In order to promote the quality of brick tea and reduce its fluoride content, the fluoride contents in leaves of 25 tea varieties at the .stage of one bud and five leaves were determined by the method of fluodde-ion s...In order to promote the quality of brick tea and reduce its fluoride content, the fluoride contents in leaves of 25 tea varieties at the .stage of one bud and five leaves were determined by the method of fluodde-ion selective electrode method. The results showed that the fluodde contents in the 25 varieties were in the range of 181.92-345.06 mg/kg, end the fluoride content in 'Zhongcha 302' was the lowest. Based on traditional production process of brick tea, 3 new low-fluoride brick tea production processes with 'Zhongcha 302' as the raw material at the stage of one bud and five leaves were constructed. The fluoride content, physicochemical in- dex, sensory end main chemical contents in the brick tea samples were determined. The best processing process of Iow-fluodde brick tea was process 3, which included aldng, fixing, rolling, second fixing, second roiling, sun-drying, pile-fermentation, steaming, pile-fermentation, drying and shaping into brick by vapor treating. The re- sults showed that the fluoride content and physicochemical index of the brick tea sample of the third low-fluoride brick tea production process accorded with National Standard GB/T 9833.4-2013. The sensory evaluation of the brick tea sample was better than that of brick tea manufacture by the traditional process. The water extract, tea polyphenols, amino acids, caffeine and water-soluble sugar in the brick tea sample increased by 9.41%, 36.39%, 26.94%, 27.23% and 15.29%, respectively. Low-fluodds bdck tea could be produced by selecting low fluoride tea varieties, controlling the tondemess of fresh leaves, and optimizing the processing technique.展开更多
The present study was designed to optimize the processing of Fructus Arctii by response surface methodology (RSM). Based on single factor studies, a three-variable, three-level Box-Behnken design (BBD) was used to...The present study was designed to optimize the processing of Fructus Arctii by response surface methodology (RSM). Based on single factor studies, a three-variable, three-level Box-Behnken design (BBD) was used to monitor the effects of independent variables, including processing temperature and time, on the dependent variables. Response surfaces and contour plots of the contents of total lignans, chlorogenic acid, arctiin, and aretigenin were obtained through ultraviolet and visible (UV-Vis) monitoring and high performance liquid chromatography (HPLC). Fructus Arctii should be processed under heating in a pot at 311℃, medicine at 119℃ for 123s with flipping frequently. The experimental values under the optimized processing technology were consistent with the predicted values. In conclusion, RSM is an effective method to optimize the processing of traditional Chinese medicine (TCM).展开更多
The investigation was carried out on the technical problems of finishing the inner surface of elbow parts and the action mechanism of particles in elbow precision machining by abrasive flow.This work was analyzed and ...The investigation was carried out on the technical problems of finishing the inner surface of elbow parts and the action mechanism of particles in elbow precision machining by abrasive flow.This work was analyzed and researched by combining theory,numerical and experimental methods.The direct simulation Monte Carlo(DSMC)method and the finite element analysis method were combined to reveal the random collision of particles during the precision machining of abrasive flow.Under different inlet velocity,volume fraction and abrasive particle size,the dynamic pressure and turbulence flow energy of abrasive flow in elbow were analyzed,and the machining mechanism of particles on the wall and the influence of different machining parameters on the precision machining quality of abrasive flow were obtained.The test results show the order of the influence of different parameters on the quality of abrasive flow precision machining and establish the optimal process parameters.The results of the surface morphology before and after the precision machining of the inner surface of the elbow are discussed,and the surface roughness Ra value is reduced from 1.125μm to 0.295μm after the precision machining of the abrasive flow.The application of DSMC method provides special insights for the development of abrasive flow technology.展开更多
Downstream processing or product recovery plays a vital role in the development of bioprocesses.To improve the bioprocess efficiency,some unconventional methods are much required.The continuous manufacturing in downst...Downstream processing or product recovery plays a vital role in the development of bioprocesses.To improve the bioprocess efficiency,some unconventional methods are much required.The continuous manufacturing in downstream processing makes the Process Analytical Technologies(PATs)as an important tool.Monitoring and controlling bioprocess are an essential factor for the principles of PAT and quality by design.Spectroscopic methods can apply to monitor multiple analytes in real-time with less sample processing with significant advancements.Raman spectroscopy is an extensively used technique as an analytical and research tool owing to its modest process form,non-destructive,non-invasive optical molecular spectroscopic imaging with computer-based analysis.Generally,its application is essential for the analysis and characterization of biological samples,and it is easy to operate with minimal sample.The innovation on various types of enhanced Raman spectroscopy was designed to enhance the Raman analytical technique.Raman spectroscopy could couple with chemometrics to provide reliable alternative analysis method of downstream process analysis.Thus,this review aims to provide useful insight on the application of Raman spectroscopy for PAT in downstream processing of biotechnology and Raman data analysis in biological fields.展开更多
