Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening pa...Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%.展开更多
Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network act...Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs.展开更多
In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment techni...In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment technique known as ultrasonic vibration rapid processing(UVRP),which enables the formation of high-density strong magnetic α-Fe clusters,thereby enhancing the soft magnetic properties of Fe_(78)Si(13)B_(9) amorphous alloy ribbon.展开更多
Thin walls of an AZ91 magnesium alloy with fine equiaxed grains were fabricated via cold arc-based wire arc additive manufacturing(CA-WAAM),and the droplet transfer behaviours,microstructures,and mechanical properties...Thin walls of an AZ91 magnesium alloy with fine equiaxed grains were fabricated via cold arc-based wire arc additive manufacturing(CA-WAAM),and the droplet transfer behaviours,microstructures,and mechanical properties were investigated.The results showed that the cold arc process reduced splashing at the moment of liquid bridge breakage and effectively shortened the droplet transfer period.The microstructures of the deposited samples exhibited layered characteristics with alternating distributions of coarse and fine grains.During layer-by-layer deposition,the β-phase precipitated and grew preferentially along grain boundaries,while the fineη-Al_(8)Mn_(5)phase was dispersed in the α-Mg matrix.The mechanical properties of the CA-WAAM deposited sample showed isotropic characteristics.The ultimate tensile strength and elongation in the building direction(BD)were 282.7 MPa and 14.2%,respectively.The microhardness values of the deposited parts were relatively uniform,with an average value of HV 69.6.展开更多
Agricultural Products Processing and Storage (ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature) is an international,pect-review ed open access journal with the a...Agricultural Products Processing and Storage (ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature) is an international,pect-review ed open access journal with the aim to offer a platform for the rapid dissemination of significant,novel,and high-impact research in the fields of agricultural product processing science,technology,engineering,and nutrition.Additio nally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
Ti-10V-2Fe-3Al alloy with fine-grainedβphases was fabricated by friction stir processing with opti-mized processing parameters.The superplastic behavior of the specimens was investigated by tensile deformation at dif...Ti-10V-2Fe-3Al alloy with fine-grainedβphases was fabricated by friction stir processing with opti-mized processing parameters.The superplastic behavior of the specimens was investigated by tensile deformation at different strain rates and temperatures,and an optimal superplastic elongation of 634%was achieved at 700℃ and 3×10^(-4)/s.An annealing treatment at 650℃ for 60 min showed a mi-crostructure withαprecipitates distributed in theβmatrix in the friction stir specimen.Such pre-heat treatment improves the superplasticity of the specimen,achieving an elongation of up to 807%at 750℃ and 3×10^(-4)/s.The influences of tensile temperatures and strain rates on the microstructural evolution,such as grain size variation,grain morphology,and phase transformations,were discussed.The super-plastic deformation behavior of fine-grained Ti-10V-2Fe-3Al alloy is controlled by grain boundary sliding and accompanied by dynamic phase transformation and recrystallization.展开更多
The hot deformation characteristics of induction quenched Zr-Sn-Nb-Fe-Cr alloy forged rod in the temperature range of 600–900°C and strain rate range of 0.001–1 s^(-1)were studied by Gleeble3800 uniaxial hot co...The hot deformation characteristics of induction quenched Zr-Sn-Nb-Fe-Cr alloy forged rod in the temperature range of 600–900°C and strain rate range of 0.001–1 s^(-1)were studied by Gleeble3800 uniaxial hot compression experiment.The results show that the flow stress decreases with the decrease in strain rate and the increase in deformation temperature in the true stress-true strain curve of Zr-Sn-Nb-Fe-Cr alloy forged rod.Moreover,the hot deformation characteristics of the material can be described by the hyperbolic sine constitutive equation.Under the experimental conditions,the average thermal activation energy(Q)of the alloy was 412.9105 kJ/mol.The microstructure analysis of the processing map and the sample after hot compression shows that the optimum hot working parameters of the alloy are 795–900°C,0.001–0.0068 s^(-1),at the deformation temperature of 600–900°C,and the strain rate of 0.001–1 s^(-1).展开更多
Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
Using a Gleeble 3500 thermomechanical simulation testing machine,the hot deformation characteristics of 23Cr-8Ni steel were investigated under the conditions of 1000–1250℃ and 0.001‒10 s^(−1).Furthermore,the microst...Using a Gleeble 3500 thermomechanical simulation testing machine,the hot deformation characteristics of 23Cr-8Ni steel were investigated under the conditions of 1000–1250℃ and 0.001‒10 s^(−1).Furthermore,the microstructure of the characterization region was analyzed to investigate the recrystallization behavior of 23Cr-8Ni steel.Results show that as the strain rate decreases and the deformation temperature increases,the flow stress decreases.Because the softening phenomenon occurs after the peak stress,the flow stress decreases.The stress index(n)is 4.28,and the thermal deformation activation energy(Q)is 588878 J/mol.Processing map is established,and an optimal thermal processing range of 0.001–0.1 s^(−1) and 1000–1200℃ is achieved,therefore greatly promoting the yield rate.展开更多
