supernovae,variable stars,and asteroids,while meeting requirements of reduction speed within 5 minutes.For the real observational data set,the pipeline detected one flare event,127 variable stars,and14 asteroids from three monitored sky regions.Additionally,two data sets were generated:one,a real-bogus training data set comprising 218,818 training samples,and the other,a variable star light curve data set with 421instances.These data sets will be used to train machine learning algorithms,which are planned for future integration into STRIP.
文摘This paper relates to the fabrication of aluminium matrix composites with various amounts of Al 2O 3 fiber and SiC whiskers by rheocasting, powder metallurgy process and liquid metal infiltration process. To analyze wetting characteristics, the cross sections of composites are examined by scanning electron microscopy(SEM). The bending tests and microhardness tests are performed to evaluate mechanical properties of composites. The results show that the composites produced by liquid metal infiltration give better properties than those produced by rheocasting or powder metallurgy process, primarily due to the decrease of porosity and reinforcement cluster. For liquid metal infiltration composites, a good adhesion between the fiber and matrix is found. Three points bending test results show that there is an increase in flexural modulus with reinforcement contents. In addition, a series of microhardness tests are conducted to determine the effect of heat treatment on the mechanical property of Al 2O 3/Al composites.
文摘The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear,pose significant challenges to the reliability and performance of communication systems.This review paper navigates the landscape of antenna defect detection,emphasizing the need for a nuanced understanding of various defect types and the associated challenges in visual detection.This review paper serves as a valuable resource for researchers,engineers,and practitioners engaged in the design and maintenance of communication systems.The insights presented here pave the way for enhanced reliability in antenna systems through targeted defect detection measures.In this study,a comprehensive literature analysis on computer vision algorithms that are employed in end-of-line visual inspection of antenna parts is presented.The PRISMA principles will be followed throughout the review,and its goals are to provide a summary of recent research,identify relevant computer vision techniques,and evaluate how effective these techniques are in discovering defects during inspections.It contains articles from scholarly journals as well as papers presented at conferences up until June 2023.This research utilized search phrases that were relevant,and papers were chosen based on whether or not they met certain inclusion and exclusion criteria.In this study,several different computer vision approaches,such as feature extraction and defect classification,are broken down and analyzed.Additionally,their applicability and performance are discussed.The review highlights the significance of utilizing a wide variety of datasets and measurement criteria.The findings of this study add to the existing body of knowledge and point researchers in the direction of promising new areas of investigation,such as real-time inspection systems and multispectral imaging.This review,on its whole,offers a complete study of computer vision approaches for quality control in antenna parts.It does so by providing helpful insights and drawing attention to areas that require additional exploration.
基金Supported by Guangxi Science and Technology Major Project(GUIKE AA22096020)Central Guidance for Local Scientific and Technological Development Funds(ZY20230102)+2 种基金Guilin City Science Research and Technology Development Plan Project(20220104-4,20210202-1,2020011203-1,2020011203-2)Open Project of Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation(2022KF005)College Students Innovative Entrepreneurial Training Plan Program(202210601015).
文摘[Objectives]To compare the effects of traditional processing and fresh processing on the quality of Polygonatum odoratum decoction piece.[Methods]The effects of fresh processing and traditional processing on the quality of P.odoratum decoction piece were compared and analyzed with appearance characteristics,total ash content,extract content,total polysaccharides content,and total flavonoids content as the evaluation indexes.[Results]Fresh processing method in different production areas has different effects on P.odoratum decoction piece.P.odoratum was dried in oven of 50℃.When moisture content was 41.44%-59.67%,it was cut.After complete drying at 50℃,the moisture content of dried P.odoratum was 8.94%-9.60%,and ethanol-soluble extract content was 77.29%-78.20%,and water-soluble extract was 77.7%-78.14%.At this time,the appearance characteristics of section of P.odoratum decoction piece were better than that of traditional processing,which was yellowish white.The total polysaccharide content was higher than that of traditional processing,and the content of total flavonoids was statistically significant different from that of traditional processing.[Conclusions]The quality of P.odoratum decoction piece by fresh processing is better than that of the traditional processing,and it is feasible to use fresh processing.
