Molybdenum oxide(MoO_(x))is a commonly used hole extraction material in organic photovoltaics.The MoO_(x) interlayer is deposited typically via thermal evaporation in vacuum.To meet the need for rollto-roll manufactur...Molybdenum oxide(MoO_(x))is a commonly used hole extraction material in organic photovoltaics.The MoO_(x) interlayer is deposited typically via thermal evaporation in vacuum.To meet the need for rollto-roll manufacturing,solution processing of MoO_(x) without post-annealing treatment is essential.Herein,we demonstrate an effective approach to produce annealing-free,alcohol-processable MoO_(x) anode interlayers,namely S-MoO_(x),by utilizing the bis(catecholato)diboron(B_(2) Cat_(2))molecule to modify the surface oxygen sites in MoO_(x).The formation of surface diboron-oxygen complex enables the alcohol solubility of S-MoO_(x).An enhanced light utilization is realized in the S-MoO_(x)-based organic photovoltaics.This affords a superior short-circuit current density(Jsc)close to 26 mA cm^(-2) and ultimately a high power-conversion efficiency(PCE)of 15.2%in the representative PM6:Y6 based inverted OPVs,which is one of the highest values in the inverted OPVs using an as-cast S-MoO_(x) anode interlayer.展开更多
The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and ...The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and renewable nature.However,limitations such as brittleness,hydrophilicity,and thermal properties restrict its widespread application.To overcome these issues,covalent adaptable network was constructed to fabricate a fully bio-based starch plastic with multiple advantages via Schiff base reactions.This strategy endowed starch plastic with excellent thermal processability,as evidenced by a low glass transition temperature(T_(g)=20.15℃).Through introducing Priamine with long carbon chains,the starch plastic demonstrated superior flexibility(elongation at break=45.2%)and waterproof capability(water contact angle=109.2°).Besides,it possessed a good thermal stability and self-adaptability,as well as solvent resistance and chemical degradability.This work provides a promising method to fabricate fully bio-based plastics as alternative to petroleum-based plastics.展开更多
Transition metal dichalcogenides(TMDs), as one of the most promising two-dimensional(2D) materials, have attracted considerable attention for use in photodetection applications over the past few years due to their dis...Transition metal dichalcogenides(TMDs), as one of the most promising two-dimensional(2D) materials, have attracted considerable attention for use in photodetection applications over the past few years due to their distinct properties, such as atomic-scale thickness, tunable direct bandgaps, and decent carrier mobilities at room temperature. Compared with pure 2D TMDs, the construction of hybrids consisting of TMDs and other low-dimensional materials can further improve the performance of photodetectors including their spectral range, responsivity and detectivity, which significantly boosts interest in the development of TMDs-based photodetectors. On the other hand, solution-phase synthesis methods provide a facile strategy for the scalable production of TMD hybrids, opening an exciting avenue to develop low-cost devices. In this review, we summarize the material synthesis, characterizations, and photodetection applications of the solution processable TMDs-based hybrids, as well as provide insights into their prospects.展开更多
The future of high-energy density electrochemical energy storage systems relies on the advancement of rechargeable batteries that utilize reactive metals as anodes.In the alkaline metal,secondary battery systems becau...The future of high-energy density electrochemical energy storage systems relies on the advancement of rechargeable batteries that utilize reactive metals as anodes.In the alkaline metal,secondary battery systems because of abundant resource,high capacity and low redox potential,potassium(K)metal secondary battery(KMB)is expected to replace the existing lithiumion battery as a versatile platform for high-energy density,cost-effective energy storage devices.However,the difficulty in processing metal K results in nonstandard electrodes and hinders the development of KMBs.Furthermore,the mobility of the K metal anode due to its unique lowmelting point character at elevated temperatures in practical conditions leads to severe instability and risks in chemical/electrochemical processes.Herein,we fabricate a processable and moldable composite K metal anode by encapsulating K into reduced graphene oxide(rGO).The composite electrode can be engineered into various shapes discretionarily with precise sizes and stabilize the K metal anode at relatively high temperatures.Remarkably,the composite anode exhibits excellent cycling performance at high current density(8 mA cm^(-2)) with dendrite-free morphology.Paired with a Prussian blue cathode,the rGO-K composite anode shows much improved electrochemical performance and extended lifetime.展开更多
Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing addit...Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties.展开更多