This critical review looks at the assessment of the application of artificial intelligence in handling legal documents with specific reference to medical negligence cases with a view of identifying its transformative ...This critical review looks at the assessment of the application of artificial intelligence in handling legal documents with specific reference to medical negligence cases with a view of identifying its transformative potentialities, issues and ethical concerns. The review consolidates findings that show the impact of AI in improving the efficiency, accuracy and justice delivery in the legal profession. The studies show increased efficiency in speed of document review and enhancement of the accuracy of the reviewed documents, with time efficiency estimates of 60% reduction of time. However, the review also outlines some of the problems that continue to characterize AI, such as data quality problems, biased algorithms and the problem of the opaque decision-making system. This paper assesses ethical issues related to patient autonomy, justice and non-malignant suffering, with particular focus on patient privacy and fair process, and on potential unfairness to patients. This paper’s review of AI innovations finds that regulations lag behind AI developments, leading to unsettled issues regarding legal responsibility for AI and user control over AI-generated results and findings in legal proceedings. Some of the future avenues that are presented in the study are the future of XAI for legal purposes, utilizing federated learning for resolving privacy issues, and the need to foster adaptive regulation. Finally, the review advocates for Legal Subject Matter Experts to collaborate with legal informatics experts, ethicists, and policy makers to develop the best solutions to implement AI in medical negligence claims. It reasons that there is great potential for AI to have a deep impact on the practice of law but when done, it must do so in a way that respects justice and on the Rights of Individuals.展开更多
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
基金financial support of the National Natural Science Foundation of China(No.52371103)the Fundamental Research Funds for the Central Universities,China(No.2242023K40028)+1 种基金the Open Research Fund of Jiangsu Key Laboratory for Advanced Metallic Materials,China(No.AMM2023B01).financial support of the Research Fund of Shihezi Key Laboratory of AluminumBased Advanced Materials,China(No.2023PT02)financial support of Guangdong Province Science and Technology Major Project,China(No.2021B0301030005)。
文摘Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%.
基金Technology Development Program of Jilin Province(YDZJ202201ZYTS640)the National Key Research and Development Program of China(2022YFB4200400)funded by MOST+4 种基金the National Natural Science Foundation of China(52172048 and 52103221)Shandong Provincial Natural Science Foundation(ZR2021QB024 and ZR2021ZD06)Guangdong Basic and Applied Basic Research Foundation(2023A1515012323,2023A1515010943,and 2024A1515010023)the Qingdao New Energy Shandong Laboratory open Project(QNESL OP 202309)the Fundamental Research Funds of Shandong University.
文摘Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs.
基金supported by the Major Science and Technology Project of Zhongshan City(No.2022AJ004)the Key Basic and Applied Research Program of Guangdong Province(Nos.2019B030302010 and 2022B1515120082)Guangdong Science and Technology Innovation Project(No.2021TX06C111).
文摘In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment technique known as ultrasonic vibration rapid processing(UVRP),which enables the formation of high-density strong magnetic α-Fe clusters,thereby enhancing the soft magnetic properties of Fe_(78)Si(13)B_(9) amorphous alloy ribbon.
基金supported by the National Natural Science Foundation of China(No.51805265)the Fundamental Research Funds for the Central Universities,China(No.30922010921).
文摘Thin walls of an AZ91 magnesium alloy with fine equiaxed grains were fabricated via cold arc-based wire arc additive manufacturing(CA-WAAM),and the droplet transfer behaviours,microstructures,and mechanical properties were investigated.The results showed that the cold arc process reduced splashing at the moment of liquid bridge breakage and effectively shortened the droplet transfer period.The microstructures of the deposited samples exhibited layered characteristics with alternating distributions of coarse and fine grains.During layer-by-layer deposition,the β-phase precipitated and grew preferentially along grain boundaries,while the fineη-Al_(8)Mn_(5)phase was dispersed in the α-Mg matrix.The mechanical properties of the CA-WAAM deposited sample showed isotropic characteristics.The ultimate tensile strength and elongation in the building direction(BD)were 282.7 MPa and 14.2%,respectively.The microhardness values of the deposited parts were relatively uniform,with an average value of HV 69.6.
