The modified precipitation theory was employed to directly predict the multi-variantε-carbide precipitation from thermodynamics and growing and ripening kinetics.Three distinct variants were identified:Variants 1 and...The modified precipitation theory was employed to directly predict the multi-variantε-carbide precipitation from thermodynamics and growing and ripening kinetics.Three distinct variants were identified:Variants 1 and 2 were the perpendicular plate-likeε-carbides,while the granularε-carbides were Variant 3.The particle sizes of Variants 1 and 2 were usually larger than those of Variant 3.The mean aspect ratios of Variants 1 and 2 were 4.96,4.62 and 4.35 larger than those(1.72,1.63 and 1.56)for the granularε-carbides when coiled at 140,200 and 250℃,respectively.Thermodynamic analysis indicated that Variants 1 and 2 are easier to nucleate than Variant 3.The growing kinetic analysis implied that the relative nucleation time and precipitation time for Variants 1 and 2 were about 8 and 5 orders of magnitude less than those for Variant 3,respectively.The ripening kinetics further displayed that the ripening rate was similar for Variants 1,2 and 3.In addition,the dislocation density has weak influence onε-carbide nucleation.These findings suggest that the precipitation thermodynamic and kinetic models could be extended to second phase precipitation in other materials systems.Besides,nano-scaleε-carbides,fine block size and nano-twins,as well as medium-density dislocations,jointly caused the optimal match between strength and total elongation when coiled at 140℃.展开更多
Al_(2)O_(3)and MgO serve as the primary gangue components in sintered ores,and they are critical for the formation of CaO-Fe_(2)O_(3)-xAl_(2)O_(3)(wt%,C-F-xA)and CaO-Fe_(2)O_(3)-xM gO(wt%,C-F-xM)systems,respectively.I...Al_(2)O_(3)and MgO serve as the primary gangue components in sintered ores,and they are critical for the formation of CaO-Fe_(2)O_(3)-xAl_(2)O_(3)(wt%,C-F-xA)and CaO-Fe_(2)O_(3)-xM gO(wt%,C-F-xM)systems,respectively.In this study,a nonisothermal crystallization thermodynamics behavior of C-F-xA and C-F-xM systems was examined using differential scanning calorimetry,and a phase identification and microstructure analysis for C-F-xA and C-F-xM systems were carried out by X-ray diffraction and scanning electron microscopy.Results showed that in C-F-2A and C-F-2M systems,the increased cooling rates promoted the precipitation of CaFe_(2)O_(4)(CF)but inhibited the formation of Ca_(2)Fe_(2)O_(5)(C2F).In addition,C-F-2A system exhibited a lower theoretical initial crystallization temperature(1566 K)compared to the C-F system(1578 K).This temperature further decreases to 1554 K and 1528 K in the C-F-4A and C-F-8A systems,respectively.However,in C-F-xM system,the increased MgO content raised the crystallization temperature.This is because that the enhanced precipitation of MF(a spinel phase mainly comprised Fe_(3)O_(4)and MgFe_(2)O_(4))and C2F phases suppressed the CF precipitation reaction.In kinetic calculations,the Ozawa method revealed the apparent activation energies of the C-F-2A and C-F-2M systems.Malek's method revealed that the crystallization process in C-F-2A system initially followed a logarithmic law(lnαor lnα2),later transitioning to a reaction order law((1-α)-1or(1-α)^(-1/2),n=2/3)or the lnα2function of the exponential law.In C-F-2M system,it consistently followed the sequencef(α)=(1-α)^(2)(αis the crystallization conversion rate;n is the Avrami constant;?(α)is the differential equations for the model function of C_(2)F and CF crystallization processes).展开更多
The leaching process of magnesiothermic self-propagating product generated during the multistage deep reduction process was investigated.The influence of magnesiothermic self-propagating product particle size,HCl solu...The leaching process of magnesiothermic self-propagating product generated during the multistage deep reduction process was investigated.The influence of magnesiothermic self-propagating product particle size,HCl solution concentration,and leaching solution temperature on the leaching behavior of elements Al and V was investigated.Results demonstrate that the leaching rate of Al and V is increased with the rise in leaching solution temperature,the increase in HCl solution concentration,and the enlargement of magnesiothermic self-propagating product particle size.The leaching processes of Al and V are consistent with the chemical reaction control model.When the magnesiothermic self-propagation product with D_(50) of 59.4μm is selected as the raw material,the leaching temperature is 40℃,and 1 mol/L HCl solution is employed,after leaching for 180 min,the leaching rates of Al and V are 24.8%and 12.6%,respectively.The acid-leached product exhibits a porous structure with a specific surface area of 3.5633 m^(2)/g.展开更多
The cold-rolled quenching and partitioning(Q&P)steel with an initial microstructure of deformed ferrite and pearlite was studied.The microstructural evolution under various heating rates of 1.78,50,and 300℃/s was...The cold-rolled quenching and partitioning(Q&P)steel with an initial microstructure of deformed ferrite and pearlite was studied.The microstructural evolution under various heating rates of 1.78,50,and 300℃/s was investigated using microstructural characterization and theoretical modeling.At the same time,the characteristics of recrystallization and austenite formation kinetics were decoupled by examining recrystallized ferrite and deformed ferrite as initial conditions.The findings revealed that the austenite formation during continuous heating can be simplified into two stages:(i)the early nucleation-dominated formation stage and(ii)the later grain growth-dominated stage,resulting in the development of a modified two-stage model based on Johnson-Mehl-Avrami-Kolmogorov.Further experiments confirmed that when the austenite volume fraction exceeded approximately 5% at a heating rate of 1.78℃/s,ferrite recrystallization was suppressed.In consequence,a mixed model including recrystallization kinetics was employed to couple the austenite formation occurring in deformed ferrite and recrystallized ferrite,thereby describing the austenite formation kinetics affected by recrystallization.Precise predictions of non-isothermal austenite formation kinetics in cold-rolled Q&P steel were achieved during slow and ultrafast heating processes by integrating the suppression effect into the model for austenite formation.展开更多
The effects of long-term moisture changes on the migration,release,and bioavailability of selenium in soil are complex.Due to the lack of effective monitoring methods for precise quantification,its dynamic behavior is...The effects of long-term moisture changes on the migration,release,and bioavailability of selenium in soil are complex.Due to the lack of effective monitoring methods for precise quantification,its dynamic behavior is still unclear.Based on the DGT(Diffusive Gradients in Thin-films)technology,this study sets up three moisture control scenarios:continuous wet,wet-dry alternating,and continuous dry,and carries out a 6-month soil moisture control experiment.In the experiment,the DGT device collected the diffusion gradient data of soil selenium under different scenarios,and analyzed the migration characteristics of selenium in combination with the adsorption isotherm.Meanwhile,the release rate,migration coefficient,and bioavailability parameters of selenium are calculated by fitting the first-order kinetic model,further verifying the reliability and applicability of the DGT data.The experimental results demonstrate that under continuous wet conditions,the release rate of soil selenium reaches 1.85µg·cm^(-2)·h^(-1),with a migration coefficient of 0.012 cm^(2)·h^(-1)and a bioavailability parameter of 0.74;under wet-dry alternating conditions,they are 1.42µg·cm^(-2)·h^(-1),0.01 cm^(2)·h^(-1),and 0.68,respectively;under continuous dry conditions,the release rate of soil selenium is the smallest,at 0.88µg·cm^(-2)·h^(-1),with a migration coefficient of 0.004 cm^(-2)·h^(-1)and a bioavailability parameter of 0.5.The results of this experiment reveal the dynamic behavior of soil selenium under different moisture conditions and reflect the high efficiency of DGT technology in dynamic monitoring and quantitative analysis of soil selenium behavior,providing a scientific basis for the optimal management of rhizosphere soil selenium.展开更多