Calcium carboaluminate was successfully prepared by a simple and efficient one-step method,and the effects of temperature,time,raw material ratio,carbonate type and heavy CaCO_(3)particle size on the products were inv...Calcium carboaluminate was successfully prepared by a simple and efficient one-step method,and the effects of temperature,time,raw material ratio,carbonate type and heavy CaCO_(3)particle size on the products were investigated in detail.The results show that increasing the temperature and extending the reaction time can enhance the yield and crystallisation degree of calcium carboaluminate.The proportion of Ca(OH)_(2),Al(OH)_(3)and CaCO_(3)is a pivotal factor in the synthesis of calcium carboaluminate.When the ratio of Ca(OH)_(2),Al(OH)_(3)and CaCO_(3)is 3:2:1,the diffraction peaks of calcium carboaluminate in the products are relatively sharp and strong.Furthermore,the purity and crystallinity of the synthesized calcium carboaluminate are higher when heavy CaCO_(3)with the particle size of 120 mesh is used as the carbonate raw material,in comparison to CO_(2),Na_(2)CO_(3)and light CaCO_(3).As results,a simple and efficient method for the synthesis of calcium carboaluminate is proposed,which will provide a solid experimental foundation and technical support for the industrial application of calcium carboaluminate in marine concrete.展开更多
The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurode...The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function.展开更多
To explore the best preparation process for terminal blend(TB)composite-modified asphalt and to filter its formulation with excellent performance,this study evaluates the performance of TB composite modified asphalt b...To explore the best preparation process for terminal blend(TB)composite-modified asphalt and to filter its formulation with excellent performance,this study evaluates the performance of TB composite modified asphalt by physical property index,microscopic morphology,rheological testing,and infrared spectroscopy on multiple scales.The results show that the best preparation process for TB-modified asphalt is stirring at 260℃ for 4 h at 400 rpm,which significantly reduces the modification time of the asphalt.From a physical property viewpoint,the TB composite-modified asphalt sample with 5% styrene-butadiene-styrene(SBS)+1% aromatics+0.1% sulfur exhibits high-comprehensive,high-and low-temperature properties.More-over,its crosslinked mesh structure comprises black rubber particles uniformly interwoven in the middle,which further enhances the performance of the asphalt and results in an excellent performance formulation.In addition,the sample with 5%SBS content has a higher G*value and smaller δ value than that with 3%SBS content,indicating that its high-temperature resistance is improved.The effect of adding 3%SBS content on the viscoelastic ratio is,to some extent,less than that caused by 20% rubber powder.展开更多
Unwarranted death of neurons is a major cause of neurodegenerative diseases.Since mature neurons are postmitotic and do not replicate,their death usually constitutes an irreversible step in pathology.A logical strateg...Unwarranted death of neurons is a major cause of neurodegenerative diseases.Since mature neurons are postmitotic and do not replicate,their death usually constitutes an irreversible step in pathology.A logical strategy to prevent neurodegeneration would then be to save all neurons that are still alive,i.e.protecting the ones that are still healthy as well as trying to rescue the ones that are damaged and in the process of dying.Regarding the latter,recent experiments have indicated that the possibility of reversing the cell death process and rescuing dying cells is more significant than previously anticipated.In many situations,the elimination of the cell death trigger alone enables dying cells to spontaneously repair their damage,recover,and survive.In this review,we explore the factors,which determine the fate of neurons engaged in the cell death process.A deeper insight into cell death mechanisms and the intrinsic capacity of cells to recover could pave the way for novel therapeutic approaches to neurodegenerative diseases.展开更多
This study examines the methods to plan the development of offshore oilfields over the years,which are used to support the decision-making on the development of offshore oilfields.About 100 papers are analysed and cat...This study examines the methods to plan the development of offshore oilfields over the years,which are used to support the decision-making on the development of offshore oilfields.About 100 papers are analysed and categorised into different groups of main early-stage decisions.The present study stands in contrast to the contributions of the operations research and system engineering review articles,on the one hand,and the petroleum engineering review articles,on the other.This is because it does not focus on one methodological approach,nor does it limit the literature analysis by offshore oilfield characteristics.Consequently,the present analysis may offer valuable insights,for instance,by identifying environmental planning decisions as a recent yet highly significant concern that is currently being imposed on decision-making process.Thus,it is evident that the incorporation of safety criteria within the technical-economic decision-making process for the design of production systems would be a crucial requirement at development phase.展开更多