文摘Agricultural Products Processing and Storage (ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature) is an international,pect-review ed open access journal with the aim to offer a platform for the rapid dissemination of significant,novel,and high-impact research in the fields of agricultural product processing science,technology,engineering,and nutrition.Additio nally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
基金financially supported by the National Natural Science Foundation of China(No.52105373)the China Scholarship Council(No.202106020094).
文摘Ti-10V-2Fe-3Al alloy with fine-grainedβphases was fabricated by friction stir processing with opti-mized processing parameters.The superplastic behavior of the specimens was investigated by tensile deformation at different strain rates and temperatures,and an optimal superplastic elongation of 634%was achieved at 700℃ and 3×10^(-4)/s.An annealing treatment at 650℃ for 60 min showed a mi-crostructure withαprecipitates distributed in theβmatrix in the friction stir specimen.Such pre-heat treatment improves the superplasticity of the specimen,achieving an elongation of up to 807%at 750℃ and 3×10^(-4)/s.The influences of tensile temperatures and strain rates on the microstructural evolution,such as grain size variation,grain morphology,and phase transformations,were discussed.The super-plastic deformation behavior of fine-grained Ti-10V-2Fe-3Al alloy is controlled by grain boundary sliding and accompanied by dynamic phase transformation and recrystallization.
文摘The hot deformation characteristics of induction quenched Zr-Sn-Nb-Fe-Cr alloy forged rod in the temperature range of 600–900°C and strain rate range of 0.001–1 s^(-1)were studied by Gleeble3800 uniaxial hot compression experiment.The results show that the flow stress decreases with the decrease in strain rate and the increase in deformation temperature in the true stress-true strain curve of Zr-Sn-Nb-Fe-Cr alloy forged rod.Moreover,the hot deformation characteristics of the material can be described by the hyperbolic sine constitutive equation.Under the experimental conditions,the average thermal activation energy(Q)of the alloy was 412.9105 kJ/mol.The microstructure analysis of the processing map and the sample after hot compression shows that the optimum hot working parameters of the alloy are 795–900°C,0.001–0.0068 s^(-1),at the deformation temperature of 600–900°C,and the strain rate of 0.001–1 s^(-1).
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
文摘Using a Gleeble 3500 thermomechanical simulation testing machine,the hot deformation characteristics of 23Cr-8Ni steel were investigated under the conditions of 1000–1250℃ and 0.001‒10 s^(−1).Furthermore,the microstructure of the characterization region was analyzed to investigate the recrystallization behavior of 23Cr-8Ni steel.Results show that as the strain rate decreases and the deformation temperature increases,the flow stress decreases.Because the softening phenomenon occurs after the peak stress,the flow stress decreases.The stress index(n)is 4.28,and the thermal deformation activation energy(Q)is 588878 J/mol.Processing map is established,and an optimal thermal processing range of 0.001–0.1 s^(−1) and 1000–1200℃ is achieved,therefore greatly promoting the yield rate.
文摘This critical review looks at the assessment of the application of artificial intelligence in handling legal documents with specific reference to medical negligence cases with a view of identifying its transformative potentialities, issues and ethical concerns. The review consolidates findings that show the impact of AI in improving the efficiency, accuracy and justice delivery in the legal profession. The studies show increased efficiency in speed of document review and enhancement of the accuracy of the reviewed documents, with time efficiency estimates of 60% reduction of time. However, the review also outlines some of the problems that continue to characterize AI, such as data quality problems, biased algorithms and the problem of the opaque decision-making system. This paper assesses ethical issues related to patient autonomy, justice and non-malignant suffering, with particular focus on patient privacy and fair process, and on potential unfairness to patients. This paper’s review of AI innovations finds that regulations lag behind AI developments, leading to unsettled issues regarding legal responsibility for AI and user control over AI-generated results and findings in legal proceedings. Some of the future avenues that are presented in the study are the future of XAI for legal purposes, utilizing federated learning for resolving privacy issues, and the need to foster adaptive regulation. Finally, the review advocates for Legal Subject Matter Experts to collaborate with legal informatics experts, ethicists, and policy makers to develop the best solutions to implement AI in medical negligence claims. It reasons that there is great potential for AI to have a deep impact on the practice of law but when done, it must do so in a way that respects justice and on the Rights of Individuals.