Mg-Li alloy is a lightweight hydrogen storage material with high hydrogen capacity,but its poor kinetics limited its practical applications.In this work,MCM-22 molecular sieve was added to Mg-Li alloy by friction stir...Mg-Li alloy is a lightweight hydrogen storage material with high hydrogen capacity,but its poor kinetics limited its practical applications.In this work,MCM-22 molecular sieve was added to Mg-Li alloy by friction stir processing(FSP)as the catalyst to enhance the kinetic properties of Mg-Li alloy(denoted as Mg-Li-MCM-22).The resulting Mg-Li-MCM-22 possesses the reversible hydrogen storage capacity of ca.6 wt.%and can release 5.62 wt.%hydrogen within 50 min at 623 K,showing improved kinetics.The Chou model and Johnson-Mehl-Avrami-Kolmogorov(JMAK)model calculations reveal that the lattice defects generated by FSP improve the kinetics of hydrogen adsorption/desorption.The pinning effect of MCM-22 particles produces more grain boundaries and dislocations,thus,increasing the diffusion rate of hydrogen atoms and providing more nucleation sites,therefore,reducing the dehydrogenation activation energy.This work provides a new strategy for the preparation of hydrogen storage materials.展开更多
Designing catalysts with high catalytic activity and stability is the key to achieve the commercial application of MgH_(2).Herein,the sulfur doped Ti_(3)C_(2)(S-Ti_(3)C_(2))was successfully prepared by heat treatment ...Designing catalysts with high catalytic activity and stability is the key to achieve the commercial application of MgH_(2).Herein,the sulfur doped Ti_(3)C_(2)(S-Ti_(3)C_(2))was successfully prepared by heat treatment of Ti_(3)C_(2)MXene under Ar/H_(2)S atmosphere to facilitate the hydrogen release and uptake from MgH_(2).The S-Ti_(3)C_(2)exhibited pleasant catalytic effect on the hydriding/dehydriding kinetics and cyclic stability of MgH_(2).The addition of 5 wt%S-Ti_(3)C_(2)into MgH_(2)resulted in a reduction of 114℃in the starting dehydriding temperature compared to pure MgH_(2).MgH_(2)+5 wt%S-Ti_(3)C_(2)sample could quickly release 6.6 wt%hydrogen in 17 min at 220℃,and 6.8 wt%H_(2)was absorbed in 25 min at 200℃.Cyclic testing revealed that MgH_(2)+5 wt%S-Ti_(3)C_(2)system achieved a reversible hydrogen capacity of 6.5 wt%.Characterization analysis demonstrated that Ti-species(Ti0,Ti^(2+),Ti-S,and Ti^(3+))as active species significantly lowered the dehydrogenation temperature and promoted the re-/dehydrogenation kinetics of MgH_(2),and sulfur doping can effectively improve the stability of Ti0 and Ti^(3+),contributing to the improvement of cyclic stability of MgH_(2).This study provides strategy for the construction of catalysts for hydrogen storage materials.展开更多
This work reveals the significant effects of cobalt(Co)on the microstructure and impact toughness of as-quenched highstrength steels by experimental characterizations and thermo-kinetic analyses.The results show that ...This work reveals the significant effects of cobalt(Co)on the microstructure and impact toughness of as-quenched highstrength steels by experimental characterizations and thermo-kinetic analyses.The results show that the Co-bearing steel exhibits finer blocks and a lower ductile-brittle transition temperature than the steel without Co.Moreover,the Co-bearing steel reveals higher transformation rates at the intermediate stage with bainite volume fraction ranging from around 0.1 to 0.6.The improved impact toughness of the Co-bearing steel results from the higher dense block boundaries dominated by the V1/V2 variant pair.Furthermore,the addition of Co induces a larger transformation driving force and a lower bainite start temperature(BS),thereby contributing to the refinement of blocks and the increase of the V1/V2 variant pair.These findings would be instructive for the composition,microstructure design,and property optimization of high-strength steels.展开更多
Hydrogen(H_(2))is a promising renewable energy which finds wide applications as the world gears toward low-carbon economy.However,current H_(2) production via steam methane reforming of natural gas or gasification of ...Hydrogen(H_(2))is a promising renewable energy which finds wide applications as the world gears toward low-carbon economy.However,current H_(2) production via steam methane reforming of natural gas or gasification of coal are laden with high CO_(2) footprints.Recently,methane(CH_(4))pyrolysis has emerged as a potential technology to generate low-carbon H_(2) and solid carbon.In this review,the current state-of-art and recent progress of H_(2) production from CH_(4) pyrolysis are reviewed in detail.Aspects such as funda-mental mechanism and chemistry involved,effect of process parameters on the conversion efficiency and reaction kinetics for various reaction media and catalysts are elucidated and critically discussed.Temper-ature,among other factors,plays the most critical influence on the methane pyrolysis reaction.Molten metal/salt could lower the operating temperature of methane pyrolysis to<1000℃,whereas plasma technology usually operates in the regime of>1000℃.Based on the reaction kinetics,metal-based cata-lysts were more efficient in lowering the activation energy of the reaction to 29.5-88 kJ/mol from that of uncatalyzed reaction(147-420.7 kJ/mol).Besides,the current techno-economic performance of the pro-cess reveals that the levelized cost of H_(2) is directly influenced by the sales price of carbon(by-product)generated,which could offset the overall cost.Lastly,the main challenges of reactor design for efficient product separation and retrieval,as well as catalyst deactivation/poisoning need to be debottlenecked.展开更多
Morphology and growth rate of carbon dioxide hydrate on the interface between liquid carbon dioxide and humic acid solutions were studied in this work.It was found that after the growth of the hydrate film at the inte...Morphology and growth rate of carbon dioxide hydrate on the interface between liquid carbon dioxide and humic acid solutions were studied in this work.It was found that after the growth of the hydrate film at the interface,further growth of hydrate due to the suction of water in the capillary system formed between the wall of the cuvette and the end boundary of the hydrate layer occurs.Most probably,substantial effects on the formation of this capillary system may be caused by variations in reactor wall properties,for example,hydrophobic-hydrophilic balance,roughness,etc.We found,that the rate of CO_(2) hydrate film growth on the surface of the humic acid aqueous solution is 4-fold to lower in comparison with the growth rate on the surface of pure water.We suppose that this is caused by the adsorption of humic acid associates on the surface of hydrate particles and,as a consequence,by the deceleration of the diffusion of dissolved carbon dioxide to the growing hydrate particle.展开更多
A green environmental protection and enhanced leaching process was proposed to recover all elements from spent lithium iron phosphate(LiFePO_(4)) lithium batteries.In order to reduce the influence of Al impurity in th...A green environmental protection and enhanced leaching process was proposed to recover all elements from spent lithium iron phosphate(LiFePO_(4)) lithium batteries.In order to reduce the influence of Al impurity in the recovery process,NaOH was used to remove impurity.After impurity removal,the spent LiFePO_(4) cathode material was used as raw material under the H_(2)SO_(4) system,and the pressure oxidation leaching process was adopted to achieve the preferential leaching of lithium.The E-pH diagram of the Fe-P-Al-H_(2)O system can determine the stable region of each element in the recovery process of spent LiFePO_(4)Li-batteries.Under the optimal conditions(500 r·min^(-1),15 h,363.15 K,0.4 MPa,the liquid-solid ratio was 4:1 ml·g^(-1)and the acid-material ratio was 0.29),the leaching rate of Li was 99.24%,Fe,Al,and Ti were 0.10%,2.07%,and 0.03%,respectively.The Fe and P were precipitated and recovered as FePO_(4)·2H_(2)O.The kinetic analysis shows that the process of high-pressure acid leaching of spent LiFePO_(4) materials depends on the surface chemical reaction.Through the life cycle assessment(LCA)of the spent LiFePO_(4) whole recovery process,eight midpoint impact categories were selected to assess the impact of recovery process.The results can provide basic environmental information on production process for recycling industry.展开更多