The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer r...The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer rise earthquakes have been observed along the Sunda arc,following the estimated rupture area of the 2005 M_(W)8.6 Nias earthquakes.Here,we used kinematic waveform inversion(KIWI)to obtain the source parameters of the 14 May 2021 M_(W)6.6 event off the west coast of northern Sumatra and to define the fault plane that triggered this outer rise event.The KIWI algorithm allows two types of seismic source to be configured:the moment tensor model to describe the type of shear with six moment tensor components and the Eikonal model for the rupture of pure double-couple sources.This method was chosen for its flexibility to be applied for different sources of seismicity and also for the automated full-moment tensor solution with real-time monitoring.We used full waveform traces from 8 broadband seismic stations within 1000 km epicentral distances sourced from the Incorporated Research Institutions for Seismology(IRIS-IDA)and Geofon GFZ seismic record databases.The initial origin time and hypocenter values are obtained from the IRIS-IDA.The synthetic seismograms used in the inversion process are based on the existing regional green function database model and were accessed from the KIWI Tools Green's Function Database.The obtained scalar seismic moment value is 1.18×10^(19)N·m,equivalent to a moment magnitude M_(W)6.6.The source parameters are 140°,44°,and−99°for the strike,dip,and rake values at a centroid depth of 10.2 km,indicating that this event is a normal fault earthquake that occurred in the outer rise area.The outer rise events with normal faults typically occur at the shallow part of the plate,with nodal-plane dips predominantly in the range of 30°-60°on the weak oceanic lithosphere due to hydrothermal alteration.The stress regime around the plate subduction zone varies both temporally and spatially due to the cyclic influences of megathrust earthquakes.Tensional outer rise earthquakes tend to occur after the megathrust events.The relative timing of these events is not known due to the viscous relaxation of the down going slab and poroelastic response in the trench slope region.The occurrence of the 14 May 2021 earthquake shows the seismicity in the outer rise region in the strongly coupled Sunda arc subduction zone due to elastic bending stress within the duration of the seismic cycle.展开更多
Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening pa...Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%.展开更多
Neurodevelopmental processes represent a finely tuned interplay between genetic and environmental factors,shaping the dynamic landscape of the developing brain.A major component of the developing brain that enables th...Neurodevelopmental processes represent a finely tuned interplay between genetic and environmental factors,shaping the dynamic landscape of the developing brain.A major component of the developing brain that enables this dynamic is the white matter(WM),known to be affected in neurodevelopmental disorders(NDDs)(Rokach et al.,2024).WM formation is mediated by myelination,a multifactorial process driven by neuro-glia interactions dependent on proper neuronal functionality(Simons and Trajkovic,2006).Another key aspect of neurodevelopmental abnormalities involves neuronal dynamics and function,with recent advances significantly enhancing our understanding of both neuronal and glial mitochondrial function(Devine and Kittler,2018;Rojas-Charry et al.,2021).Energy homeostasis in neurons,attributed largely to mitochondrial function,is critical for proper functionality and interactions with oligodendrocytes(OLs),the cells forming myelin in the brain’s WM.We herein discuss the interplay between these processes and speculate on potential dysfunction in NDDs.展开更多
In the article titled“Inhibiting SHP2 reduces glycolysis,promotes microglial M1 polarization,and alleviates secondary inflammation following spinal cord injury in a mouse model,”published in Neural Regeneration Rese...In the article titled“Inhibiting SHP2 reduces glycolysis,promotes microglial M1 polarization,and alleviates secondary inflammation following spinal cord injury in a mouse model,”published in Neural Regeneration Research(Ding et al.,2025),the title was incorrectly presented due to an error during the language polishing process.展开更多
