Next-generation artificial tactile systems demand seamless integration with neuromorphic architectures to support on-edge computation and high-fidelity sensory signal processing.Despite significant advancements,curren...Next-generation artificial tactile systems demand seamless integration with neuromorphic architectures to support on-edge computation and high-fidelity sensory signal processing.Despite significant advancements,current research remains predominantly focused on optimizing individual sensor elements,and systems utilizing single neuromorphic components encounter inherent limitations in enhancing overall functionality.Here,we present a vertically integrated in-sensor processing platform,which combines a three-dimensional antiferroelectric field-effect transistor(AFEFET)device with an aluminum nitride(AlN)piezoelectric sensor.展开更多
With the widespread application of Internet of Things(IoT)technology,the processing of massive realtime streaming data poses significant challenges to the computational and data-processing capabilities of systems.Alth...With the widespread application of Internet of Things(IoT)technology,the processing of massive realtime streaming data poses significant challenges to the computational and data-processing capabilities of systems.Although distributed streaming data processing frameworks such asApache Flink andApache Spark Streaming provide solutions,meeting stringent response time requirements while ensuring high throughput and resource utilization remains an urgent problem.To address this,the study proposes a formal modeling approach based on Performance Evaluation Process Algebra(PEPA),which abstracts the core components and interactions of cloud-based distributed streaming data processing systems.Additionally,a generic service flow generation algorithmis introduced,enabling the automatic extraction of service flows fromthe PEPAmodel and the computation of key performance metrics,including response time,throughput,and resource utilization.The novelty of this work lies in the integration of PEPA-based formal modeling with the service flow generation algorithm,bridging the gap between formal modeling and practical performance evaluation for IoT systems.Simulation experiments demonstrate that optimizing the execution efficiency of components can significantly improve system performance.For instance,increasing the task execution rate from 10 to 100 improves system performance by 9.53%,while further increasing it to 200 results in a 21.58%improvement.However,diminishing returns are observed when the execution rate reaches 500,with only a 0.42%gain.Similarly,increasing the number of TaskManagers from 10 to 20 improves response time by 18.49%,but the improvement slows to 6.06% when increasing from 20 to 50,highlighting the importance of co-optimizing component efficiency and resource management to achieve substantial performance gains.This study provides a systematic framework for analyzing and optimizing the performance of IoT systems for large-scale real-time streaming data processing.The proposed approach not only identifies performance bottlenecks but also offers insights into improving system efficiency under different configurations and workloads.展开更多
A conventional non-computerized numerical control (CNC) machine is updated by mounting a six degree-of-free (DOF) parallel mechanism on it, thus obtaining a new CNC one. The structure of this CNC milling machine i...A conventional non-computerized numerical control (CNC) machine is updated by mounting a six degree-of-free (DOF) parallel mechanism on it, thus obtaining a new CNC one. The structure of this CNC milling machine is introduced, and the workpiece locating system and the post processing system of the cutter location (CL) data file are analyzed. The new machine has advantages of low costs, simple structure, good rigidity, and high precision. It is easy to be transformed and used to process the workpiece with a complex surface.展开更多
The neutron count rate fluctuation reaches six orders of magnitude between the ohmic plasma scenario and high power of auxiliary heating on an experimental advanced superconducting tokamak(EAST).The measurement result...The neutron count rate fluctuation reaches six orders of magnitude between the ohmic plasma scenario and high power of auxiliary heating on an experimental advanced superconducting tokamak(EAST).The measurement result of neutron flux monitoring(NFM)is a significant feedback parameter related to the acquisition of radiation protection-related information and rapid fluctuations in neutron emission induced by plasma magnetohydrodynamic activity.Therefore,a wide range and high time resolution are required for the NFM system on EAST.To satisfy these requirements,a digital pulse signal acquisition and processing system with a wide dynamic range and fast response time was developed.The present study was conducted using a field-programmable gate array(FPGA)and peripheral component interconnect extension for instrument express(PXIe)platform.The digital dual measurement modes,which are composed of the pulse-counting mode and AC coupled square integral's Campbelling mode,were designed to expand the measurement range of the signal acquisition and processing system.The time resolution of the signal acquisition and processing system was improved from 10 to 1 ms owing to utilizing highspeed analog-to-digital converters(ADCs),a high-speed PXIe communication with a direct memory access(DMA)mode,and online data preprocessing technology of FPGA.The signal acquisition and processing system was tested experimentally in the EAST radiation field.The test results showed that the time resolution of NFM was improved to 1 ms,and the dynamic range of the neutron counts rate was expanded to more than 10^(6) counts per second.The Campbelling mode was calibrated using a multipoint average linear fitting method;subsequently,the fitting coefficient reached 0.9911.Therefore,the newly developed pulse signal acquisition and processing system ensures that the NFM system meets the requirements of high-parameter experiments conducted on EAST more effectively.展开更多