基金funded by the National Natural Science Foundation of China(NSFC,Nos.12373086 and 12303082)CAS“Light of West China”Program+2 种基金Yunnan Revitalization Talent Support Program in Yunnan ProvinceNational Key R&D Program of ChinaGravitational Wave Detection Project No.2022YFC2203800。
文摘Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometric observations,outliers may exist in the obtained light curves due to various reasons.Therefore,preprocessing is required to remove these outliers to obtain high quality light curves.Through statistical analysis,the reasons leading to outliers can be categorized into two main types:first,the brightness of the object significantly increases due to the passage of a star nearby,referred to as“stellar contamination,”and second,the brightness markedly decreases due to cloudy cover,referred to as“cloudy contamination.”The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive.However,we propose the utilization of machine learning methods as a substitute.Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination,achieving F1 scores of 1.00 and 0.98 on a test set,respectively.We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine,then conduct comparative analyses of the results.
基金financially supported by the financial supports from the National Natural Science Foundation of China(Grant No.52027805).
文摘Mg alloys with a combination of high strength and excellent ductility are increasingly required for structural applications.This study investigates the influence of advanced processing techniques on the mechanical properties and microstructural evolution of Mg-Gd-Y-Zn-Zr alloys.Utilizing a combination of double extrusion and stepwise hot rolling followed by aging treatments,significant enhancements in the mechanical performance of these alloys are demonstrated.The processing techniques applied lead to notable refinement in grain-size and modifications in the microstructure,including the transformation of LPSO phases from 18R to 24R and the dispersion of β phase particles.These microstructural transformations contribute to a substantial increase in yield-strength,ultimate-tensile-strength,and ductility.Furthermore,findings reveal that these improvements are also supported by alterations in material texture,which influence dislocation dynamics as indicated by changes in Kernel Average Misorientation(KAM)values.The combined effect of grain boundary(GB)strengthening,phase distribution,and texture modification elucidates the observed mechanical enhancements.This research provides valuable insights into the design and optimization of Mg-Gd-Y-Zn-Zr alloys for critical applications in aerospace and automotive industries where high strength and ductility are paramount.
基金Supported by China National Tobacco Corporation General Project[(2012)No.122]Chongqing Branch Company S&T Project of China National Tobacco Corporation(NY20110601070010)~~
文摘[Objective] The aim was to compare the effects of three-phase technique, quality and aromatic-flavor improvement technique and Zimbabwe technique on to-bacco quality to select a suitable technique in tobacco production. [Method] Tobacco leaves in down, middle and upper parts of a tobacco variety KRK26 were col ected to analyze raw tobacco quality characters. [Result] With quality and aromatic-flavor improvement technique, the proportions of high-quality and middle/high quality tobac-cos improved by 4.68% and 1.97% and average price enhanced by 1.15 yuan/kg, increasing by 10.33%, 9.07% and 3.12 yuan/kg, compared with three-phase tech-nique. It is proved that the technique would better improve tobacco fragrance and quality and coordinate tobacco fragrance, taste and throat-irritation. [Conclusion] Quality and aromatic-flavor improvement technique provides references for tobacco production.
基金supported by the National Natural Science Foundation of China (No. 41004055)
文摘Based on the dual source cumulative rotation technique in the time-domain proposed by Zeng and MacBeth(1993),a new algebraic processing technique for extracting shear-wave splitting parameters from multi-component VSP data in frequency-dependent medium has been developed.By using this dual source cumulative rotation technique in the frequency-domain(DCTF),anisotropic parameters,including polarization direction of the shear-waves and timedelay between the fast and slow shear-waves,can be estimated for each frequency component in the frequency domain.It avoids the possible error which comes from using a narrow-band filter in the current commonly used method.By using synthetic seismograms,the feasibility and validity of the technique was tested and a comparison with the currently used method was also given.The results demonstrate that the shear-wave splitting parameters frequency dependence can be extracted directly from four-component seismic data using the DCTF.In the presence of larger scale fractures,substantial frequency dependence would be found in the seismic frequency range,which implies that dispersion would occur at seismic frequencies.Our study shows that shear-wave anisotropy decreases as frequency increases.
基金Supported by the Fund for Independent Innovation of Agricultural Sciences in Jiangsu Province(CX(12)3080)~~
文摘This study was conducted to investigate the recipe and process of instant pickle by multiple steps with dry daylily as a raw material, and an orthogonal test was adopted to obtain the optimal recipe and process. The pickling process of the instant flavored daylily was conducted at an optimal crisp-keeping Ca Cl2 concentration at 0.050%, cooking time of 5 min, pickling time of 6 h and a salt concentration of 4%. The effects of various factors on product taste were in order of salt concentrationcooking timepickling timeCa Cl2 concentration.The obtained product has the characteristics of strong fragrance, crisp delicious taste and unique flavor with stomachic effect.