Acquiring real-time spectral information in point-of-care diagnosis,internet-of-thing,and other lab-on-chip applications require spectrometers with hetero-integration capability and miniaturized feature.Compared to co...Acquiring real-time spectral information in point-of-care diagnosis,internet-of-thing,and other lab-on-chip applications require spectrometers with hetero-integration capability and miniaturized feature.Compared to conventional semiconductors integrated by heteroepitaxy,solution-processable semiconductors provide a much-flexible integration platform due to their solution-processability,and,therefore,more suitable for the multi-material integrated system.However,solution-processable semiconductors are usually incompatible with the micro-fabrication processes.This work proposes a facile and universal platform to fabricate integrated spectrometers with semiconductor substitutability by unprecedently involving the conjugated mode of the bound states in the continuum(conjugated-BIC)photonics.Specifically,exploiting the conjugated-BIC photonics,which remains unexplored in conventional lasing studies,renders the broadband photodiodes with ultra-narrowband detection ability,detection wavelength tunability,and on-chip integration ability while ensuring the device performance.Spectrometers based on these ultra-narrowband photodiode arrays exhibit high spectral resolution and wide/tunable spectral bandwidth.The fabrication processes are compatible with solution-processable semiconductors photodiodes like perovskites and quantum dots,which can be potentially extended to conventional semiconductors.Signals from the spectrometers directly constitute the incident spectra without being computation-intensive,latency-sensitive,and error-intolerant.As an example,the integrated spectrometers based on perovskite photodiodes are capable of realizing narrowband/broadband light reconstruction and in-situ hyperspectral imaging.展开更多
Optoelectronic devices are advantageous in in-memory light sensing for visual information processing,recognition,and storage in an energy-efficient manner.Recently,in-memory light sensors have been proposed to improve...Optoelectronic devices are advantageous in in-memory light sensing for visual information processing,recognition,and storage in an energy-efficient manner.Recently,in-memory light sensors have been proposed to improve the energy,area,and time efficiencies of neuromorphic computing systems.This study is primarily focused on the development of a single sensing-storage-processing node based on a two-terminal solution-processable MoS2 metal-oxide-semiconductor(MOS)charge-trapping memory structure—the basic structure for charge-coupled devices(CCD)—and showing its suitability for in-memory light sensing and artificial visual perception.The memory window of the device increased from 2.8 V to more than 6V when the device was irradiated with optical lights of different wavelengths during the program operation.Furthermore,the charge retention capability of the device at a high temperature(100 ℃)was enhanced from 36 to 64%when exposed to a light wavelength of 400 nm.The larger shift in the threshold voltage with an increasing operating voltage confirmed that more charges were trapped at the Al_(2)O_(3)/MoS_(2) interface and in the MoS_(2) layer.A small convolutional neural network was proposed to measure the optical sensing and electrical programming abilities of the device.The array simulation received optical images transmitted using a blue light wavelength and performed inference computation to process and recognize the images with 91%accuracy.This study is a significant step toward the development of optoelectronic MOS memory devices for neuromorphic visual perception,adaptive parallel processing networks for in-memory light sensing,and smart CCD cameras with artificial visual perception capabilities.展开更多
With the rapid development of the global economy and the continuous consumption of fossil resources,sustainable and biodegradable natural biomass has garnered extensive attention as a promising substitute for syntheti...With the rapid development of the global economy and the continuous consumption of fossil resources,sustainable and biodegradable natural biomass has garnered extensive attention as a promising substitute for synthetic polymers.Due to their hierarchical and nanoscale structures,natural biopolymers exhibit remarkable mechanical properties,along with excellent innate biocompatibility and biodegradability,demonstrating significant potential in various application scenarios.Among these biopolymers,proteins and polysaccharides are the most commonly studied due to their low cost,abundance,and ease of use.However,the direct processing/conversion of proteins and polysaccharides into theirfinal products has been a long-standing challenge due to their natural morphology and compositions.In this review,we emphasize the importance of processing natural biopolymers into high-value-added products through sustainable and cost-effective methods.We begin with the extraction of four types of natural biopolymers:cellulose,chitosan,eggshell membrane,and silkfibroin.The processing and postfunctionalization strategies for these natural biopolymers are then highlighted.Alongside their unique structures,the versatile potential applications of these processable natural biopolymers in biomedical engineering,biosensors,environmental engineering,and energy applications are illustrated.Finally,we provide a summary and future outlook on processable natural biopolymers,underscoring the significance of converting natural biopolymers into valuable biomaterial platforms.展开更多