To investigate the thermal decomposition behavior and reaction kinetics of bastnaesite in suspension roasting,the gas and solid products of bastnaesite roasted in N2 and air atmospheres were examined using a gas analy...To investigate the thermal decomposition behavior and reaction kinetics of bastnaesite in suspension roasting,the gas and solid products of bastnaesite roasted in N2 and air atmospheres were examined using a gas analyzer,X-ray diffraction(XRD),scanning electron microscopy(SEM),and energy dispersive spectrometry(EDS).Subsequently,the kinetic parameters of bastnaesite in the suspension roasting process were derived and calculated using the isothermal method.The results show that the decomposition product of bastnaesite in N_(2) is CeOF.However,once the roasting temperature exceeds 600℃,CO is generated in addition to CO_(2),and all the XRD diffraction peaks of CeOF are shifted to the right,indicating that CO_(2) can oxidize CeOF and lead to the transformation of Ce(Ⅲ) into Ce(Ⅳ).When roasted in air,the decomposition product CeOF can be completely converted to CeF3 and Ce_(7)O_(12) as it easily oxidizes.Additionally,the reaction rate of bastnaesite in air is higher than that of N_(2),and the starting reaction temperature is lower than that of N_(2).A large number of irregular cracks and holes appear on the surface of solid-phase products following suspension roasting,which are due to the thermal decomposition of bastnaesite that produces CO_(2) as well as the reconstruction of the lattice of the solid-phase products.The reaction kinetic model of bastnaesite roasted in N_(2)(temperature range 600-750℃) and air(temperatu re range 500-575℃) confo rms to the A_(3/2) model with the mechanism function G(α)=-ln(1-α)^(2/3),and the reaction activation energy is 59.78 kj/mol and lnA is 1.65 s^(-1) in N_(2) atmosphere.In air,the reaction activation energy is 100.30 kj/mol and lnA is 9.63 s^(-1).展开更多
Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the el...Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the electron distribution,thereby increasing the catalytic activity.However,this focus often overshadows an equally essential aspect of HAOPs:the adsorption effect.Adsorption is a critical initiator for triggering the interaction of oxidants and contaminants with heterogeneous catalysts.The efficacy of these interactions is influenced by a variety of physicochemical properties,including surface chemistry and pore sizes,which determine the affinities between contaminants and material surfaces.This dispar ity in affinity is pivotal because it underpins the selective removal of contaminants,especially in complex waste streams containing diverse contaminants and competing matrices.Consequently,understanding and mastering these interfacial interactions is fundamentally indispensable not only for improving pro cess efficiency but also for enhancing the selectivity of contaminant removal.Herein,we highlight the importance of adsorption-driven interfacial interactions for fundamentally elucidating the catalytic mechanisms of HAOPs.Such interactions dictate the overall performance of the treatment processes by balancing the adsorption,reaction,and desorption rates on the catalyst surfaces.Elucidating the adsorption effect not only shifts the paradigm in understanding HAOPs but also improves their practical ity in water treatment and wastewater decontamination.Overall,we propose that revisiting adsorption driven interfacial interactions holds great promise for optimizing catalytic processes to develop effective HAOP strategies.展开更多
Hydrogen-enriched ironmaking presents a promising approach to mitigate coke consumption and carbon emission in blast furnace(BF)operations.This work investigated the relationship between the structural features of cok...Hydrogen-enriched ironmaking presents a promising approach to mitigate coke consumption and carbon emission in blast furnace(BF)operations.This work investigated the relationship between the structural features of cokes and their reactivity towards solution loss(SL),especially under hydrogen-enriched atmospheres.Six cokes were characterized,and their SL behaviors were examined under varying atmospheres to elucidate the effects of hydrogen enrichment.The results indicate that an increase in fixed carbon content leads to a decrease in the coke reactivity index(CRI)and an increase in coke strength after reaction(CSR),in the CO_(2) atmosphere,the CSR of coke increases from 35.76%−62.83%,while in the 90CO_(2)/10H_(2) atmosphere,the CSR of coke increases from 65.67%−84.09%.There is a good linear relationship between CRI and microcrystalline structure parameters of coke.Cokes with larger crystalline size,lower amorphous content,and smaller optical texture index(OTI)values show enhanced resistance to degradation and maintain structural integrity in BF.Kinetic analysis performed with the shifted-modified-random pore model(S-MRPM)reveals that alterations in pore structure and intrinsic mineral composition significantly influence the reaction rate.The introduction of a small amount of water vapor raises SL rates,whereas a minor addition of hydrogen(<10%)decelerates SL due to its incomplete conversion to water vapor and the reduced partial pressure of the gasifying agent.Thermodynamic calculations also indicate that the introduced hydrogen does not convert into the same fraction of water vapor.The shift from chemical reaction control to gas diffusion control as the rate-determining step with rising temperatures during SL process was confirmed,and the introduction of hydrogen does not notably alter SL behavior.This result demonstrated that introducing a small amount of hydrogen(<10%)can mitigate SL rates,thereby enhancing coke strength and reducing coke consumption and carbon emissions.展开更多
Magnesium and magnesium alloys,serving as crucial lightweight structural materials and hydrogen storage elements,find extensive applications in space technology,aviation,automotive,and magnesium-based hydrogen industr...Magnesium and magnesium alloys,serving as crucial lightweight structural materials and hydrogen storage elements,find extensive applications in space technology,aviation,automotive,and magnesium-based hydrogen industries.The global production of primary magnesium has reached approximately 1.2 million tons per year,with anticipated diversification in future applications and significant market demand.Nevertheless,approximately 80%of the world’s primary magnesium is still manufactured through the Pidgeon process,grappling with formidable issues including high energy consumption,massive carbon emission,significant resource depletion,and environmental pollution.The implementation of the relative vacuum method shows potential in breaking through technological challenges in the Pidgeon process,facilitating clean,low-carbon continuous magnesium smelting.This paper begins by introducing the principles of the relative vacuum method.Subsequently,it elucidates various innovative process routes,including relative vacuum ferrosilicon reduction,aluminum thermal reduction co-production of spinel,and aluminum thermal reduction co-production of calcium aluminate.Finally,and thermodynamic foundations of the relative vacuum,a quantitative analysis of the material,energy flows,carbon emission,and production cost for several new processes is conducted,comparing and analyzing them against the Pidgeon process.The study findings reveal that,with identical raw materials,the relative vacuum silicon thermal reduction process significantly decreases raw material consumption,energy consumption,and carbon dioxide emissions by 15.86%,30.89%,and 26.27%,respectively,compared to the Pidgeon process.The relative vacuum process,using magnesite as the raw material and aluminum as the reducing agent,has the lowest magnesium-to-feed ratio,at only 3.385.Additionally,its energy consumption and carbon dioxide emissions are the lowest,at 1.817 tce/t Mg and 7.782 t CO_(2)/t Mg,respectively.The energy consumption and carbon emissions of the relative vacuum magnesium smelting process co-producing calcium aluminate(12CaO·7Al_(2)O_(3),3CaO·Al_(2)O_(3),and CaO·Al_(2)O_(3))are highly correlated with the consumption of dolomite in the raw materials.When the reduction temperature is around 1473.15 K,the critical volume fraction of magnesium vapor for different processes varies within the range of 5%–40%.Production cost analysis shows that the relative vacuum primary magnesium smelting process has significant economic benefits.This paper offers essential data support and theoretical guidance for achieving energy efficiency,carbon reduction in magnesium smelting,and the industrial adoption of innovative processes.展开更多