Casting blast can greatly reduce the stripping cost and improve the production capacity of opencast coal mines. Key technologies including high bench blasting, inclined hole, millisecond blasting, pre-splitting blasti...Casting blast can greatly reduce the stripping cost and improve the production capacity of opencast coal mines. Key technologies including high bench blasting, inclined hole, millisecond blasting, pre-splitting blasting and casting blast parameters determination which have influence on the effect of casting blast have been researched with the combination of the ballistic theory and experience in mines. The integrated digital processing system of casting blast was developed in order to simplify the design process of casting blast, improve working efficiency and veracity of design result and comprehensively adopt the software programming method and the theory of casting blast. This system has achieved five functions, namely, the 3D visualization graphics management, the intelligent management of geological information, the intelligent design of casting blast, the analysis and prediction of the blasting effect and the automatic output of the design results. Long-term application in opencast coal mines has shown that research results can not only reduce the specific explosive consumption and improve the blasting effect, but also have high value of popularization and application.展开更多
In order to detect and process underground vibration signal, this paper presents a system with the combination of software and hardware. The hardware part consists of sensor, memory chips, USB, etc. , which is respons...In order to detect and process underground vibration signal, this paper presents a system with the combination of software and hardware. The hardware part consists of sensor, memory chips, USB, etc. , which is responsible for capturing original signals from sensors. The software part is a virtual oscilloscope based on LabWindows/CVI (C vitual instrument), which not only has the functions of traditional oscilloscope but also can analyze and process vibration signals in special ways. The experimental results show that the designed system is stable, reliable and easy to be operated, which can meet practical requirements.展开更多
The Shipboard Meteorological Satellite Receiving-processing System (SMSRPS) is specially developed for the navigation meteorological safeguard of the Antarctic exploration ship over the sea ice area of the forth Ocean...The Shipboard Meteorological Satellite Receiving-processing System (SMSRPS) is specially developed for the navigation meteorological safeguard of the Antarctic exploration ship over the sea ice area of the forth Ocean. This system can suit to the climate environment of very high temperature high moisture and very low temperature - supersaturation; it has a self-protection ability to against the hurricane - force wind over force 12 and the strong vibration during icebreaking, as well as strong magnetic disturbance. It has two sets of receiving-imagery processing systems for polar orbit low-resolution and quasi-stationary high-solution satellites. The key creation Points of this system are as follows: 1. the active gyro-control stabilization platform and a mixed mounting system of three rotating a - B and x -- y axes are used. It solved the tracing difficulties both in the low elevation angle and very high elevation angle of polar-orbit satellite, even in the status of ship moving with continuously changing its poition, direction and ship roll and pitch. 2. Imagery processing subsystem. The newest BORLAND-- DELPHI language and PASCAL language pro gramming software are used under WINDOWS 95 environment. It has a dynamic positioning nested-grid system and electric mapping grid data system. It can show the latitude-longitude of any point on the map, and marks any object such as ship, station or island, and draws the route. It can monitor cloud and temperature, forest fire, anomalous change of ocean and land. It can output satellite cloud maps of 24 bit with very high clarity. This system is very advanced in technique for the whole structure with the features of small volume, light weight and very low cost. It suits to very bad climate and ocean environment. Its imagery process ing system has complete functions with high resolution and being very easy to operate. It is not only suit to land use, but also and specially to all kinds of ship over the sea. It can be extended to domestic and international use. This system played a very important role in the 14th Chinese Antarctic Exploration Navigation, and was introduced a broad attention paid by Chinese newspapers and TV Stations.展开更多