We report red-emission organic light-emitting diodes (OLEDs) based on solution-processable organic molecules with triphenylamine (TPA) as core and benzothiadiazole-(4-hexyl)thiophene (BT-4HT) as arms.Bi-armed molecule...We report red-emission organic light-emitting diodes (OLEDs) based on solution-processable organic molecules with triphenylamine (TPA) as core and benzothiadiazole-(4-hexyl)thiophene (BT-4HT) as arms.Bi-armed molecule B(TPA-BT-4HT) and star-shaped (tri-armed) molecule S(TPA-BT-4HT) both show pure red-emission peaked at 646 and 657 nm,respectively.The red-emission OLED with S(TPA-BT-4HT) as the emitting layer displays a higher maximum luminance of ca.7794 cd/m2 and a maximum EL efficiency of 0.91 cd/A.展开更多
A facile and scalable lithography-free fabrication technique,named solution-processable electrode-material embedding in dynamically inscribed nanopatterns(SPEEDIN),is developed to produce highly durable electronics.SP...A facile and scalable lithography-free fabrication technique,named solution-processable electrode-material embedding in dynamically inscribed nanopatterns(SPEEDIN),is developed to produce highly durable electronics.SPEEDIN uniquely utilizes a single continuous flow-line manufacturing process comprised of dynamic nanoinscribing and metal nanoparticle solution coating with selective embedding.Nano-and/or micro-trenches are inscribed into arbitrary polymers,and then an Ag nanoparticle solution is dispersed,soft-baked,doctor-bladed,and hard-baked to embed Ag micro-and nanowire structures into the trenches.Compared to lithographically embossed metal structures,the embedded SPEEDIN architectures can achieve higher durability with comparable optical and electrical properties and are robust and power-efficient even under extreme stresses such as scratching and bending.As one tangible application of SPEEDIN,we demonstrate a flexible metal electrode that can operate at 5 V at temperatures up to 300℃even under the influence of harsh external stimuli.SPEEDIN can be applied to the scalable fabrication of diverse flexible devices that are reliable for heavy-duty operation in harsh environments involving high temperatures,mechanical deformations,and chemical hazards.展开更多
基金supported by the National Natural Science Foundation of China(62074022,62074149)the Natural Science Foundation of Chongqing(cstc2018jszx-cyzdX0137)+3 种基金the Chongqing Science Foundation for Distinguished Young Scholars(cstc2020jcyj-jq0112)the“Artificial Intelligence”Key Project of Chongqing(cstc2017rgzn-zdyf0120)the Venture&Innovation Support Program for Chongqing Overseas Returnees(cx2019107)the Fundamental Research Funds for the Central Universities(2020CDJQY-A055,2019CDXYDL0007)。
文摘Molybdenum oxide(MoO_(x))is a commonly used hole extraction material in organic photovoltaics.The MoO_(x) interlayer is deposited typically via thermal evaporation in vacuum.To meet the need for rollto-roll manufacturing,solution processing of MoO_(x) without post-annealing treatment is essential.Herein,we demonstrate an effective approach to produce annealing-free,alcohol-processable MoO_(x) anode interlayers,namely S-MoO_(x),by utilizing the bis(catecholato)diboron(B_(2) Cat_(2))molecule to modify the surface oxygen sites in MoO_(x).The formation of surface diboron-oxygen complex enables the alcohol solubility of S-MoO_(x).An enhanced light utilization is realized in the S-MoO_(x)-based organic photovoltaics.This affords a superior short-circuit current density(Jsc)close to 26 mA cm^(-2) and ultimately a high power-conversion efficiency(PCE)of 15.2%in the representative PM6:Y6 based inverted OPVs,which is one of the highest values in the inverted OPVs using an as-cast S-MoO_(x) anode interlayer.
基金supported by the National Natural Science Foundation of China(U23A6005 and 32171721)State Key Laboratory of Pulp and Paper Engineering(202305,2023ZD01,2023C02)+1 种基金Guangdong Province Basic and Application Basic Research Fund(2023B1515040013)the Fundamental Research Funds for the Central Universities(2023ZYGXZR045).
文摘The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and renewable nature.However,limitations such as brittleness,hydrophilicity,and thermal properties restrict its widespread application.To overcome these issues,covalent adaptable network was constructed to fabricate a fully bio-based starch plastic with multiple advantages via Schiff base reactions.This strategy endowed starch plastic with excellent thermal processability,as evidenced by a low glass transition temperature(T_(g)=20.15℃).Through introducing Priamine with long carbon chains,the starch plastic demonstrated superior flexibility(elongation at break=45.2%)and waterproof capability(water contact angle=109.2°).Besides,it possessed a good thermal stability and self-adaptability,as well as solvent resistance and chemical degradability.This work provides a promising method to fabricate fully bio-based plastics as alternative to petroleum-based plastics.