The widespread occurrence of antibiotics in wastewater aroused serious attention.UV-based advanced oxidation processes(UV-AOPs)are powerful technologies in removing antibiotics in wastewater,which include UV/catalyst,...The widespread occurrence of antibiotics in wastewater aroused serious attention.UV-based advanced oxidation processes(UV-AOPs)are powerful technologies in removing antibiotics in wastewater,which include UV/catalyst,UV/H_(2)O_(2),UV/Fenton,UV/persulfate,UV/chlorine,UV/ozone,and UV/peracetic acid.In this review,we collated recent advances in application of UV-AOPs for the abatement of fiuoroquinolones(FQs)as widely used class of antibiotics.Representative FQs of ciprofioxacin,norfioxacin,ofioxacin,and enrofioxacin were most extensively studied in the state-of-art studies.The evolvement of gas-state and solid-state UV light sources was presented and batch and continuous fiow UV reactors were compared towards practical applications in UV-AOPs.Generally,degradation of FQs followed the pseudo-first order kinetics in UV-AOPs and strongly affected by the operating factors and components of water matrix.Participation of reactive species and transformation mechanisms of FQs were compared among different UV-AOPs.Challenges and future prospects were pointed out for providing insights into the practical application of UV-AOPs for antibiotic remediation in wastewater.展开更多
Hydrogen desorption kinetics and characteristics,residual hydrogen content and activation energy of TC21 alloy were investigated by the constant volume method.Results show that hydrogen desorption temperature and init...Hydrogen desorption kinetics and characteristics,residual hydrogen content and activation energy of TC21 alloy were investigated by the constant volume method.Results show that hydrogen desorption temperature and initial hydrogen pressure affect hydrogen desorption characteristics of TC21 alloy.The hydrogen desorption process is mainly dominated by nucleation and growth process(kt=[-ln(1-α)]^(2/3)),chemical reaction process(kt=(1-α)^(-1/2))and three-dimensional diffusion process(kt=[1-(1-α)^(1/3)]^(1/2))when the hydrogenated TC21 alloy is dehydrogenated at temperatures of 700-940°C.When the hydrogenated TC21 alloy releases hydrogen,the following relationship exists among the rate constants of each process:k(chemical reaction process)>k(nucleation and growth process)>k(three-dimensional diffusion process).The residual hydrogen content of the hydrogenated TC21 alloy after hydrogen desorption decreases gradually with the increase in hydrogen desorption temperature,and increases gradually with the increase in the initial hydrogen pressure.The activation energy of TC21 alloy in the process of hydrogen desorption is about 26.663 kJ/mol.展开更多
In the cooling crystallization process of thiourea,a significant issue is the excessively wide crystal size distribution(CSD)and the abundance of fine crystals.This investigation delves into the growth kinetics and me...In the cooling crystallization process of thiourea,a significant issue is the excessively wide crystal size distribution(CSD)and the abundance of fine crystals.This investigation delves into the growth kinetics and mechanisms governing thiourea crystals during the cooling crystallization process.The fitting results indicate that the crystal growth rate coefficient,falls within the range of 10^(-7)to 10^(-8)m·s^(-1).Moreover,with decreasing crystallization temperature,the growth process undergoes a transition from diffusion-controlled to surface reaction-controlled,with temperature primarily influencing the surface reaction process and having a limited impact on the diffusion process.Comparing the crystal growth rate,and the diffusion-limited growth rate,at different temperatures,it is observed that the crystal growth process can be broadly divided into two stages.At temperatures above 25℃,1/qd(qd is diffusion control index)approaches 1,indicating the predominance of diffusion control.Conversely,at temperatures below 25℃,1/qd increases rapidly,signifying the dominance of surface reaction control.To address these findings,process optimization was conducted.During the high-temperature phase(35-25℃),agitation was increased to reduce the limitations posed by bulk-phase diffusion in the crystallization process.In the low-temperature phase(25-15℃),agitation was reduced to minimize crystal breakage.The optimized process resulted in a thiourea crystal product with a particle size distribution predominantly ranging from 0.7 to 0.9 mm,accounting for 84%of the total.This study provides valuable insights into resolving the issue of excessive fine crystals in the thiourea crystallization process.展开更多
Hexafluoropropylene oxide(HFPO)is a crucial fluorinated chemical mainly synthesized from hexafluoropropylene(HFP)through the oxidation of oxygen.However,the reaction network and kinetic characteristics are not fully u...Hexafluoropropylene oxide(HFPO)is a crucial fluorinated chemical mainly synthesized from hexafluoropropylene(HFP)through the oxidation of oxygen.However,the reaction network and kinetic characteristics are not fully understood yet,resulting in a lack of theoretical basis for synthesis process improvement.Here,the free radical reaction mechanism and complete reaction network involved in the noncatalytic oxidation of HFP to synthesize HFPO was explored by density functional theory.Transition state theory was employed to calculate the intrinsic reaction rate constants for elementary reactions.Based on theoretical reaction rate ratios,reaction pathways were selected,and a simplified reaction network was derived.It was found that byproducts were formed owing to the decomposition of HFPO and subsequent reactions with excessive oxygen while oxygen tended to participate more in the main reaction under oxygen-deficient conditions.The variations in reaction pathways occurring at different HFP/oxygen molar ratios was well elucidated by comparing with experimental data.This research establishes a robust theoretical foundation for optimizing and regulating the synthesis of HFPO.展开更多
Intuitively,the solvation structure featuring stronger interacted sheath in deep eutectic solution(DES)electrolyte would result in sluggish interfacial charge transfer and intense polarization,which obstructs its prac...Intuitively,the solvation structure featuring stronger interacted sheath in deep eutectic solution(DES)electrolyte would result in sluggish interfacial charge transfer and intense polarization,which obstructs its practical application in emerging Zn based batteries.Unexpectedly,here we discover a Zn‖organic battery with exceptional kinetics properties enabled by a hydrated DES electrolyte,which can render higher discharge capacity,smaller voltage polarization,and faster kinetics of charge transfer in comparison with conventional aqueous 3 M ZnCl_(2)electrolyte,though its viscosity is two orders of magnitude higher than the latter.The improved kinetics of charge transfer and ion diffusion is demonstrated to originate from the local electron structure regulation of cathode in hydrated DES electrolyte.Furthermore,the DES electrolyte has also been shown to restrict parasitic reaction associated with active water by preferential urea-molecular adsorption on Zn surface and stronger water trapping in solvation structure,giving rise to long-term stable dendrite-free Zn plating/stripping.This work provides a new rationale for understanding electrochemical behaviors of organic cathodes in DES electrolyte,which is conducive to the development of high-performance Zn‖organic batteries.展开更多
基金supported by the National Natural Science Foundation of China(No.52293395)National Key R&D Program of China(No.2021YFB3702403).