The new type of embedded signal processing system based on the packet switched network is achieved. According to the application field and the-characteristics of signal processing system, the RapidIO protocol is used ...The new type of embedded signal processing system based on the packet switched network is achieved. According to the application field and the-characteristics of signal processing system, the RapidIO protocol is used to solve the high-speed interconnection of multi-digital signal processor (DSP). Based on this protocol, a kind of crossbar switch module which is used to interconnect multi-DSP in the system is introduced. A route strategy, some flow control rules and error control rules, which adapt to different RapidIO network topology are also introduced. Crossbar switch performance is analyzed in detail by the probability module. By researching the technique of crossbar switch and analyzing the system performance, it has a significant meaning for building the general signal processing system.展开更多
A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architectu...A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architecture with positive channel metal oxide semiconductor(PMOS) differential input transistors and sub-threshold technology are applied under the low supply voltage.Simulation results show that this amplifier has significantly low power,while maintaining almost the same gain,bandwidth and other key performances.The power required is only 0.12 mW,which is applicable to low-power and low-voltage real-time signal acquisition and processing system.展开更多
Based on the analysis of concrete requirements and aggregate sources in water conservancy projects, and according to the site conditions in the bidding documents, the sand and gravel processing system in Chuxiong sect...Based on the analysis of concrete requirements and aggregate sources in water conservancy projects, and according to the site conditions in the bidding documents, the sand and gravel processing system in Chuxiong section has selected reasonable equipment, made full use of the site topography, and set different elevations to implement the layout of each workshop, thus reducing the earth and stone excavation, shortening the construction period, saving the investment cost, and making the process, flow, layout and smoothness of the whole project.展开更多
Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process...Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process large amounts of data of spaceborne synthetic aperture radars.It is proposed to use a new method of networked satellite data processing for improving the efficiency of data processing.A multi-satellite distributed SAR real-time processing method based on Chirp Scaling(CS)imaging algorithm is studied in this paper,and a distributed data processing system is built with field programmable gate array(FPGA)chips as the kernel.Different from the traditional CS algorithm processing,the system divides data processing into three stages.The computing tasks are reasonably allocated to different data processing units(i.e.,satellites)in each stage.The method effectively saves computing and storage resources of satellites,improves the utilization rate of a single satellite,and shortens the data processing time.Gaofen-3(GF-3)satellite SAR raw data is processed by the system,with the performance of the method verified.展开更多
Implementation of artificial neural network(ANN)is very important to theoretical studyand applications of ANN.On the basis of studying existing methods,this paper concentrateson the DSP-based virtual implementation of...Implementation of artificial neural network(ANN)is very important to theoretical studyand applications of ANN.On the basis of studying existing methods,this paper concentrateson the DSP-based virtual implementation of ANN.A parallel processing system composed ofTMS320C30 has been designed and configured,which ean provide a peak speed as high as100 MFLOPS and a parallel efficiency of 90%(during the forward phase of BP),and can heused for sonar signal processing.Scalability of the system is also studied.展开更多
In the era of Big Data, typical architecture of distributed real-time stream processing systems is the combination of Flume, Kafka, and Storm. As a kind of distributed message system, Kafka has the characteristics of ...In the era of Big Data, typical architecture of distributed real-time stream processing systems is the combination of Flume, Kafka, and Storm. As a kind of distributed message system, Kafka has the characteristics of horizontal scalability and high throughput, which is manly deployed in many areas in order to address the problem of speed mismatch between message producers and consumers. When using Kafka, we need to quickly receive data sent by producers. In addition, we need to send data to consumers quickly. Therefore, the performance of Kafka is of critical importance to the performance of the whole stream processing system. In this paper, we propose the improved design of real-time stream processing systems, and focus on improving the Kafka's data loading process.We use Kafka cat to transfer data from the source to Kafka topic directly, which can reduce the network transmission. We also utilize the memory file system to accelerate the process of data loading, which can address the bottleneck and performance problems caused by disk I/O. Extensive experiments are conducted to evaluate the performance, which show the superiority of our improved design.展开更多