OBJECTIVE:To evaluate the quality of Moyao(Myrrh)in the identification of the geographical origin and processing of the products.METHODS:Raw Moyao(Myrrh)and two kinds of Moyao(Myrrh)processed with vinegar from three c...OBJECTIVE:To evaluate the quality of Moyao(Myrrh)in the identification of the geographical origin and processing of the products.METHODS:Raw Moyao(Myrrh)and two kinds of Moyao(Myrrh)processed with vinegar from three countries were identified using near-infrared(NIR)spectroscopy combined with chemometric techniques.Principal component analysis(PCA)was used to reduce the dimensionality of the data and visualize the clustering of samples from different categories.A classical chemometric algorithm(PLS-DA)and two machine learning algorithms[K-nearest neighbor(KNN)and support vector machine]were used to conduct a classification analysis of the near-infrared spectra of the Moyao(Myrrh)samples,and their discriminative performance was evaluated.RESULTS:Based on the accuracy,precision,recall rate,and F1 value in each model,the results showed that the classical chemometric algorithm and the machine learning algorithm obtained positive results.In all of the chemometric analyses,the NIR spectrum of Moyao(Myrrh)preprocessed by standard normal variation or Multivariate scattering correction combined with KNN achieved the highest accuracy in identifying the geographical origins,and the accuracy of identifying the processing technology established by the KNN method after first-order derivative pretreatment was the best.The best accuracy of geographical origin discrimination and processing technology discrimination were 0.9853 and 0.9706 respectively.CONCLUSIONS:NIR spectroscopy combined with chemometric technology can be an important tool for tracking the origin and processing technology of Moyao(Myrrh)and can also provide a reference for evaluations of its quality and the clinical use.展开更多
Sesame seeds are promulgated as traditional high-quality edible oil crops,rich in lipid(40–65%),protein(19–35%),and bioactive compounds.The review starts with bioactive components(fatty acid,tocopherol,phytosterol,s...Sesame seeds are promulgated as traditional high-quality edible oil crops,rich in lipid(40–65%),protein(19–35%),and bioactive compounds.The review starts with bioactive components(fatty acid,tocopherol,phytosterol,sesamin,sesamolin,and sesamol)of sesame seeds.It considers processing techniques for extracting oil(aqueous extraction and pressing)from seeds.Novel technologies,such as enzyme-assisted aqueous,supercritical CO_(2),and microwave-assisted solvent extraction,are also discussed.The methods of utilization of sesame seed cake are also analyzed.In the future,the processing technology of sesame seed will be further developed in the direction of improving comprehensive utilization rate to meet new consumption demand.展开更多
Background:The herbs should be processed by different methods before use,and the efficacy and toxicity of Chinese herbal medicines may change,which may enhance efficacy and reduce toxicity after processing.Gansui(Kans...Background:The herbs should be processed by different methods before use,and the efficacy and toxicity of Chinese herbal medicines may change,which may enhance efficacy and reduce toxicity after processing.Gansui(Kansui radix)is a common clinical herbal medicine,and there are considerable changes in its toxicity and efficacy after processing.Gaocao(Glycyrrhizae radix et rhizome)has a detoxifying effect.Methods:Using the contents of euphorbiadienol and the alcohol-soluble extract of Glycyrrhizae radix-processed Kansui radix as evaluation indexes,response surface methodology was used to optimize the processing technology of Kansui radix by exploring the effects of Glycyrrhizae radix et rhizoma-addition amount,frying temperature,and frying time on the processing technology of Kansui radix.Meanwhile,response surface software was used to analyze experimental data to determine the processing parameters of Kansui radix by Glycyrrhizae radix et rhizoma.Integrative Pharmacology-based Research Platform of Traditional Chinese Medicine is used to analysis the potential ingredients of Kansui radix and verify the potential ingredients by western blotting.Results:The technology of Glycyrrhizae radix et rhizoma-processed Kansui radix was optimized for the Glycyrrhizae radix et rhizoma-addition amount of 27%,frying temperature of 180℃,and frying time of 11 min.The network pharmacology analysis revealed that Kansui radix could cause kidney,liver,and heart injury by the PI3K/AKT signaling pathway.Kansui radix at high or low dose could decrease the ratio of p-AKT/AKT while Glycyrrhizae radix et rhizoma-processed Kansui could increase it.Conclusion:The model established by response surface methodology is relatively accurate and can predict the contents of euphorbiadienol and alcohol extract of processed Kansui radix.The toxic effects and its mechanism of action of Kansui radix and processed Kansui radix on kidney,liver,and heart,from the perspective of systems biology,have provided scientific evidence to its clinical application.展开更多
Integrated water and fertilizer technology has the advantages of saving water,fertilizer and labour,which is widely applied in tomato plantation. Integrated water and fertilizer technology in topdressing and whole pro...Integrated water and fertilizer technology has the advantages of saving water,fertilizer and labour,which is widely applied in tomato plantation. Integrated water and fertilizer technology in topdressing and whole process of big and small tomatoes were studied,and their application effects were contrasted and analyzed,and application advantages and scopes of the two models were concluded.展开更多
Additive manufacturing(AM)technology enables the creation of a wide variety of assemblies and complex shapes from three-dimensional model data in a bottom-up,layer-by-layer manner.Therefore,AM has revolutionized the m...Additive manufacturing(AM)technology enables the creation of a wide variety of assemblies and complex shapes from three-dimensional model data in a bottom-up,layer-by-layer manner.Therefore,AM has revolutionized the modern manufacturing industry,attracting increasing interest from both academic and industrial fields.The Rapid Manufacturing Center(RMC)of the School of Materials Science and Engineering at the Huazhong Univer-sity of Science and Technology(HUST),one of the earliest and most powerful AM research teams in China,has been engaged in AM research since 1991.Aiming to address the“stuck neck”problems of specific high-strength products for AM,the RMC has conducted full-chain research in the aspects of special materials,processes,equip-ment,and applications for AM.Moreover,it has formed a multi-disciplinary research team over the past three decades.Relevant research achievements in the AM field include winning five national awards,more than ten first prizes,and more than ten second prizes at the provincial and ministerial levels.The RMC was complimented as“the world’s most influential organization in the laser AM field in 2018”by Virtual and Physical Prototyping(an international authoritative magazine of AM).Moreover,their industrialization achievements