文摘The modified precipitation theory was employed to directly predict the multi-variantε-carbide precipitation from thermodynamics and growing and ripening kinetics.Three distinct variants were identified:Variants 1 and 2 were the perpendicular plate-likeε-carbides,while the granularε-carbides were Variant 3.The particle sizes of Variants 1 and 2 were usually larger than those of Variant 3.The mean aspect ratios of Variants 1 and 2 were 4.96,4.62 and 4.35 larger than those(1.72,1.63 and 1.56)for the granularε-carbides when coiled at 140,200 and 250℃,respectively.Thermodynamic analysis indicated that Variants 1 and 2 are easier to nucleate than Variant 3.The growing kinetic analysis implied that the relative nucleation time and precipitation time for Variants 1 and 2 were about 8 and 5 orders of magnitude less than those for Variant 3,respectively.The ripening kinetics further displayed that the ripening rate was similar for Variants 1,2 and 3.In addition,the dislocation density has weak influence onε-carbide nucleation.These findings suggest that the precipitation thermodynamic and kinetic models could be extended to second phase precipitation in other materials systems.Besides,nano-scaleε-carbides,fine block size and nano-twins,as well as medium-density dislocations,jointly caused the optimal match between strength and total elongation when coiled at 140℃.
基金financially supported by the National Natural Science Foundation of China(Nos.52204331 and 52374315)the Major Industrial Innovation Plan of Anhui Provincial Development and the Reform Commission,China(No.AHZDCYCX-LSDT2023-01)。
文摘Al_(2)O_(3)and MgO serve as the primary gangue components in sintered ores,and they are critical for the formation of CaO-Fe_(2)O_(3)-xAl_(2)O_(3)(wt%,C-F-xA)and CaO-Fe_(2)O_(3)-xM gO(wt%,C-F-xM)systems,respectively.In this study,a nonisothermal crystallization thermodynamics behavior of C-F-xA and C-F-xM systems was examined using differential scanning calorimetry,and a phase identification and microstructure analysis for C-F-xA and C-F-xM systems were carried out by X-ray diffraction and scanning electron microscopy.Results showed that in C-F-2A and C-F-2M systems,the increased cooling rates promoted the precipitation of CaFe_(2)O_(4)(CF)but inhibited the formation of Ca_(2)Fe_(2)O_(5)(C2F).In addition,C-F-2A system exhibited a lower theoretical initial crystallization temperature(1566 K)compared to the C-F system(1578 K).This temperature further decreases to 1554 K and 1528 K in the C-F-4A and C-F-8A systems,respectively.However,in C-F-xM system,the increased MgO content raised the crystallization temperature.This is because that the enhanced precipitation of MF(a spinel phase mainly comprised Fe_(3)O_(4)and MgFe_(2)O_(4))and C2F phases suppressed the CF precipitation reaction.In kinetic calculations,the Ozawa method revealed the apparent activation energies of the C-F-2A and C-F-2M systems.Malek's method revealed that the crystallization process in C-F-2A system initially followed a logarithmic law(lnαor lnα2),later transitioning to a reaction order law((1-α)-1or(1-α)^(-1/2),n=2/3)or the lnα2function of the exponential law.In C-F-2M system,it consistently followed the sequencef(α)=(1-α)^(2)(αis the crystallization conversion rate;n is the Avrami constant;?(α)is the differential equations for the model function of C_(2)F and CF crystallization processes).
基金Scientific and Technological Project of Nanyang(23KJGG017)Key Specialized Research&Development and Promotion Project(Scientific and Technological Project)of Henan Province(232102221022)+1 种基金College Students and Technology Innovation Fund Project of Nanyang Institute of Technology(2023139)Project of Doctoral Scientific Research Startup Fund of Nanyang Institute of Technology(NGBJ-2023-25)。
文摘The leaching process of magnesiothermic self-propagating product generated during the multistage deep reduction process was investigated.The influence of magnesiothermic self-propagating product particle size,HCl solution concentration,and leaching solution temperature on the leaching behavior of elements Al and V was investigated.Results demonstrate that the leaching rate of Al and V is increased with the rise in leaching solution temperature,the increase in HCl solution concentration,and the enlargement of magnesiothermic self-propagating product particle size.The leaching processes of Al and V are consistent with the chemical reaction control model.When the magnesiothermic self-propagation product with D_(50) of 59.4μm is selected as the raw material,the leaching temperature is 40℃,and 1 mol/L HCl solution is employed,after leaching for 180 min,the leaching rates of Al and V are 24.8%and 12.6%,respectively.The acid-leached product exhibits a porous structure with a specific surface area of 3.5633 m^(2)/g.
基金funded by the National Key R&D Program of China(No.2021YFB3702404)the National Natural Science Foundation of China(Nos.52201101 and 52274372)+1 种基金the Major Program Funding of Cisri(No.21T62450ZD)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-22-013A1 and FRF-TP-22-015A1).
文摘The cold-rolled quenching and partitioning(Q&P)steel with an initial microstructure of deformed ferrite and pearlite was studied.The microstructural evolution under various heating rates of 1.78,50,and 300℃/s was investigated using microstructural characterization and theoretical modeling.At the same time,the characteristics of recrystallization and austenite formation kinetics were decoupled by examining recrystallized ferrite and deformed ferrite as initial conditions.The findings revealed that the austenite formation during continuous heating can be simplified into two stages:(i)the early nucleation-dominated formation stage and(ii)the later grain growth-dominated stage,resulting in the development of a modified two-stage model based on Johnson-Mehl-Avrami-Kolmogorov.Further experiments confirmed that when the austenite volume fraction exceeded approximately 5% at a heating rate of 1.78℃/s,ferrite recrystallization was suppressed.In consequence,a mixed model including recrystallization kinetics was employed to couple the austenite formation occurring in deformed ferrite and recrystallized ferrite,thereby describing the austenite formation kinetics affected by recrystallization.Precise predictions of non-isothermal austenite formation kinetics in cold-rolled Q&P steel were achieved during slow and ultrafast heating processes by integrating the suppression effect into the model for austenite formation.
文摘The effects of long-term moisture changes on the migration,release,and bioavailability of selenium in soil are complex.Due to the lack of effective monitoring methods for precise quantification,its dynamic behavior is still unclear.Based on the DGT(Diffusive Gradients in Thin-films)technology,this study sets up three moisture control scenarios:continuous wet,wet-dry alternating,and continuous dry,and carries out a 6-month soil moisture control experiment.In the experiment,the DGT device collected the diffusion gradient data of soil selenium under different scenarios,and analyzed the migration characteristics of selenium in combination with the adsorption isotherm.Meanwhile,the release rate,migration coefficient,and bioavailability parameters of selenium are calculated by fitting the first-order kinetic model,further verifying the reliability and applicability of the DGT data.The experimental results demonstrate that under continuous wet conditions,the release rate of soil selenium reaches 1.85µg·cm^(-2)·h^(-1),with a migration coefficient of 0.012 cm^(2)·h^(-1)and a bioavailability parameter of 0.74;under wet-dry alternating conditions,they are 1.42µg·cm^(-2)·h^(-1),0.01 cm^(2)·h^(-1),and 0.68,respectively;under continuous dry conditions,the release rate of soil selenium is the smallest,at 0.88µg·cm^(-2)·h^(-1),with a migration coefficient of 0.004 cm^(-2)·h^(-1)and a bioavailability parameter of 0.5.The results of this experiment reveal the dynamic behavior of soil selenium under different moisture conditions and reflect the high efficiency of DGT technology in dynamic monitoring and quantitative analysis of soil selenium behavior,providing a scientific basis for the optimal management of rhizosphere soil selenium.