Research for detecting or obtaining radionuclide by gamma energy spectrum data acquisition and process system is one of the key issues about intelligent measurement of gamma-ray spectrum. For this reason, a software a...Research for detecting or obtaining radionuclide by gamma energy spectrum data acquisition and process system is one of the key issues about intelligent measurement of gamma-ray spectrum. For this reason, a software and hardware implementation schematic design based on ARM ( Advanced RISC Machines) + DSP ( Digital Signal Processor) architecture for gamma energy spectrum data acquisition and processing system is proposed. The paper discusses in detail some key technologies such as communication interface design between microcontroller ARM and digital signal processor DSP,distribution scheduling under multi-task in the ARM-Linux,DSP handling procedures for multi-channel A / D high-speed sample. At the same time,because the traditional Gaussian fitting to determine the boundary of peak is not ideal,it puts forward a weighting factor of Gaussian function least squares fitting realize boundary determined. Finally gamma-spectrum data from sodium iodide NaI( TI) scintillation detector is tested and processed in the new system. The results show that gamma energy spectrum data acquisition and process system is perfect functionality, stable and convergence in unimodal. Compared with data from conventional energy spectrometers,the system can keep better energy resolution in a wide range of pulse pass rate.展开更多
An air classifier is used in the recycling process of covered electric wire in the recycling factories, in which the covered electric wires are crushed, sieved, and classified by the air classifier, which generates wa...An air classifier is used in the recycling process of covered electric wire in the recycling factories, in which the covered electric wires are crushed, sieved, and classified by the air classifier, which generates wastes. In these factories, operators manually adjust the air flow rate while checking the wastes discharged from the separator outlet. However, the adjustments are basically done by trial and error, and it is difficult to do them appropriately. In this study, we tried to develop the image processing system that calculates the ratio of copper (Cu) product and polyvinyl chloride (PVC) in the wastes as a substitute for the operator’s eyes. Six colors of PVC (white, gray, green, blue, black, and red) were used in the present work. An image consists of foreground and background. An image’s regions of interest are objects (Cu particles) in its foreground. However, the particles having a color similar to the background color are buried in the background. Using the difference of two color backgrounds, we separated particles and background without dependent of background. The Otsu’ thresholding was employed to choose the threshold to maximize the degree of separation of the particles and background. The ratio of Cu to PVC pixels from mixed image was calculated by linear discriminant analysis. The error of PVC pixels resulted in zero, whereas the error of Cu pixels arose to 4.19%. Comparing the numbers of Cu and PVC pixels within the contour, the minority of the object were corrected to the majority of the object. The error of Cu pixels discriminated as PVC incorrectly became zero percent through this correction.展开更多
A multi-beam chirp sonar based on IP connections and DSP processing nodes was proposed and designed to provide an expandable system with high-speed processing and mass-storage of real-time signals for multi-beam profi...A multi-beam chirp sonar based on IP connections and DSP processing nodes was proposed and designed to provide an expandable system with high-speed processing and mass-storage of real-time signals for multi-beam profiling sonar.The system was designed for seabed petroleum pipeline detection and orientation,and can receive echo signals and process the data in real time,refreshing the display 10 times per second.Every node of the chirp sonar connects with data processing nodes through TCP/IP. Merely by adding nodes,the system’s processing ability can be increased proportionately without changing the software.System debugging and experimental testing proved the system to be practical and stable.This design provides a new method for high speed active sonar.展开更多
Sonar image processing system is an important intelligent system of Autonomous Un-derwater Vehicle.Based on TMS320C30 high speed DSP,it is used to realize sonar imagecompression and underwater object detections includ...Sonar image processing system is an important intelligent system of Autonomous Un-derwater Vehicle.Based on TMS320C30 high speed DSP,it is used to realize sonar imagecompression and underwater object detections including obstacle recognition in real time.Inthis paper,the software and hardware designs of this system are introduced and the experi-mental results are given.展开更多
A robot flexible processing system of shipbuilding profile steel was developed. The system consists of computer integrated control and robot. An off line programming robot was used for marking and cutting of shipbuil...A robot flexible processing system of shipbuilding profile steel was developed. The system consists of computer integrated control and robot. An off line programming robot was used for marking and cutting of shipbuilding profile steel. In the system the deformation and position error of profile steel can be detected by precise sensors, and figure position coordinate error resulted from profile steel deformation can be compensated by modifying traveling track of robotic arm online. The practical operation results show that the system performance can meet the needs of profile steel processing.展开更多