were evaluated as“having affected countries such as Singapore,South Korea,and the United States”by an international author-itative Wohlers Report on AM.In this study,we first summarize the representative research achievements of the RMC in the AM field.These include the preparation and processing technology of high-performance polymeric,metallic,and ceramic materials for AM;advanced processing technology and software/equipment for AM;and typical AM-fabricated products and their applications.Further,we discuss the latest research achievements in cutting-edge 4D printing in terms of feedstock selection,printing processes,induction strategies,and potential ap-plications.Finally,we provide insights into the future directions of AM technology development:(ⅰ)Evolving from three-dimensional printing to multi-dimensional printing,(ⅱ)transitioning from plane slicing to curved surface slicing to woven slicing,(ⅲ)enhancing efficient formation from dot-line-sheet-volume printing,(ⅳ)shifting from single material to multi-materials AM,(ⅴ)advancing from the multiscale direction of macroscopic-mesoscopic-microscopic structures,(ⅵ)integrating material preparation with forming integration,(ⅶ)expanding from small batch to large batch.展开更多
At present, China’s CCUS has made a leap forward development in policy, technology, demonstration projects and commercial operation. However, from the perspective of the entire energy system, CCUS can play its role i...At present, China’s CCUS has made a leap forward development in policy, technology, demonstration projects and commercial operation. However, from the perspective of the entire energy system, CCUS can play its role in reducing CO2 only when it is combined with the process of resource exploitation, energy production, energy storage and transportation and energy utilization, which requires the research of the whole process technology of CCUS. This paper studies the source sink matching and technology integration matching in the whole process of CCUS technology, studies the application of existing coal-fired power plants + CCUS, steel plants + CCUS, cement plants + CCUS technology and the future application of BECCS technology and hydrogen energy + CCUS technology, and puts forward relevant suggestions on improving the laws, regulations and policy system for the development of CCUS, establishing a cross sectoral and cross industry cooperation platform and improving the carbon trading system.展开更多
Development and application of new ceramic die materials is one of the important topics in the field of die research. The composition, processing technology, mechanical property and engineering performance of the cera...Development and application of new ceramic die materials is one of the important topics in the field of die research. The composition, processing technology, mechanical property and engineering performance of the ceramic materials such as cermet, ZTA, TZP, TZP/Al2O3, TZP/TiC/Al2O3, PSZ and Sialon, etc., with rare earth yttrium, lanthanum and cerium, and so on working as additives, were investigated and analyzed in the present study. Problems existed in the research and application of rare earth ceramic die materials were discussed. Rare earth additives can effectively improve the mechanical property and engineering performance of ceramic die materials. Thus, it will have further perspectives of wider application. More attention should be paid in the future to the toughening and strengthening of the ceramic die materials, the adding forms and kinds of rare earth elements and acting mechanisms of rare earth additives in ceramic die materials.展开更多
Convenience rice has become widely popular due to its easy availability for cooking. This study investigated the starch structure and composition of leachate and the microstructure of reheated convenience rice using n...Convenience rice has become widely popular due to its easy availability for cooking. This study investigated the starch structure and composition of leachate and the microstructure of reheated convenience rice using novel processing technologies: super-heated steaming(SHS), auto-electric cooking(AEC), and pressurized-steam cooking(PSC). Additionally, the effect of two different target water contents(58% and 63%) was also evaluated. The PSC_63% sample had the highest total solids and amylopectin amount in the leachate. The amylopectin amount in the leachate differed significantly based on the targeted water content. Morphological characterization revealed that the swelling of starch and the coated layer on the surface of rice grains were most pronounced in the PSC_63% sample due to the pressure processing. The textural hardness of the AEC_58% sample was much higher than that of the other samples. The PSC_63% sample had the highest textural adhesiveness value, which can be attributed to the highest amylopectin amount in the leachate. Sensory characterization showed that the PSC_63% sample had the highest glossiness, whiteness, moistness, and overall acceptability. The principal component analysis score plots presented substantial differences in the leachate and textural and sensory characteristics of reheated convenience rice among the different processing technologies.展开更多
Magnetic liquid can produce alternative internal pressure under the alternative high-frequency gradient magnetic field.Because it has higher bulk modulus,the internal pressure results in its volume change.Using piezoe...Magnetic liquid can produce alternative internal pressure under the alternative high-frequency gradient magnetic field.Because it has higher bulk modulus,the internal pressure results in its volume change.Using piezoelectric transducers,the ultrasonic wave generated by the vibration of magnetic liquids can be detected,which shows that the magnetic liquids have the magnetostrictive effect and can generate the ultrasonic vibration under the alternative magnetic gradient field.Some nonmagnetic abrasives and rust-proofing agents can be mixed into the magnetic liquids,under the alternative magnetic field,the abrasives held by magnetic liquids grind the surface of the workpieces,and thus,the finishing for the surface with complex shape,mold cavity and inner wall of tiny tubes can be realized.展开更多