基金supported by the National Natural Science Foundation of China(NSFC)under grant No.12233012,the Strategic Priority Research Program of the Chinese Academy of Sciences,grant No.XDB0560102the National Key R&D Program of China 2022YFF0503003(2022YFF0503000)。
文摘The in-flight calibration and performance of the Solar Disk Imager(SDI),which is a pivotal instrument of the LyαSolar Telescope onboard the Advanced Space-based Solar Observatory mission,suggested a much lower spatial resolution than expected.In this paper,we developed the SDI point-spread function(PSF)and Image Bivariate Optimization Algorithm(SPIBOA)to improve the quality of SDI images.The bivariate optimization method smartly combines deep learning with optical system modeling.Despite the lack of information about the real image taken by SDI and the optical system function,this algorithm effectively estimates the PSF of the SDI imaging system directly from a large sample of observational data.We use the estimated PSF to conduct deconvolution correction to observed SDI images,and the resulting images show that the spatial resolution after correction has increased by a factor of more than three with respect to the observed ones.Meanwhile,our method also significantly reduces the inherent noise in the observed SDI images.The SPIBOA has now been successfully integrated into the routine SDI data processing,providing important support for the scientific studies based on the data.The development and application of SPIBOA also paves new ways to identify astronomical telescope systems and enhance observational image quality.Some essential factors and precautions in applying the SPIBOA method are also discussed.
基金financially supported by the National Key R&D Program of China(2022YFB3806300)。
文摘The China Space Station Telescope(CSST)is a 2 m three-mirror anastigmat equipped with a Fast Steering Mirror(FSM),which is part of its precision image stabilization system.The FSM is used to compensate for residuals from the previous stage of the image stabilization system.However,a new type of image stabilization residual caused by image rotation and projection distortion is introduced when the FSM performs tip-tilt adjustments,reducing both the image stabilization accuracy and the absolute pointing accuracy of the CSST.In this paper,we propose a scheme to compute the image stabilization residuals across the full field of view(FOV)by using a reference star as the target for stabilization control,which can be utilized for subsequent image position correction.To achieve this,we developed a linear optical model for image point displacement by simplifying an existing image point displacement model and incorporating more readily available parameters.The computational accuracy of the new model is equivalent to that of the original,with computational differences of less than 0.03μm.Based on this linear model,we established a calculation model for image stabilization residuals,including those due to image rotation and projection distortion caused by FSM tip-tilt adjustments.This model provides a theoretical foundation for quantifying such residuals during the image stabilization process.Finally,the results of testing using this scheme are provided.Experimental results demonstrate that within the observation FOV of the CSST,when the FSM tilts by(1″,1″),the maximum absolute value of the image stabilization residuals accounts for 20%of the total image stabilization accuracy requirement.This finding underscores the necessity of computing and correcting these residuals to meet performance requirements.
基金supported by the National Key Basic R&D Program of China via 2023YFA1608303the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0550103)the National Natural Science Foundation of China under grant Nos.12273076,12133001,12422303 and12261141690。
文摘The Mini-SiTian(MST)project is a pathfinder for China's next-generation large-scale time-domain survey,SiTian,aimed at discovering variable stars,transients,and explosive events.MST generates hundreds of thousands of transient alerts every night,approximately 99%of which are false alarms,posing a significant challenge to its scientific goals.To mitigate the impact of false positives,we propose a deep learning–based solution and systematically evaluate 13 convolutional neural networks.The results show that ResNet achieves exceptional specificity(99.70%),EfficientNet achieves the highest recall rate(98.68%),and DenseNet provides balanced performance with a recall rate of 94.55%and specificity of 98.66%.Leveraging these complementary strengths,we developed a bagging-based ensemble classifier that integrates ResNet18,DenseNet121,and EfficientNet_B0 using a soft voting strategy.This classifier achieved the best AUC value(0.9961)among all models,with a recall rate of95.37%and specificity of 99.25%.It has now been successfully deployed in the MST real-time data processing pipeline.Validation using 5000 practically processed samples with a classification threshold of 0.798 showed that the classifier achieved 88.31%accuracy,91.89%recall rate,and 99.82%specificity,confirming its effectiveness and robustness under real application conditions.