Based on the analysis results of the dust size distribution of flue gas from Baosteel's short-flow (BSSF) slag processing system and the mechanism of the wet scrubber,a wet scrubber system was designed and installe...Based on the analysis results of the dust size distribution of flue gas from Baosteel's short-flow (BSSF) slag processing system and the mechanism of the wet scrubber,a wet scrubber system was designed and installed in the No. 1 BSSF slag processing system at Baosteel. The results show that the dust removal efficiency of the previous system that had conventional water nozzles was only 69% with a liquid-gas ratio of 0.79 L/m^3 ,while the dust removal efficiency reached 94% when three sets of high-efficiency dual phase spray guns were installed inside both the flue and the chimney. For the latter system,the liquid-gas ratio was 0. 84 L/m^3 ,and the dust concentration in the cleaned emissions reduced to less than 40 mg/m^3.展开更多
This paper analyzes the current difficulties encountered in on-line inspection systems of strip surface quality, specifically relating to problems with real-time processing of huge amounts of data. To address this nee...This paper analyzes the current difficulties encountered in on-line inspection systems of strip surface quality, specifically relating to problems with real-time processing of huge amounts of data. To address this need, this paper describes an FPGA-based high-speed image processing module with both hardware and software aspects. Improving these two aspects together will help the system achieve real-time processing of massive image data, and simplifies the architecture of the strip surface quality on-line inspection system.展开更多
基金supported by the National Research Foundation of Korea(No.2021R1A2C2095322)supported by Grant Nos.RS-2023-00260527,RS-2023-00231985,RS2023-00235655,RS-2024-00406007supported by BK21 FOUR(Connected AI Education&Research Program for Industry and Society Innovation,KAIST EE,No.4120200113769)。
文摘Next-generation artificial tactile systems demand seamless integration with neuromorphic architectures to support on-edge computation and high-fidelity sensory signal processing.Despite significant advancements,current research remains predominantly focused on optimizing individual sensor elements,and systems utilizing single neuromorphic components encounter inherent limitations in enhancing overall functionality.Here,we present a vertically integrated in-sensor processing platform,which combines a three-dimensional antiferroelectric field-effect transistor(AFEFET)device with an aluminum nitride(AlN)piezoelectric sensor.
基金funded by the Joint Project of Industry-University-Research of Jiangsu Province(Grant:BY20231146).
文摘With the widespread application of Internet of Things(IoT)technology,the processing of massive realtime streaming data poses significant challenges to the computational and data-processing capabilities of systems.Although distributed streaming data processing frameworks such asApache Flink andApache Spark Streaming provide solutions,meeting stringent response time requirements while ensuring high throughput and resource utilization remains an urgent problem.To address this,the study proposes a formal modeling approach based on Performance Evaluation Process Algebra(PEPA),which abstracts the core components and interactions of cloud-based distributed streaming data processing systems.Additionally,a generic service flow generation algorithmis introduced,enabling the automatic extraction of service flows fromthe PEPAmodel and the computation of key performance metrics,including response time,throughput,and resource utilization.The novelty of this work lies in the integration of PEPA-based formal modeling with the service flow generation algorithm,bridging the gap between formal modeling and practical performance evaluation for IoT systems.Simulation experiments demonstrate that optimizing the execution efficiency of components can significantly improve system performance.For instance,increasing the task execution rate from 10 to 100 improves system performance by 9.53%,while further increasing it to 200 results in a 21.58%improvement.However,diminishing returns are observed when the execution rate reaches 500,with only a 0.42%gain.Similarly,increasing the number of TaskManagers from 10 to 20 improves response time by 18.49%,but the improvement slows to 6.06% when increasing from 20 to 50,highlighting the importance of co-optimizing component efficiency and resource management to achieve substantial performance gains.This study provides a systematic framework for analyzing and optimizing the performance of IoT systems for large-scale real-time streaming data processing.The proposed approach not only identifies performance bottlenecks but also offers insights into improving system efficiency under different configurations and workloads.
文摘A conventional non-computerized numerical control (CNC) machine is updated by mounting a six degree-of-free (DOF) parallel mechanism on it, thus obtaining a new CNC one. The structure of this CNC milling machine is introduced, and the workpiece locating system and the post processing system of the cutter location (CL) data file are analyzed. The new machine has advantages of low costs, simple structure, good rigidity, and high precision. It is easy to be transformed and used to process the workpiece with a complex surface.