Process analytical technology(PAT) is gaining more interest in the biomanufacturing industry because of its potential to improve operational control and compliance through real-time quality assurance.Currently, biopha...Process analytical technology(PAT) is gaining more interest in the biomanufacturing industry because of its potential to improve operational control and compliance through real-time quality assurance.Currently, biopharmaceutical producers mainly monitor chromatographic processes with ultraviolet/visible(UV/Vis) absorbance. However, this measurement has a very limited correlation with purity and quantity. The current study aims to determine the concentration of monoclonal antibody(mAb) and host cell proteins(HCPs) using a build-in UV/Vis monitoring during Protein A affinity chromatography and to optimize the separation conditions for high purity of mAb and minimizing the HCPs content. The eluate was analyzed through in-line UV/Vis at 280 and 410 nm, representing mAb and HCPs concentration,respectively. Each 0.1 column volume(CV) fraction of UV/Vis chromatogram peak area were calculated,and different separation conditions were then compared. The optimum conditions of mAb separation were found as 12 CV loading, elution at pH 3.5, and starting the collection at 0.5 CV point, resulting in high m Ab recovery of 95.92% and additional removal of 49.98% of HCP comparing with whole elution pool. This study concluded that UV/Vis-based in-line monitoring at 280 and 410 nm showed a high potential to optimize and real-time control Protein A affinity chromatography for mAb purification from HCPs.展开更多
[Objectives]To optimize the processing technology for roasted licorice with water.[Methods]Through the orthogonal experimental design,taking the water added,moistening time,frying temperature and frying time as the fa...[Objectives]To optimize the processing technology for roasted licorice with water.[Methods]Through the orthogonal experimental design,taking the water added,moistening time,frying temperature and frying time as the factors,and the content of glycyrrhizin and glycyrrhizic acid as the evaluation index,the processing technology for roasted licorice with water was optimized.[Results]The best processing technology of licorice was as follows:Pure licorice slices were mixed with water and moistened for 3 h,and then fried at 160℃for 6 min.20 kg of water was added to every 100 kg of licorice.[Conclusions]The best processing technology for roasted licorice with water was established,laying a foundation for the research and application of roasted licorice with water and its preparation.展开更多
[Objectives] The aim was to explore the best parameters for processing Aconiti Kusnezoffii Radix by bean curd. [Methods] Orthogonal test( L_(16)(4~3)) was designed to investigate the optimal soaking time,decocting tim...[Objectives] The aim was to explore the best parameters for processing Aconiti Kusnezoffii Radix by bean curd. [Methods] Orthogonal test( L_(16)(4~3)) was designed to investigate the optimal soaking time,decocting time and bean curd proportion for processing Aconiti Kusnezoffii Radix by bean curd. The contents of monoester alkaloids and diester-alkaloids were measured as the evaluation indexes. [Results]The contents of monoester alkaloids were 0. 11%,0. 07%,0. 062% and 0. 048% respectively under the four levels of soaking time,were0. 081%,0. 066%,0. 074% and 0. 067% respectively under the four levels of decocting time,and were 0. 070%,0. 072%,0. 080% and0. 073% respectively under the four levels of bean curd proportion. The content of diester-alkaloids was all below 0. 034%. The influence intensity of the three factors on the content of monoester alkaloids ranked as soaking time > decocting time > bean curd proportion. Under any of the above conditions,the content of diester-alkaloids was below the limit of Chinese Pharmacopoeia. The content of diester-alkaloids was reduced obviously with the increased use of bean curd. [Conclusions] The optimum processing conditions for Aconiti Kusnezoffii Radix were A_3B_3C_2,i. e.,soaking time of 6 d,decocting time of 5 h and bean curd proportion of 25%.展开更多
1 Introduction The 21st century is coming and the world iron and steel making technology is facing an important technical evolution at this century turnover,which is reflected in two aspects:①Rapid development of tra...1 Introduction The 21st century is coming and the world iron and steel making technology is facing an important technical evolution at this century turnover,which is reflected in two aspects:①Rapid development of traditional iron&steel making technology with continuous regeneration;②Three major frontier techniques of metallurgy(smelting reduction;near-net-shape continuous展开更多
[Objectives]To explore the correlation of processing technology,physical parameters and chemical components during plain stir-baking of Trichosanthis Radix.[Methods]Based on mixture uniform experiment design,the Trich...[Objectives]To explore the correlation of processing technology,physical parameters and chemical components during plain stir-baking of Trichosanthis Radix.[Methods]Based on mixture uniform experiment design,the Trichosanthis Radix was prepared by plain stir-bake method.Delphi method was used to evaluate and select the highest-scoring processed product for measuring physical parameters.UV spectrophotometry was used to determine the contents of starch and polysaccharide.The correlation and linear regression model of processing technology,physical parameters and chemical components were established with the aid of SPSS 26.0[Results]After processing by plain stir-bake method,the relative density and chromaticity showed a decreasing trend in the processed products of Trichosanthis Radix,the oxidation value,hydroscopic rate and swelling decreased firstly and then increased,and pH increased firstly and then decreased.The content of total starch decreased,the content of polysaccharide increased,and there was a negative correlation between them.There was a significant positive correlation between temperature and oxidation value,swelling and hydroscopic rate,hydroscopic rate and polysaccharide,and there was a significant negative correlation between relative density and hydroscopic rate or polysaccharide,total starch and hydroscopic rate or swelling.The linear relation model between processing technology and physical parameters and chemical components was r2>0.9.[Conclusions]After processing by plain stir-bake method,the physical parameters of Trichosanthis Radix changed,and there may be mutual conversion between total starch and polysaccharides.To a certain extent,physical parameters can be used to evaluate the quality of processed products of Trichosanthis Radix.This study is expected to provide a reference for research on quality evaluation of processed products of traditional Chinese medicine.展开更多