基金Fundamental Research Funds for Central Universities(No.2022CDJKYJH028)National Natural Science Foundation of China(No.52271091)Chongqing Special Key Project of Technology Innovation and Application Development,China(No.cstc2019jscx-dxwtBX0016).
文摘Mg-Li alloy is a lightweight hydrogen storage material with high hydrogen capacity,but its poor kinetics limited its practical applications.In this work,MCM-22 molecular sieve was added to Mg-Li alloy by friction stir processing(FSP)as the catalyst to enhance the kinetic properties of Mg-Li alloy(denoted as Mg-Li-MCM-22).The resulting Mg-Li-MCM-22 possesses the reversible hydrogen storage capacity of ca.6 wt.%and can release 5.62 wt.%hydrogen within 50 min at 623 K,showing improved kinetics.The Chou model and Johnson-Mehl-Avrami-Kolmogorov(JMAK)model calculations reveal that the lattice defects generated by FSP improve the kinetics of hydrogen adsorption/desorption.The pinning effect of MCM-22 particles produces more grain boundaries and dislocations,thus,increasing the diffusion rate of hydrogen atoms and providing more nucleation sites,therefore,reducing the dehydrogenation activation energy.This work provides a new strategy for the preparation of hydrogen storage materials.
基金supported by the National Natural Science Foundation of China(U22A20120,52071135,51871090,U1804135,and 52301269)the Natural Science Foundation of Hebei Province for Innovation Groups Program(C2022203003)Fundamental Research Funds for the Universities of Henan Province(NSFRF220201).
文摘Designing catalysts with high catalytic activity and stability is the key to achieve the commercial application of MgH_(2).Herein,the sulfur doped Ti_(3)C_(2)(S-Ti_(3)C_(2))was successfully prepared by heat treatment of Ti_(3)C_(2)MXene under Ar/H_(2)S atmosphere to facilitate the hydrogen release and uptake from MgH_(2).The S-Ti_(3)C_(2)exhibited pleasant catalytic effect on the hydriding/dehydriding kinetics and cyclic stability of MgH_(2).The addition of 5 wt%S-Ti_(3)C_(2)into MgH_(2)resulted in a reduction of 114℃in the starting dehydriding temperature compared to pure MgH_(2).MgH_(2)+5 wt%S-Ti_(3)C_(2)sample could quickly release 6.6 wt%hydrogen in 17 min at 220℃,and 6.8 wt%H_(2)was absorbed in 25 min at 200℃.Cyclic testing revealed that MgH_(2)+5 wt%S-Ti_(3)C_(2)system achieved a reversible hydrogen capacity of 6.5 wt%.Characterization analysis demonstrated that Ti-species(Ti0,Ti^(2+),Ti-S,and Ti^(3+))as active species significantly lowered the dehydrogenation temperature and promoted the re-/dehydrogenation kinetics of MgH_(2),and sulfur doping can effectively improve the stability of Ti0 and Ti^(3+),contributing to the improvement of cyclic stability of MgH_(2).This study provides strategy for the construction of catalysts for hydrogen storage materials.
基金supported by the National Natural Science Foundation of China(No.52271089)the financial support from the C hina Postdoctoral Science Foundation(No.2023M732192)。
文摘This work reveals the significant effects of cobalt(Co)on the microstructure and impact toughness of as-quenched highstrength steels by experimental characterizations and thermo-kinetic analyses.The results show that the Co-bearing steel exhibits finer blocks and a lower ductile-brittle transition temperature than the steel without Co.Moreover,the Co-bearing steel reveals higher transformation rates at the intermediate stage with bainite volume fraction ranging from around 0.1 to 0.6.The improved impact toughness of the Co-bearing steel results from the higher dense block boundaries dominated by the V1/V2 variant pair.Furthermore,the addition of Co induces a larger transformation driving force and a lower bainite start temperature(BS),thereby contributing to the refinement of blocks and the increase of the V1/V2 variant pair.These findings would be instructive for the composition,microstructure design,and property optimization of high-strength steels.
基金support by the Education University of Hong Kong to perform this project under International Grant(UMT/International Grant/2020/53376).
文摘Hydrogen(H_(2))is a promising renewable energy which finds wide applications as the world gears toward low-carbon economy.However,current H_(2) production via steam methane reforming of natural gas or gasification of coal are laden with high CO_(2) footprints.Recently,methane(CH_(4))pyrolysis has emerged as a potential technology to generate low-carbon H_(2) and solid carbon.In this review,the current state-of-art and recent progress of H_(2) production from CH_(4) pyrolysis are reviewed in detail.Aspects such as funda-mental mechanism and chemistry involved,effect of process parameters on the conversion efficiency and reaction kinetics for various reaction media and catalysts are elucidated and critically discussed.Temper-ature,among other factors,plays the most critical influence on the methane pyrolysis reaction.Molten metal/salt could lower the operating temperature of methane pyrolysis to<1000℃,whereas plasma technology usually operates in the regime of>1000℃.Based on the reaction kinetics,metal-based cata-lysts were more efficient in lowering the activation energy of the reaction to 29.5-88 kJ/mol from that of uncatalyzed reaction(147-420.7 kJ/mol).Besides,the current techno-economic performance of the pro-cess reveals that the levelized cost of H_(2) is directly influenced by the sales price of carbon(by-product)generated,which could offset the overall cost.Lastly,the main challenges of reactor design for efficient product separation and retrieval,as well as catalyst deactivation/poisoning need to be debottlenecked.
基金supported by the Russian Science Foundation(23-29-00830).
文摘Morphology and growth rate of carbon dioxide hydrate on the interface between liquid carbon dioxide and humic acid solutions were studied in this work.It was found that after the growth of the hydrate film at the interface,further growth of hydrate due to the suction of water in the capillary system formed between the wall of the cuvette and the end boundary of the hydrate layer occurs.Most probably,substantial effects on the formation of this capillary system may be caused by variations in reactor wall properties,for example,hydrophobic-hydrophilic balance,roughness,etc.We found,that the rate of CO_(2) hydrate film growth on the surface of the humic acid aqueous solution is 4-fold to lower in comparison with the growth rate on the surface of pure water.We suppose that this is caused by the adsorption of humic acid associates on the surface of hydrate particles and,as a consequence,by the deceleration of the diffusion of dissolved carbon dioxide to the growing hydrate particle.
基金supported by the National Natural Science Foundation of China(51834008,52022109,52274307,and 21804319)National Key Research and Development Program of China(2021YFC2901100)+1 种基金Science Foundation of China University of Petroleum,Beijing(2462022QZDX008,2462021QNX2010,2462020YXZZ019 and 2462020YXZZ016)State Key Laboratory of Heavy Oil Processing(HON-KFKT2022-10).