基金supported by the Users with Excellence Program of the Hefei Science Center CAS (No. 2020HSC-UE012)
文摘The neutron count rate fluctuation reaches six orders of magnitude between the ohmic plasma scenario and high power of auxiliary heating on an experimental advanced superconducting tokamak(EAST).The measurement result of neutron flux monitoring(NFM)is a significant feedback parameter related to the acquisition of radiation protection-related information and rapid fluctuations in neutron emission induced by plasma magnetohydrodynamic activity.Therefore,a wide range and high time resolution are required for the NFM system on EAST.To satisfy these requirements,a digital pulse signal acquisition and processing system with a wide dynamic range and fast response time was developed.The present study was conducted using a field-programmable gate array(FPGA)and peripheral component interconnect extension for instrument express(PXIe)platform.The digital dual measurement modes,which are composed of the pulse-counting mode and AC coupled square integral's Campbelling mode,were designed to expand the measurement range of the signal acquisition and processing system.The time resolution of the signal acquisition and processing system was improved from 10 to 1 ms owing to utilizing highspeed analog-to-digital converters(ADCs),a high-speed PXIe communication with a direct memory access(DMA)mode,and online data preprocessing technology of FPGA.The signal acquisition and processing system was tested experimentally in the EAST radiation field.The test results showed that the time resolution of NFM was improved to 1 ms,and the dynamic range of the neutron counts rate was expanded to more than 10^(6) counts per second.The Campbelling mode was calibrated using a multipoint average linear fitting method;subsequently,the fitting coefficient reached 0.9911.Therefore,the newly developed pulse signal acquisition and processing system ensures that the NFM system meets the requirements of high-parameter experiments conducted on EAST more effectively.
基金Project supported by the Fundamental Research Funds for the Central Universities,China
文摘Casting blast can greatly reduce the stripping cost and improve the production capacity of opencast coal mines. Key technologies including high bench blasting, inclined hole, millisecond blasting, pre-splitting blasting and casting blast parameters determination which have influence on the effect of casting blast have been researched with the combination of the ballistic theory and experience in mines. The integrated digital processing system of casting blast was developed in order to simplify the design process of casting blast, improve working efficiency and veracity of design result and comprehensively adopt the software programming method and the theory of casting blast. This system has achieved five functions, namely, the 3D visualization graphics management, the intelligent management of geological information, the intelligent design of casting blast, the analysis and prediction of the blasting effect and the automatic output of the design results. Long-term application in opencast coal mines has shown that research results can not only reduce the specific explosive consumption and improve the blasting effect, but also have high value of popularization and application.
基金National Natural Science Foundation of China(No.61302159,61227003,61301259)Natural Science Foundation of Shanxi Province(No.2012021011-2)The Project Sponsored by Scientific Research for the Returned Overseas Chinese Scholars,Shanxi Province(No.2013-083)
文摘In order to detect and process underground vibration signal, this paper presents a system with the combination of software and hardware. The hardware part consists of sensor, memory chips, USB, etc. , which is responsible for capturing original signals from sensors. The software part is a virtual oscilloscope based on LabWindows/CVI (C vitual instrument), which not only has the functions of traditional oscilloscope but also can analyze and process vibration signals in special ways. The experimental results show that the designed system is stable, reliable and easy to be operated, which can meet practical requirements.
基金the State Oceanic Administration "95" Principal Project "9501" National Antarctic"95" Principal
文摘The Shipboard Meteorological Satellite Receiving-processing System (SMSRPS) is specially developed for the navigation meteorological safeguard of the Antarctic exploration ship over the sea ice area of the forth Ocean. This system can suit to the climate environment of very high temperature high moisture and very low temperature - supersaturation; it has a self-protection ability to against the hurricane - force wind over force 12 and the strong vibration during icebreaking, as well as strong magnetic disturbance. It has two sets of receiving-imagery processing systems for polar orbit low-resolution and quasi-stationary high-solution satellites. The key creation Points of this system are as follows: 1. the active gyro-control stabilization platform and a mixed mounting system of three rotating a - B and x -- y axes are used. It solved the tracing difficulties both in the low elevation angle and very high elevation angle of polar-orbit satellite, even in the status of ship moving with continuously changing its poition, direction and ship roll and pitch. 2. Imagery processing subsystem. The newest BORLAND-- DELPHI language and PASCAL language pro gramming software are used under WINDOWS 95 environment. It has a dynamic positioning nested-grid system and electric mapping grid data system. It can show the latitude-longitude of any point on the map, and marks any object such as ship, station or island, and draws the route. It can monitor cloud and temperature, forest fire, anomalous change of ocean and land. It can output satellite cloud maps of 24 bit with very high clarity. This system is very advanced in technique for the whole structure with the features of small volume, light weight and very low cost. It suits to very bad climate and ocean environment. Its imagery process ing system has complete functions with high resolution and being very easy to operate. It is not only suit to land use, but also and specially to all kinds of ship over the sea. It can be extended to domestic and international use. This system played a very important role in the 14th Chinese Antarctic Exploration Navigation, and was introduced a broad attention paid by Chinese newspapers and TV Stations.