A dvanced Metallic Materials Research and Processing Technology Center was found in December 1998. As a unit under The College of Mechanical Engineering, the Center is an expansion of the former Cast and Composite Mat...A dvanced Metallic Materials Research and Processing Technology Center was found in December 1998. As a unit under The College of Mechanical Engineering, the Center is an expansion of the former Cast and Composite Materials Research Group, which was found in the early eighties of last century. The Center is focusing in the basic and applied research, and development of advanced metallic materials and their processing technology. It also functions as an organization展开更多
文摘In order to promote the quality of brick tea and reduce its fluoride content, the fluoride contents in leaves of 25 tea varieties at the .stage of one bud and five leaves were determined by the method of fluodde-ion selective electrode method. The results showed that the fluodde contents in the 25 varieties were in the range of 181.92-345.06 mg/kg, end the fluoride content in 'Zhongcha 302' was the lowest. Based on traditional production process of brick tea, 3 new low-fluoride brick tea production processes with 'Zhongcha 302' as the raw material at the stage of one bud and five leaves were constructed. The fluoride content, physicochemical in- dex, sensory end main chemical contents in the brick tea samples were determined. The best processing process of Iow-fluodde brick tea was process 3, which included aldng, fixing, rolling, second fixing, second roiling, sun-drying, pile-fermentation, steaming, pile-fermentation, drying and shaping into brick by vapor treating. The re- sults showed that the fluoride content and physicochemical index of the brick tea sample of the third low-fluoride brick tea production process accorded with National Standard GB/T 9833.4-2013. The sensory evaluation of the brick tea sample was better than that of brick tea manufacture by the traditional process. The water extract, tea polyphenols, amino acids, caffeine and water-soluble sugar in the brick tea sample increased by 9.41%, 36.39%, 26.94%, 27.23% and 15.29%, respectively. Low-fluodds bdck tea could be produced by selecting low fluoride tea varieties, controlling the tondemess of fresh leaves, and optimizing the processing technique.
基金financially supported by the Natural Science Foundation of Jiangsu Province(BK2011135)Found Project for Transformation of Scientific and Technological Achievements of Jiangsu Province(No.BZ2011053)+1 种基金Open Project of National First Class Key Discipline for Science of Chinese Materia Medica,Nanjing University of Chinese Medicine(No.2011ZYX2-013)Scientific Innovation Research of University Graduate of Jiangsu Province(CXZZ130626)
文摘The present study was designed to optimize the processing of Fructus Arctii by response surface methodology (RSM). Based on single factor studies, a three-variable, three-level Box-Behnken design (BBD) was used to monitor the effects of independent variables, including processing temperature and time, on the dependent variables. Response surfaces and contour plots of the contents of total lignans, chlorogenic acid, arctiin, and aretigenin were obtained through ultraviolet and visible (UV-Vis) monitoring and high performance liquid chromatography (HPLC). Fructus Arctii should be processed under heating in a pot at 311℃, medicine at 119℃ for 123s with flipping frequently. The experimental values under the optimized processing technology were consistent with the predicted values. In conclusion, RSM is an effective method to optimize the processing of traditional Chinese medicine (TCM).
基金Projects(51206011,U1937201)supported by the National Natural Science Foundation of ChinaProject(20200301040RQ)supported by the Science and Technology Development Program of Jilin Province,China+1 种基金Project(JJKH20190541KJ)supported by the Education Department of Jilin Province,ChinaProject(18DY017)supported by Changchun Science and Technology Program of Changchun City,China。
文摘The investigation was carried out on the technical problems of finishing the inner surface of elbow parts and the action mechanism of particles in elbow precision machining by abrasive flow.This work was analyzed and researched by combining theory,numerical and experimental methods.The direct simulation Monte Carlo(DSMC)method and the finite element analysis method were combined to reveal the random collision of particles during the precision machining of abrasive flow.Under different inlet velocity,volume fraction and abrasive particle size,the dynamic pressure and turbulence flow energy of abrasive flow in elbow were analyzed,and the machining mechanism of particles on the wall and the influence of different machining parameters on the precision machining quality of abrasive flow were obtained.The test results show the order of the influence of different parameters on the quality of abrasive flow precision machining and establish the optimal process parameters.The results of the surface morphology before and after the precision machining of the inner surface of the elbow are discussed,and the surface roughness Ra value is reduced from 1.125μm to 0.295μm after the precision machining of the abrasive flow.The application of DSMC method provides special insights for the development of abrasive flow technology.
基金This work was supported by the National Natural Science Foundation of China(No.21878263,22078286)。
文摘Downstream processing or product recovery plays a vital role in the development of bioprocesses.To improve the bioprocess efficiency,some unconventional methods are much required.The continuous manufacturing in downstream processing makes the Process Analytical Technologies(PATs)as an important tool.Monitoring and controlling bioprocess are an essential factor for the principles of PAT and quality by design.Spectroscopic methods can apply to monitor multiple analytes in real-time with less sample processing with significant advancements.Raman spectroscopy is an extensively used technique as an analytical and research tool owing to its modest process form,non-destructive,non-invasive optical molecular spectroscopic imaging with computer-based analysis.Generally,its application is essential for the analysis and characterization of biological samples,and it is easy to operate with minimal sample.The innovation on various types of enhanced Raman spectroscopy was designed to enhance the Raman analytical technique.Raman spectroscopy could couple with chemometrics to provide reliable alternative analysis method of downstream process analysis.Thus,this review aims to provide useful insight on the application of Raman spectroscopy for PAT in downstream processing of biotechnology and Raman data analysis in biological fields.