基金supported by National Natural Science Foundation of China (61805175)the National Young Thousand Talents Plan+2 种基金Beiyang Scholar Plan, Tianjin UniversityJapan Society for the Promotion of Science (JSPS) (JP18K13798)111 Project (B17031)
文摘Transition metal dichalcogenides(TMDs), as one of the most promising two-dimensional(2D) materials, have attracted considerable attention for use in photodetection applications over the past few years due to their distinct properties, such as atomic-scale thickness, tunable direct bandgaps, and decent carrier mobilities at room temperature. Compared with pure 2D TMDs, the construction of hybrids consisting of TMDs and other low-dimensional materials can further improve the performance of photodetectors including their spectral range, responsivity and detectivity, which significantly boosts interest in the development of TMDs-based photodetectors. On the other hand, solution-phase synthesis methods provide a facile strategy for the scalable production of TMD hybrids, opening an exciting avenue to develop low-cost devices. In this review, we summarize the material synthesis, characterizations, and photodetection applications of the solution processable TMDs-based hybrids, as well as provide insights into their prospects.
基金support from National Natural Science Foundation of China(Grant Nos.51872196)Natural Science Foundation of Tianjin,China(Grant No.17JCJQJC44100)+3 种基金National Postdoctoral Program for Innovative Talent(No.BX20190232)China Postdoctoral Science Foundation(No.2019M660059)Jiangxi Provincial Natural Science Foundation(Grant no.20202ACBL214007)Opening Project of Key Laboratory of Materials Processing and Mold.
文摘The future of high-energy density electrochemical energy storage systems relies on the advancement of rechargeable batteries that utilize reactive metals as anodes.In the alkaline metal,secondary battery systems because of abundant resource,high capacity and low redox potential,potassium(K)metal secondary battery(KMB)is expected to replace the existing lithiumion battery as a versatile platform for high-energy density,cost-effective energy storage devices.However,the difficulty in processing metal K results in nonstandard electrodes and hinders the development of KMBs.Furthermore,the mobility of the K metal anode due to its unique lowmelting point character at elevated temperatures in practical conditions leads to severe instability and risks in chemical/electrochemical processes.Herein,we fabricate a processable and moldable composite K metal anode by encapsulating K into reduced graphene oxide(rGO).The composite electrode can be engineered into various shapes discretionarily with precise sizes and stabilize the K metal anode at relatively high temperatures.Remarkably,the composite anode exhibits excellent cycling performance at high current density(8 mA cm^(-2)) with dendrite-free morphology.Paired with a Prussian blue cathode,the rGO-K composite anode shows much improved electrochemical performance and extended lifetime.
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
基金National Key Research and Development Program of China(2022YFB4600902)Shandong Provincial Science Foundation for Outstanding Young Scholars(ZR2024YQ020)。
文摘Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties.
基金Funded by the National Nature Science Foundation of China(No.52078321)。
文摘Calcium carboaluminate was successfully prepared by a simple and efficient one-step method,and the effects of temperature,time,raw material ratio,carbonate type and heavy CaCO_(3)particle size on the products were investigated in detail.The results show that increasing the temperature and extending the reaction time can enhance the yield and crystallisation degree of calcium carboaluminate.The proportion of Ca(OH)_(2),Al(OH)_(3)and CaCO_(3)is a pivotal factor in the synthesis of calcium carboaluminate.When the ratio of Ca(OH)_(2),Al(OH)_(3)and CaCO_(3)is 3:2:1,the diffraction peaks of calcium carboaluminate in the products are relatively sharp and strong.Furthermore,the purity and crystallinity of the synthesized calcium carboaluminate are higher when heavy CaCO_(3)with the particle size of 120 mesh is used as the carbonate raw material,in comparison to CO_(2),Na_(2)CO_(3)and light CaCO_(3).As results,a simple and efficient method for the synthesis of calcium carboaluminate is proposed,which will provide a solid experimental foundation and technical support for the industrial application of calcium carboaluminate in marine concrete.
文摘The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function.
基金Funded by the National Natural Science Foundation of China(No.52278446)。
文摘To explore the best preparation process for terminal blend(TB)composite-modified asphalt and to filter its formulation with excellent performance,this study evaluates the performance of TB composite modified asphalt by physical property index,microscopic morphology,rheological testing,and infrared spectroscopy on multiple scales.The results show that the best preparation process for TB-modified asphalt is stirring at 260℃ for 4 h at 400 rpm,which significantly reduces the modification time of the asphalt.From a physical property viewpoint,the TB composite-modified asphalt sample with 5% styrene-butadiene-styrene(SBS)+1% aromatics+0.1% sulfur exhibits high-comprehensive,high-and low-temperature properties.More-over,its crosslinked mesh structure comprises black rubber particles uniformly interwoven in the middle,which further enhances the performance of the asphalt and results in an excellent performance formulation.In addition,the sample with 5%SBS content has a higher G*value and smaller δ value than that with 3%SBS content,indicating that its high-temperature resistance is improved.The effect of adding 3%SBS content on the viscoelastic ratio is,to some extent,less than that caused by 20% rubber powder.