文摘A green environmental protection and enhanced leaching process was proposed to recover all elements from spent lithium iron phosphate(LiFePO_(4)) lithium batteries.In order to reduce the influence of Al impurity in the recovery process,NaOH was used to remove impurity.After impurity removal,the spent LiFePO_(4) cathode material was used as raw material under the H_(2)SO_(4) system,and the pressure oxidation leaching process was adopted to achieve the preferential leaching of lithium.The E-pH diagram of the Fe-P-Al-H_(2)O system can determine the stable region of each element in the recovery process of spent LiFePO_(4)Li-batteries.Under the optimal conditions(500 r·min^(-1),15 h,363.15 K,0.4 MPa,the liquid-solid ratio was 4:1 ml·g^(-1)and the acid-material ratio was 0.29),the leaching rate of Li was 99.24%,Fe,Al,and Ti were 0.10%,2.07%,and 0.03%,respectively.The Fe and P were precipitated and recovered as FePO_(4)·2H_(2)O.The kinetic analysis shows that the process of high-pressure acid leaching of spent LiFePO_(4) materials depends on the surface chemical reaction.Through the life cycle assessment(LCA)of the spent LiFePO_(4) whole recovery process,eight midpoint impact categories were selected to assess the impact of recovery process.The results can provide basic environmental information on production process for recycling industry.
基金Project supported by the National Key R&D Program of China (2022YFC2905800)National Natural Science Foundation of China(52174242)。
文摘To investigate the thermal decomposition behavior and reaction kinetics of bastnaesite in suspension roasting,the gas and solid products of bastnaesite roasted in N2 and air atmospheres were examined using a gas analyzer,X-ray diffraction(XRD),scanning electron microscopy(SEM),and energy dispersive spectrometry(EDS).Subsequently,the kinetic parameters of bastnaesite in the suspension roasting process were derived and calculated using the isothermal method.The results show that the decomposition product of bastnaesite in N_(2) is CeOF.However,once the roasting temperature exceeds 600℃,CO is generated in addition to CO_(2),and all the XRD diffraction peaks of CeOF are shifted to the right,indicating that CO_(2) can oxidize CeOF and lead to the transformation of Ce(Ⅲ) into Ce(Ⅳ).When roasted in air,the decomposition product CeOF can be completely converted to CeF3 and Ce_(7)O_(12) as it easily oxidizes.Additionally,the reaction rate of bastnaesite in air is higher than that of N_(2),and the starting reaction temperature is lower than that of N_(2).A large number of irregular cracks and holes appear on the surface of solid-phase products following suspension roasting,which are due to the thermal decomposition of bastnaesite that produces CO_(2) as well as the reconstruction of the lattice of the solid-phase products.The reaction kinetic model of bastnaesite roasted in N_(2)(temperature range 600-750℃) and air(temperatu re range 500-575℃) confo rms to the A_(3/2) model with the mechanism function G(α)=-ln(1-α)^(2/3),and the reaction activation energy is 59.78 kj/mol and lnA is 1.65 s^(-1) in N_(2) atmosphere.In air,the reaction activation energy is 100.30 kj/mol and lnA is 9.63 s^(-1).
基金supported by the National Key Research and Development Program of China(2022YFC3205300)the National Natural Science Foundation of China(22176124).
文摘Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the electron distribution,thereby increasing the catalytic activity.However,this focus often overshadows an equally essential aspect of HAOPs:the adsorption effect.Adsorption is a critical initiator for triggering the interaction of oxidants and contaminants with heterogeneous catalysts.The efficacy of these interactions is influenced by a variety of physicochemical properties,including surface chemistry and pore sizes,which determine the affinities between contaminants and material surfaces.This dispar ity in affinity is pivotal because it underpins the selective removal of contaminants,especially in complex waste streams containing diverse contaminants and competing matrices.Consequently,understanding and mastering these interfacial interactions is fundamentally indispensable not only for improving pro cess efficiency but also for enhancing the selectivity of contaminant removal.Herein,we highlight the importance of adsorption-driven interfacial interactions for fundamentally elucidating the catalytic mechanisms of HAOPs.Such interactions dictate the overall performance of the treatment processes by balancing the adsorption,reaction,and desorption rates on the catalyst surfaces.Elucidating the adsorption effect not only shifts the paradigm in understanding HAOPs but also improves their practical ity in water treatment and wastewater decontamination.Overall,we propose that revisiting adsorption driven interfacial interactions holds great promise for optimizing catalytic processes to develop effective HAOP strategies.
基金supported by National Natural Science Foundation of China(22178002,22178001)Natural Science Foundation of Anhui Province(2308085Y19)Excellent Youth Research Project of Anhui Provincial Department of Education(2022AH030045).
文摘Hydrogen-enriched ironmaking presents a promising approach to mitigate coke consumption and carbon emission in blast furnace(BF)operations.This work investigated the relationship between the structural features of cokes and their reactivity towards solution loss(SL),especially under hydrogen-enriched atmospheres.Six cokes were characterized,and their SL behaviors were examined under varying atmospheres to elucidate the effects of hydrogen enrichment.The results indicate that an increase in fixed carbon content leads to a decrease in the coke reactivity index(CRI)and an increase in coke strength after reaction(CSR),in the CO_(2) atmosphere,the CSR of coke increases from 35.76%−62.83%,while in the 90CO_(2)/10H_(2) atmosphere,the CSR of coke increases from 65.67%−84.09%.There is a good linear relationship between CRI and microcrystalline structure parameters of coke.Cokes with larger crystalline size,lower amorphous content,and smaller optical texture index(OTI)values show enhanced resistance to degradation and maintain structural integrity in BF.Kinetic analysis performed with the shifted-modified-random pore model(S-MRPM)reveals that alterations in pore structure and intrinsic mineral composition significantly influence the reaction rate.The introduction of a small amount of water vapor raises SL rates,whereas a minor addition of hydrogen(<10%)decelerates SL due to its incomplete conversion to water vapor and the reduced partial pressure of the gasifying agent.Thermodynamic calculations also indicate that the introduced hydrogen does not convert into the same fraction of water vapor.The shift from chemical reaction control to gas diffusion control as the rate-determining step with rising temperatures during SL process was confirmed,and the introduction of hydrogen does not notably alter SL behavior.This result demonstrated that introducing a small amount of hydrogen(<10%)can mitigate SL rates,thereby enhancing coke strength and reducing coke consumption and carbon emissions.
基金supported by the China Postdoctoral Science Foundation(No.2023T160088)the Youth Fund of the National Natural Science Foundation of China(No.52304324).
文摘Magnesium and magnesium alloys,serving as crucial lightweight structural materials and hydrogen storage elements,find extensive applications in space technology,aviation,automotive,and magnesium-based hydrogen industries.The global production of primary magnesium has reached approximately 1.2 million tons per year,with anticipated diversification in future applications and significant market demand.Nevertheless,approximately 80%of the world’s primary magnesium is still manufactured through the Pidgeon process,grappling with formidable issues including high energy consumption,massive carbon emission,significant resource depletion,and environmental pollution.The implementation of the relative vacuum method shows potential in breaking through technological challenges in the Pidgeon process,facilitating clean,low-carbon continuous magnesium smelting.This paper begins by introducing the principles of the relative vacuum method.Subsequently,it elucidates various innovative process routes,including relative vacuum ferrosilicon reduction,aluminum thermal reduction co-production of spinel,and aluminum thermal reduction co-production of calcium aluminate.Finally,and thermodynamic foundations of the relative vacuum,a quantitative analysis of the material,energy flows,carbon emission,and production cost for several new processes is conducted,comparing and analyzing them against the Pidgeon process.The study findings reveal that,with identical raw materials,the relative vacuum silicon thermal reduction process significantly decreases raw material consumption,energy consumption,and carbon dioxide emissions by 15.86%,30.89%,and 26.27%,respectively,compared to the Pidgeon process.The relative vacuum process,using magnesite as the raw material and aluminum as the reducing agent,has the lowest magnesium-to-feed ratio,at only 3.385.Additionally,its energy consumption and carbon dioxide emissions are the lowest,at 1.817 tce/t Mg and 7.782 t CO_(2)/t Mg,respectively.The energy consumption and carbon emissions of the relative vacuum magnesium smelting process co-producing calcium aluminate(12CaO·7Al_(2)O_(3),3CaO·Al_(2)O_(3),and CaO·Al_(2)O_(3))are highly correlated with the consumption of dolomite in the raw materials.When the reduction temperature is around 1473.15 K,the critical volume fraction of magnesium vapor for different processes varies within the range of 5%–40%.Production cost analysis shows that the relative vacuum primary magnesium smelting process has significant economic benefits.This paper offers essential data support and theoretical guidance for achieving energy efficiency,carbon reduction in magnesium smelting,and the industrial adoption of innovative processes.