基金Jiangxi Provincial Administration of Traditional Chinese Medicine Key Research Laboratory on the Fundamentals of Chinese Medicine Evidence(Gan TCM Science and Education Word[2022]No.8-4)Jiangxi University of Chinese Medicine Science and Technology Innovation Team Development Program:Traditional Chinese Medicine Constitution-State Identification Health Management Research Team(No.CXTD22016)。
文摘OBJECTIVE:To evaluate the quality of Moyao(Myrrh)in the identification of the geographical origin and processing of the products.METHODS:Raw Moyao(Myrrh)and two kinds of Moyao(Myrrh)processed with vinegar from three countries were identified using near-infrared(NIR)spectroscopy combined with chemometric techniques.Principal component analysis(PCA)was used to reduce the dimensionality of the data and visualize the clustering of samples from different categories.A classical chemometric algorithm(PLS-DA)and two machine learning algorithms[K-nearest neighbor(KNN)and support vector machine]were used to conduct a classification analysis of the near-infrared spectra of the Moyao(Myrrh)samples,and their discriminative performance was evaluated.RESULTS:Based on the accuracy,precision,recall rate,and F1 value in each model,the results showed that the classical chemometric algorithm and the machine learning algorithm obtained positive results.In all of the chemometric analyses,the NIR spectrum of Moyao(Myrrh)preprocessed by standard normal variation or Multivariate scattering correction combined with KNN achieved the highest accuracy in identifying the geographical origins,and the accuracy of identifying the processing technology established by the KNN method after first-order derivative pretreatment was the best.The best accuracy of geographical origin discrimination and processing technology discrimination were 0.9853 and 0.9706 respectively.CONCLUSIONS:NIR spectroscopy combined with chemometric technology can be an important tool for tracking the origin and processing technology of Moyao(Myrrh)and can also provide a reference for evaluations of its quality and the clinical use.
基金The Agricultural Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2016-OCRI)Wuhan Scientific and Technical Payoffs Transformation Project(2019030703011505)Earmarked Fund for China Agriculture Research System(CARS-14).
文摘Sesame seeds are promulgated as traditional high-quality edible oil crops,rich in lipid(40–65%),protein(19–35%),and bioactive compounds.The review starts with bioactive components(fatty acid,tocopherol,phytosterol,sesamin,sesamolin,and sesamol)of sesame seeds.It considers processing techniques for extracting oil(aqueous extraction and pressing)from seeds.Novel technologies,such as enzyme-assisted aqueous,supercritical CO_(2),and microwave-assisted solvent extraction,are also discussed.The methods of utilization of sesame seed cake are also analyzed.In the future,the processing technology of sesame seed will be further developed in the direction of improving comprehensive utilization rate to meet new consumption demand.
基金funded by the grants from Applied Basic Research Program of Shanxi Province(201901D111342).
文摘Background:The herbs should be processed by different methods before use,and the efficacy and toxicity of Chinese herbal medicines may change,which may enhance efficacy and reduce toxicity after processing.Gansui(Kansui radix)is a common clinical herbal medicine,and there are considerable changes in its toxicity and efficacy after processing.Gaocao(Glycyrrhizae radix et rhizome)has a detoxifying effect.Methods:Using the contents of euphorbiadienol and the alcohol-soluble extract of Glycyrrhizae radix-processed Kansui radix as evaluation indexes,response surface methodology was used to optimize the processing technology of Kansui radix by exploring the effects of Glycyrrhizae radix et rhizoma-addition amount,frying temperature,and frying time on the processing technology of Kansui radix.Meanwhile,response surface software was used to analyze experimental data to determine the processing parameters of Kansui radix by Glycyrrhizae radix et rhizoma.Integrative Pharmacology-based Research Platform of Traditional Chinese Medicine is used to analysis the potential ingredients of Kansui radix and verify the potential ingredients by western blotting.Results:The technology of Glycyrrhizae radix et rhizoma-processed Kansui radix was optimized for the Glycyrrhizae radix et rhizoma-addition amount of 27%,frying temperature of 180℃,and frying time of 11 min.The network pharmacology analysis revealed that Kansui radix could cause kidney,liver,and heart injury by the PI3K/AKT signaling pathway.Kansui radix at high or low dose could decrease the ratio of p-AKT/AKT while Glycyrrhizae radix et rhizoma-processed Kansui could increase it.Conclusion:The model established by response surface methodology is relatively accurate and can predict the contents of euphorbiadienol and alcohol extract of processed Kansui radix.The toxic effects and its mechanism of action of Kansui radix and processed Kansui radix on kidney,liver,and heart,from the perspective of systems biology,have provided scientific evidence to its clinical application.
基金Supported by "Sannongliufang" Technology Collaboration Program in Zhejiang Province in 2014
文摘Integrated water and fertilizer technology has the advantages of saving water,fertilizer and labour,which is widely applied in tomato plantation. Integrated water and fertilizer technology in topdressing and whole process of big and small tomatoes were studied,and their application effects were contrasted and analyzed,and application advantages and scopes of the two models were concluded.
基金supported by National Natural Science Foundation of China(Grant Nos.52235008,U2037203,and U2341270)Key Research and Development Plan of Hubei Province(2022BAA030).