文摘The new type of embedded signal processing system based on the packet switched network is achieved. According to the application field and the-characteristics of signal processing system, the RapidIO protocol is used to solve the high-speed interconnection of multi-digital signal processor (DSP). Based on this protocol, a kind of crossbar switch module which is used to interconnect multi-DSP in the system is introduced. A route strategy, some flow control rules and error control rules, which adapt to different RapidIO network topology are also introduced. Crossbar switch performance is analyzed in detail by the probability module. By researching the technique of crossbar switch and analyzing the system performance, it has a significant meaning for building the general signal processing system.
基金Sponsored by the National Natural Science Foundation of China (60843005)the Basic Research Foundation of Beijing Institute of Technology(20070142018)
文摘A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architecture with positive channel metal oxide semiconductor(PMOS) differential input transistors and sub-threshold technology are applied under the low supply voltage.Simulation results show that this amplifier has significantly low power,while maintaining almost the same gain,bandwidth and other key performances.The power required is only 0.12 mW,which is applicable to low-power and low-voltage real-time signal acquisition and processing system.
文摘Based on the analysis of concrete requirements and aggregate sources in water conservancy projects, and according to the site conditions in the bidding documents, the sand and gravel processing system in Chuxiong section has selected reasonable equipment, made full use of the site topography, and set different elevations to implement the layout of each workshop, thus reducing the earth and stone excavation, shortening the construction period, saving the investment cost, and making the process, flow, layout and smoothness of the whole project.
基金Project(2017YFC1405600)supported by the National Key R&D Program of ChinaProject(18JK05032)supported by the Scientific Research Project of Education Department of Shaanxi Province,China。
文摘Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process large amounts of data of spaceborne synthetic aperture radars.It is proposed to use a new method of networked satellite data processing for improving the efficiency of data processing.A multi-satellite distributed SAR real-time processing method based on Chirp Scaling(CS)imaging algorithm is studied in this paper,and a distributed data processing system is built with field programmable gate array(FPGA)chips as the kernel.Different from the traditional CS algorithm processing,the system divides data processing into three stages.The computing tasks are reasonably allocated to different data processing units(i.e.,satellites)in each stage.The method effectively saves computing and storage resources of satellites,improves the utilization rate of a single satellite,and shortens the data processing time.Gaofen-3(GF-3)satellite SAR raw data is processed by the system,with the performance of the method verified.
文摘Implementation of artificial neural network(ANN)is very important to theoretical studyand applications of ANN.On the basis of studying existing methods,this paper concentrateson the DSP-based virtual implementation of ANN.A parallel processing system composed ofTMS320C30 has been designed and configured,which ean provide a peak speed as high as100 MFLOPS and a parallel efficiency of 90%(during the forward phase of BP),and can heused for sonar signal processing.Scalability of the system is also studied.
基金supported by the Research Fund of National Key Laboratory of Computer Architecture under Grant No.CARCH201501the Open Project Program of the State Key Laboratory of Mathematical Engineering and Advanced Computing under Grant No.2016A09
文摘In the era of Big Data, typical architecture of distributed real-time stream processing systems is the combination of Flume, Kafka, and Storm. As a kind of distributed message system, Kafka has the characteristics of horizontal scalability and high throughput, which is manly deployed in many areas in order to address the problem of speed mismatch between message producers and consumers. When using Kafka, we need to quickly receive data sent by producers. In addition, we need to send data to consumers quickly. Therefore, the performance of Kafka is of critical importance to the performance of the whole stream processing system. In this paper, we propose the improved design of real-time stream processing systems, and focus on improving the Kafka's data loading process.We use Kafka cat to transfer data from the source to Kafka topic directly, which can reduce the network transmission. We also utilize the memory file system to accelerate the process of data loading, which can address the bottleneck and performance problems caused by disk I/O. Extensive experiments are conducted to evaluate the performance, which show the superiority of our improved design.