基金supported by the following foundations:“Stichting Oogfonds Nederland(No.2023-26)”the“Landelijke Stichting voor Blinden en Slechtzienden(No.2023-24)”that contributed through UitZicht,ZonMw grant(No.435005020)a grant of the Chinese Scholarship Council(No.201809110169)(to TGMFG,CPMR,and WY).
文摘Unwarranted death of neurons is a major cause of neurodegenerative diseases.Since mature neurons are postmitotic and do not replicate,their death usually constitutes an irreversible step in pathology.A logical strategy to prevent neurodegeneration would then be to save all neurons that are still alive,i.e.protecting the ones that are still healthy as well as trying to rescue the ones that are damaged and in the process of dying.Regarding the latter,recent experiments have indicated that the possibility of reversing the cell death process and rescuing dying cells is more significant than previously anticipated.In many situations,the elimination of the cell death trigger alone enables dying cells to spontaneously repair their damage,recover,and survive.In this review,we explore the factors,which determine the fate of neurons engaged in the cell death process.A deeper insight into cell death mechanisms and the intrinsic capacity of cells to recover could pave the way for novel therapeutic approaches to neurodegenerative diseases.
基金the Strategic Research Plan of the Centre for Marine Technology and Ocean Engineering(CENTEC),which is financed by the Portuguese Foundation for Science and Technology(Fundação para a Ciência e a Tecnologia FCT)under contract UIDB/UIDP/00134/2020.
文摘This study examines the methods to plan the development of offshore oilfields over the years,which are used to support the decision-making on the development of offshore oilfields.About 100 papers are analysed and categorised into different groups of main early-stage decisions.The present study stands in contrast to the contributions of the operations research and system engineering review articles,on the one hand,and the petroleum engineering review articles,on the other.This is because it does not focus on one methodological approach,nor does it limit the literature analysis by offshore oilfield characteristics.Consequently,the present analysis may offer valuable insights,for instance,by identifying environmental planning decisions as a recent yet highly significant concern that is currently being imposed on decision-making process.Thus,it is evident that the incorporation of safety criteria within the technical-economic decision-making process for the design of production systems would be a crucial requirement at development phase.
基金supported by the National Natural Science Foundation of China(Grant No.42130312)。
文摘The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer rise earthquakes have been observed along the Sunda arc,following the estimated rupture area of the 2005 M_(W)8.6 Nias earthquakes.Here,we used kinematic waveform inversion(KIWI)to obtain the source parameters of the 14 May 2021 M_(W)6.6 event off the west coast of northern Sumatra and to define the fault plane that triggered this outer rise event.The KIWI algorithm allows two types of seismic source to be configured:the moment tensor model to describe the type of shear with six moment tensor components and the Eikonal model for the rupture of pure double-couple sources.This method was chosen for its flexibility to be applied for different sources of seismicity and also for the automated full-moment tensor solution with real-time monitoring.We used full waveform traces from 8 broadband seismic stations within 1000 km epicentral distances sourced from the Incorporated Research Institutions for Seismology(IRIS-IDA)and Geofon GFZ seismic record databases.The initial origin time and hypocenter values are obtained from the IRIS-IDA.The synthetic seismograms used in the inversion process are based on the existing regional green function database model and were accessed from the KIWI Tools Green's Function Database.The obtained scalar seismic moment value is 1.18×10^(19)N·m,equivalent to a moment magnitude M_(W)6.6.The source parameters are 140°,44°,and−99°for the strike,dip,and rake values at a centroid depth of 10.2 km,indicating that this event is a normal fault earthquake that occurred in the outer rise area.The outer rise events with normal faults typically occur at the shallow part of the plate,with nodal-plane dips predominantly in the range of 30°-60°on the weak oceanic lithosphere due to hydrothermal alteration.The stress regime around the plate subduction zone varies both temporally and spatially due to the cyclic influences of megathrust earthquakes.Tensional outer rise earthquakes tend to occur after the megathrust events.The relative timing of these events is not known due to the viscous relaxation of the down going slab and poroelastic response in the trench slope region.The occurrence of the 14 May 2021 earthquake shows the seismicity in the outer rise region in the strongly coupled Sunda arc subduction zone due to elastic bending stress within the duration of the seismic cycle.