文摘Additive manufacturing(AM)technology enables the creation of a wide variety of assemblies and complex shapes from three-dimensional model data in a bottom-up,layer-by-layer manner.Therefore,AM has revolutionized the modern manufacturing industry,attracting increasing interest from both academic and industrial fields.The Rapid Manufacturing Center(RMC)of the School of Materials Science and Engineering at the Huazhong Univer-sity of Science and Technology(HUST),one of the earliest and most powerful AM research teams in China,has been engaged in AM research since 1991.Aiming to address the“stuck neck”problems of specific high-strength products for AM,the RMC has conducted full-chain research in the aspects of special materials,processes,equip-ment,and applications for AM.Moreover,it has formed a multi-disciplinary research team over the past three decades.Relevant research achievements in the AM field include winning five national awards,more than ten first prizes,and more than ten second prizes at the provincial and ministerial levels.The RMC was complimented as“the world’s most influential organization in the laser AM field in 2018”by Virtual and Physical Prototyping(an international authoritative magazine of AM).Moreover,their industrialization achievements were evaluated as“having affected countries such as Singapore,South Korea,and the United States”by an international author-itative Wohlers Report on AM.In this study,we first summarize the representative research achievements of the RMC in the AM field.These include the preparation and processing technology of high-performance polymeric,metallic,and ceramic materials for AM;advanced processing technology and software/equipment for AM;and typical AM-fabricated products and their applications.Further,we discuss the latest research achievements in cutting-edge 4D printing in terms of feedstock selection,printing processes,induction strategies,and potential ap-plications.Finally,we provide insights into the future directions of AM technology development:(ⅰ)Evolving from three-dimensional printing to multi-dimensional printing,(ⅱ)transitioning from plane slicing to curved surface slicing to woven slicing,(ⅲ)enhancing efficient formation from dot-line-sheet-volume printing,(ⅳ)shifting from single material to multi-materials AM,(ⅴ)advancing from the multiscale direction of macroscopic-mesoscopic-microscopic structures,(ⅵ)integrating material preparation with forming integration,(ⅶ)expanding from small batch to large batch.
文摘At present, China’s CCUS has made a leap forward development in policy, technology, demonstration projects and commercial operation. However, from the perspective of the entire energy system, CCUS can play its role in reducing CO2 only when it is combined with the process of resource exploitation, energy production, energy storage and transportation and energy utilization, which requires the research of the whole process technology of CCUS. This paper studies the source sink matching and technology integration matching in the whole process of CCUS technology, studies the application of existing coal-fired power plants + CCUS, steel plants + CCUS, cement plants + CCUS technology and the future application of BECCS technology and hydrogen energy + CCUS technology, and puts forward relevant suggestions on improving the laws, regulations and policy system for the development of CCUS, establishing a cross sectoral and cross industry cooperation platform and improving the carbon trading system.
基金Project supported by National Natural Science Foundation of China (50405047)Natural Science foundation of Shandong Province (Y2005F04)Jinan Young Star Plan of Science and Technology (08108)
文摘Development and application of new ceramic die materials is one of the important topics in the field of die research. The composition, processing technology, mechanical property and engineering performance of the ceramic materials such as cermet, ZTA, TZP, TZP/Al2O3, TZP/TiC/Al2O3, PSZ and Sialon, etc., with rare earth yttrium, lanthanum and cerium, and so on working as additives, were investigated and analyzed in the present study. Problems existed in the research and application of rare earth ceramic die materials were discussed. Rare earth additives can effectively improve the mechanical property and engineering performance of ceramic die materials. Thus, it will have further perspectives of wider application. More attention should be paid in the future to the toughening and strengthening of the ceramic die materials, the adding forms and kinds of rare earth elements and acting mechanisms of rare earth additives in ceramic die materials.
基金supported by the High Value-added Food Technology Development Program in Korea (Grant No. 323002-4)the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry, Republic of Korea。
文摘Convenience rice has become widely popular due to its easy availability for cooking. This study investigated the starch structure and composition of leachate and the microstructure of reheated convenience rice using novel processing technologies: super-heated steaming(SHS), auto-electric cooking(AEC), and pressurized-steam cooking(PSC). Additionally, the effect of two different target water contents(58% and 63%) was also evaluated. The PSC_63% sample had the highest total solids and amylopectin amount in the leachate. The amylopectin amount in the leachate differed significantly based on the targeted water content. Morphological characterization revealed that the swelling of starch and the coated layer on the surface of rice grains were most pronounced in the PSC_63% sample due to the pressure processing. The textural hardness of the AEC_58% sample was much higher than that of the other samples. The PSC_63% sample had the highest textural adhesiveness value, which can be attributed to the highest amylopectin amount in the leachate. Sensory characterization showed that the PSC_63% sample had the highest glossiness, whiteness, moistness, and overall acceptability. The principal component analysis score plots presented substantial differences in the leachate and textural and sensory characteristics of reheated convenience rice among the different processing technologies.
基金Sponsored by Zhejiang Province Scientific and Technological Key Task Program (2007C21025)Ningbo Science and Technological Key Task Program (2007B10010)
文摘Magnetic liquid can produce alternative internal pressure under the alternative high-frequency gradient magnetic field.Because it has higher bulk modulus,the internal pressure results in its volume change.Using piezoelectric transducers,the ultrasonic wave generated by the vibration of magnetic liquids can be detected,which shows that the magnetic liquids have the magnetostrictive effect and can generate the ultrasonic vibration under the alternative magnetic gradient field.Some nonmagnetic abrasives and rust-proofing agents can be mixed into the magnetic liquids,under the alternative magnetic field,the abrasives held by magnetic liquids grind the surface of the workpieces,and thus,the finishing for the surface with complex shape,mold cavity and inner wall of tiny tubes can be realized.