基金the financial support from National Natural Science Foundation of China(Nos.52100204 and 52330005)Beijing Outstanding Young Scientist Program(No.BJJWZYJH01201910004016)。
文摘The widespread occurrence of antibiotics in wastewater aroused serious attention.UV-based advanced oxidation processes(UV-AOPs)are powerful technologies in removing antibiotics in wastewater,which include UV/catalyst,UV/H_(2)O_(2),UV/Fenton,UV/persulfate,UV/chlorine,UV/ozone,and UV/peracetic acid.In this review,we collated recent advances in application of UV-AOPs for the abatement of fiuoroquinolones(FQs)as widely used class of antibiotics.Representative FQs of ciprofioxacin,norfioxacin,ofioxacin,and enrofioxacin were most extensively studied in the state-of-art studies.The evolvement of gas-state and solid-state UV light sources was presented and batch and continuous fiow UV reactors were compared towards practical applications in UV-AOPs.Generally,degradation of FQs followed the pseudo-first order kinetics in UV-AOPs and strongly affected by the operating factors and components of water matrix.Participation of reactive species and transformation mechanisms of FQs were compared among different UV-AOPs.Challenges and future prospects were pointed out for providing insights into the practical application of UV-AOPs for antibiotic remediation in wastewater.
基金National Natural Science Foundation of China(52275328,51875157)。
文摘Hydrogen desorption kinetics and characteristics,residual hydrogen content and activation energy of TC21 alloy were investigated by the constant volume method.Results show that hydrogen desorption temperature and initial hydrogen pressure affect hydrogen desorption characteristics of TC21 alloy.The hydrogen desorption process is mainly dominated by nucleation and growth process(kt=[-ln(1-α)]^(2/3)),chemical reaction process(kt=(1-α)^(-1/2))and three-dimensional diffusion process(kt=[1-(1-α)^(1/3)]^(1/2))when the hydrogenated TC21 alloy is dehydrogenated at temperatures of 700-940°C.When the hydrogenated TC21 alloy releases hydrogen,the following relationship exists among the rate constants of each process:k(chemical reaction process)>k(nucleation and growth process)>k(three-dimensional diffusion process).The residual hydrogen content of the hydrogenated TC21 alloy after hydrogen desorption decreases gradually with the increase in hydrogen desorption temperature,and increases gradually with the increase in the initial hydrogen pressure.The activation energy of TC21 alloy in the process of hydrogen desorption is about 26.663 kJ/mol.
基金supported by Priority Academic Program Development of Jiangsu Higher Educatior(PPZY2015A044).
文摘In the cooling crystallization process of thiourea,a significant issue is the excessively wide crystal size distribution(CSD)and the abundance of fine crystals.This investigation delves into the growth kinetics and mechanisms governing thiourea crystals during the cooling crystallization process.The fitting results indicate that the crystal growth rate coefficient,falls within the range of 10^(-7)to 10^(-8)m·s^(-1).Moreover,with decreasing crystallization temperature,the growth process undergoes a transition from diffusion-controlled to surface reaction-controlled,with temperature primarily influencing the surface reaction process and having a limited impact on the diffusion process.Comparing the crystal growth rate,and the diffusion-limited growth rate,at different temperatures,it is observed that the crystal growth process can be broadly divided into two stages.At temperatures above 25℃,1/qd(qd is diffusion control index)approaches 1,indicating the predominance of diffusion control.Conversely,at temperatures below 25℃,1/qd increases rapidly,signifying the dominance of surface reaction control.To address these findings,process optimization was conducted.During the high-temperature phase(35-25℃),agitation was increased to reduce the limitations posed by bulk-phase diffusion in the crystallization process.In the low-temperature phase(25-15℃),agitation was reduced to minimize crystal breakage.The optimized process resulted in a thiourea crystal product with a particle size distribution predominantly ranging from 0.7 to 0.9 mm,accounting for 84%of the total.This study provides valuable insights into resolving the issue of excessive fine crystals in the thiourea crystallization process.
基金supported by the National Key Research&Development Program of China(2021YFB3803200)the National Natural Science Foundation of China(22288102).
文摘Hexafluoropropylene oxide(HFPO)is a crucial fluorinated chemical mainly synthesized from hexafluoropropylene(HFP)through the oxidation of oxygen.However,the reaction network and kinetic characteristics are not fully understood yet,resulting in a lack of theoretical basis for synthesis process improvement.Here,the free radical reaction mechanism and complete reaction network involved in the noncatalytic oxidation of HFP to synthesize HFPO was explored by density functional theory.Transition state theory was employed to calculate the intrinsic reaction rate constants for elementary reactions.Based on theoretical reaction rate ratios,reaction pathways were selected,and a simplified reaction network was derived.It was found that byproducts were formed owing to the decomposition of HFPO and subsequent reactions with excessive oxygen while oxygen tended to participate more in the main reaction under oxygen-deficient conditions.The variations in reaction pathways occurring at different HFP/oxygen molar ratios was well elucidated by comparing with experimental data.This research establishes a robust theoretical foundation for optimizing and regulating the synthesis of HFPO.
基金financial support from the National Natural Science Foundation of China(NSFC No.52202253,52072173)Natural Science Foundation of Jiangsu Province(No.BK20220914)+1 种基金Fundamental Research Funds for the Central Universities(No.ILA22061,ILA22075)Large Instrument and Equipment Sharing Fund of NUAA.
文摘Intuitively,the solvation structure featuring stronger interacted sheath in deep eutectic solution(DES)electrolyte would result in sluggish interfacial charge transfer and intense polarization,which obstructs its practical application in emerging Zn based batteries.Unexpectedly,here we discover a Zn‖organic battery with exceptional kinetics properties enabled by a hydrated DES electrolyte,which can render higher discharge capacity,smaller voltage polarization,and faster kinetics of charge transfer in comparison with conventional aqueous 3 M ZnCl_(2)electrolyte,though its viscosity is two orders of magnitude higher than the latter.The improved kinetics of charge transfer and ion diffusion is demonstrated to originate from the local electron structure regulation of cathode in hydrated DES electrolyte.Furthermore,the DES electrolyte has also been shown to restrict parasitic reaction associated with active water by preferential urea-molecular adsorption on Zn surface and stronger water trapping in solvation structure,giving rise to long-term stable dendrite-free Zn plating/stripping.This work provides a new rationale for understanding electrochemical behaviors of organic cathodes in DES electrolyte,which is conducive to the development of high-performance Zn‖organic batteries.