基金Sponsored by the Natural Science Fundation of Jiangxi Province(Grant No.20114BAB211026 and No.20122BA-B201028)Open Science Fund from Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense,East China Institute of Technology(Grant No.2010RGET11)
文摘Research for detecting or obtaining radionuclide by gamma energy spectrum data acquisition and process system is one of the key issues about intelligent measurement of gamma-ray spectrum. For this reason, a software and hardware implementation schematic design based on ARM ( Advanced RISC Machines) + DSP ( Digital Signal Processor) architecture for gamma energy spectrum data acquisition and processing system is proposed. The paper discusses in detail some key technologies such as communication interface design between microcontroller ARM and digital signal processor DSP,distribution scheduling under multi-task in the ARM-Linux,DSP handling procedures for multi-channel A / D high-speed sample. At the same time,because the traditional Gaussian fitting to determine the boundary of peak is not ideal,it puts forward a weighting factor of Gaussian function least squares fitting realize boundary determined. Finally gamma-spectrum data from sodium iodide NaI( TI) scintillation detector is tested and processed in the new system. The results show that gamma energy spectrum data acquisition and process system is perfect functionality, stable and convergence in unimodal. Compared with data from conventional energy spectrometers,the system can keep better energy resolution in a wide range of pulse pass rate.
文摘An air classifier is used in the recycling process of covered electric wire in the recycling factories, in which the covered electric wires are crushed, sieved, and classified by the air classifier, which generates wastes. In these factories, operators manually adjust the air flow rate while checking the wastes discharged from the separator outlet. However, the adjustments are basically done by trial and error, and it is difficult to do them appropriately. In this study, we tried to develop the image processing system that calculates the ratio of copper (Cu) product and polyvinyl chloride (PVC) in the wastes as a substitute for the operator’s eyes. Six colors of PVC (white, gray, green, blue, black, and red) were used in the present work. An image consists of foreground and background. An image’s regions of interest are objects (Cu particles) in its foreground. However, the particles having a color similar to the background color are buried in the background. Using the difference of two color backgrounds, we separated particles and background without dependent of background. The Otsu’ thresholding was employed to choose the threshold to maximize the degree of separation of the particles and background. The ratio of Cu to PVC pixels from mixed image was calculated by linear discriminant analysis. The error of PVC pixels resulted in zero, whereas the error of Cu pixels arose to 4.19%. Comparing the numbers of Cu and PVC pixels within the contour, the minority of the object were corrected to the majority of the object. The error of Cu pixels discriminated as PVC incorrectly became zero percent through this correction.
基金the National High Technology Project of China Foundation under Grant No.2002AA602230-1
文摘A multi-beam chirp sonar based on IP connections and DSP processing nodes was proposed and designed to provide an expandable system with high-speed processing and mass-storage of real-time signals for multi-beam profiling sonar.The system was designed for seabed petroleum pipeline detection and orientation,and can receive echo signals and process the data in real time,refreshing the display 10 times per second.Every node of the chirp sonar connects with data processing nodes through TCP/IP. Merely by adding nodes,the system’s processing ability can be increased proportionately without changing the software.System debugging and experimental testing proved the system to be practical and stable.This design provides a new method for high speed active sonar.
基金the High Technology Research and Development Programme of china.
文摘Sonar image processing system is an important intelligent system of Autonomous Un-derwater Vehicle.Based on TMS320C30 high speed DSP,it is used to realize sonar imagecompression and underwater object detections including obstacle recognition in real time.Inthis paper,the software and hardware designs of this system are introduced and the experi-mental results are given.
文摘A robot flexible processing system of shipbuilding profile steel was developed. The system consists of computer integrated control and robot. An off line programming robot was used for marking and cutting of shipbuilding profile steel. In the system the deformation and position error of profile steel can be detected by precise sensors, and figure position coordinate error resulted from profile steel deformation can be compensated by modifying traveling track of robotic arm online. The practical operation results show that the system performance can meet the needs of profile steel processing.
文摘Based on the analysis results of the dust size distribution of flue gas from Baosteel's short-flow (BSSF) slag processing system and the mechanism of the wet scrubber,a wet scrubber system was designed and installed in the No. 1 BSSF slag processing system at Baosteel. The results show that the dust removal efficiency of the previous system that had conventional water nozzles was only 69% with a liquid-gas ratio of 0.79 L/m^3 ,while the dust removal efficiency reached 94% when three sets of high-efficiency dual phase spray guns were installed inside both the flue and the chimney. For the latter system,the liquid-gas ratio was 0. 84 L/m^3 ,and the dust concentration in the cleaned emissions reduced to less than 40 mg/m^3.
文摘This paper analyzes the current difficulties encountered in on-line inspection systems of strip surface quality, specifically relating to problems with real-time processing of huge amounts of data. To address this need, this paper describes an FPGA-based high-speed image processing module with both hardware and software aspects. Improving these two aspects together will help the system achieve real-time processing of massive image data, and simplifies the architecture of the strip surface quality on-line inspection system.