基金supported by the National Key Research & Development Program of China (2021YFE0113300)the National Natural Science Foundation of China (22078286 and 21878263)+1 种基金Zhejiang Universitythe Talent-Introduction Program of China for the Postdoctoral Researcher for the financial support。
文摘Process analytical technology(PAT) is gaining more interest in the biomanufacturing industry because of its potential to improve operational control and compliance through real-time quality assurance.Currently, biopharmaceutical producers mainly monitor chromatographic processes with ultraviolet/visible(UV/Vis) absorbance. However, this measurement has a very limited correlation with purity and quantity. The current study aims to determine the concentration of monoclonal antibody(mAb) and host cell proteins(HCPs) using a build-in UV/Vis monitoring during Protein A affinity chromatography and to optimize the separation conditions for high purity of mAb and minimizing the HCPs content. The eluate was analyzed through in-line UV/Vis at 280 and 410 nm, representing mAb and HCPs concentration,respectively. Each 0.1 column volume(CV) fraction of UV/Vis chromatogram peak area were calculated,and different separation conditions were then compared. The optimum conditions of mAb separation were found as 12 CV loading, elution at pH 3.5, and starting the collection at 0.5 CV point, resulting in high m Ab recovery of 95.92% and additional removal of 49.98% of HCP comparing with whole elution pool. This study concluded that UV/Vis-based in-line monitoring at 280 and 410 nm showed a high potential to optimize and real-time control Protein A affinity chromatography for mAb purification from HCPs.
文摘[Objectives]To optimize the processing technology for roasted licorice with water.[Methods]Through the orthogonal experimental design,taking the water added,moistening time,frying temperature and frying time as the factors,and the content of glycyrrhizin and glycyrrhizic acid as the evaluation index,the processing technology for roasted licorice with water was optimized.[Results]The best processing technology of licorice was as follows:Pure licorice slices were mixed with water and moistened for 3 h,and then fried at 160℃for 6 min.20 kg of water was added to every 100 kg of licorice.[Conclusions]The best processing technology for roasted licorice with water was established,laying a foundation for the research and application of roasted licorice with water and its preparation.
文摘[Objectives] The aim was to explore the best parameters for processing Aconiti Kusnezoffii Radix by bean curd. [Methods] Orthogonal test( L_(16)(4~3)) was designed to investigate the optimal soaking time,decocting time and bean curd proportion for processing Aconiti Kusnezoffii Radix by bean curd. The contents of monoester alkaloids and diester-alkaloids were measured as the evaluation indexes. [Results]The contents of monoester alkaloids were 0. 11%,0. 07%,0. 062% and 0. 048% respectively under the four levels of soaking time,were0. 081%,0. 066%,0. 074% and 0. 067% respectively under the four levels of decocting time,and were 0. 070%,0. 072%,0. 080% and0. 073% respectively under the four levels of bean curd proportion. The content of diester-alkaloids was all below 0. 034%. The influence intensity of the three factors on the content of monoester alkaloids ranked as soaking time > decocting time > bean curd proportion. Under any of the above conditions,the content of diester-alkaloids was below the limit of Chinese Pharmacopoeia. The content of diester-alkaloids was reduced obviously with the increased use of bean curd. [Conclusions] The optimum processing conditions for Aconiti Kusnezoffii Radix were A_3B_3C_2,i. e.,soaking time of 6 d,decocting time of 5 h and bean curd proportion of 25%.
文摘1 Introduction The 21st century is coming and the world iron and steel making technology is facing an important technical evolution at this century turnover,which is reflected in two aspects:①Rapid development of traditional iron&steel making technology with continuous regeneration;②Three major frontier techniques of metallurgy(smelting reduction;near-net-shape continuous
基金Science and Technology Research and Development Project of Chengde City,Hebei Province(201706A043)Young Scholar Program of Hebei Pharmaceutical Association Hospital Pharmaceutical Research Project(2020—Hbsyxhqn0029)Public Health Service Subsidy Fund Project of Chinese Medicine Department,State Administration of Traditional Chinese Medicine(Guo Zhong Yi Gui Cai Fa[2015]No.21).
文摘[Objectives]To explore the correlation of processing technology,physical parameters and chemical components during plain stir-baking of Trichosanthis Radix.[Methods]Based on mixture uniform experiment design,the Trichosanthis Radix was prepared by plain stir-bake method.Delphi method was used to evaluate and select the highest-scoring processed product for measuring physical parameters.UV spectrophotometry was used to determine the contents of starch and polysaccharide.The correlation and linear regression model of processing technology,physical parameters and chemical components were established with the aid of SPSS 26.0[Results]After processing by plain stir-bake method,the relative density and chromaticity showed a decreasing trend in the processed products of Trichosanthis Radix,the oxidation value,hydroscopic rate and swelling decreased firstly and then increased,and pH increased firstly and then decreased.The content of total starch decreased,the content of polysaccharide increased,and there was a negative correlation between them.There was a significant positive correlation between temperature and oxidation value,swelling and hydroscopic rate,hydroscopic rate and polysaccharide,and there was a significant negative correlation between relative density and hydroscopic rate or polysaccharide,total starch and hydroscopic rate or swelling.The linear relation model between processing technology and physical parameters and chemical components was r2>0.9.[Conclusions]After processing by plain stir-bake method,the physical parameters of Trichosanthis Radix changed,and there may be mutual conversion between total starch and polysaccharides.To a certain extent,physical parameters can be used to evaluate the quality of processed products of Trichosanthis Radix.This study is expected to provide a reference for research on quality evaluation of processed products of traditional Chinese medicine.
文摘A dvanced Metallic Materials Research and Processing Technology Center was found in December 1998. As a unit under The College of Mechanical Engineering, the Center is an expansion of the former Cast and Composite Materials Research Group, which was found in the early eighties of last century. The Center is focusing in the basic and applied research, and development of advanced metallic materials and their processing technology. It also functions as an organization