基金financial support of the National Natural Science Foundation of China(No.52371103)the Fundamental Research Funds for the Central Universities,China(No.2242023K40028)+1 种基金the Open Research Fund of Jiangsu Key Laboratory for Advanced Metallic Materials,China(No.AMM2023B01).financial support of the Research Fund of Shihezi Key Laboratory of AluminumBased Advanced Materials,China(No.2023PT02)financial support of Guangdong Province Science and Technology Major Project,China(No.2021B0301030005)。
文摘Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%.
文摘Neurodevelopmental processes represent a finely tuned interplay between genetic and environmental factors,shaping the dynamic landscape of the developing brain.A major component of the developing brain that enables this dynamic is the white matter(WM),known to be affected in neurodevelopmental disorders(NDDs)(Rokach et al.,2024).WM formation is mediated by myelination,a multifactorial process driven by neuro-glia interactions dependent on proper neuronal functionality(Simons and Trajkovic,2006).Another key aspect of neurodevelopmental abnormalities involves neuronal dynamics and function,with recent advances significantly enhancing our understanding of both neuronal and glial mitochondrial function(Devine and Kittler,2018;Rojas-Charry et al.,2021).Energy homeostasis in neurons,attributed largely to mitochondrial function,is critical for proper functionality and interactions with oligodendrocytes(OLs),the cells forming myelin in the brain’s WM.We herein discuss the interplay between these processes and speculate on potential dysfunction in NDDs.
文摘In the article titled“Inhibiting SHP2 reduces glycolysis,promotes microglial M1 polarization,and alleviates secondary inflammation following spinal cord injury in a mouse model,”published in Neural Regeneration Research(Ding et al.,2025),the title was incorrectly presented due to an error during the language polishing process.
基金supported by the National Natural Science Foundation of China(grant No.11974092,60805058,62204069)the Shenzhen Fundamental research project(grant No.JCYJ20210324120402006,JCYJ20180306171700036,JCYJ20210324131206018,RCYX20221008092847060,and GXWD20220811163751003)+1 种基金the GuangDong Basic and Applied Basic Research Foundation(grant No.2022A1515011464,and 2023B1515020032)the Young Science&Technology Talent Training Program of Guangdong Provincial Association for Science&Technology(grant No.SQ440000220818002097)。
文摘Acquiring real-time spectral information in point-of-care diagnosis,internet-of-thing,and other lab-on-chip applications require spectrometers with hetero-integration capability and miniaturized feature.Compared to conventional semiconductors integrated by heteroepitaxy,solution-processable semiconductors provide a much-flexible integration platform due to their solution-processability,and,therefore,more suitable for the multi-material integrated system.However,solution-processable semiconductors are usually incompatible with the micro-fabrication processes.This work proposes a facile and universal platform to fabricate integrated spectrometers with semiconductor substitutability by unprecedently involving the conjugated mode of the bound states in the continuum(conjugated-BIC)photonics.Specifically,exploiting the conjugated-BIC photonics,which remains unexplored in conventional lasing studies,renders the broadband photodiodes with ultra-narrowband detection ability,detection wavelength tunability,and on-chip integration ability while ensuring the device performance.Spectrometers based on these ultra-narrowband photodiode arrays exhibit high spectral resolution and wide/tunable spectral bandwidth.The fabrication processes are compatible with solution-processable semiconductors photodiodes like perovskites and quantum dots,which can be potentially extended to conventional semiconductors.Signals from the spectrometers directly constitute the incident spectra without being computation-intensive,latency-sensitive,and error-intolerant.As an example,the integrated spectrometers based on perovskite photodiodes are capable of realizing narrowband/broadband light reconstruction and in-situ hyperspectral imaging.
基金The authors acknowledge financial support from the Semiconductor Initiative,King Abdullah University of Science and Technology,Saudi Arabia(KAUST Research Funding(KRF)under Award No.ORA-2022-5314).
文摘Optoelectronic devices are advantageous in in-memory light sensing for visual information processing,recognition,and storage in an energy-efficient manner.Recently,in-memory light sensors have been proposed to improve the energy,area,and time efficiencies of neuromorphic computing systems.This study is primarily focused on the development of a single sensing-storage-processing node based on a two-terminal solution-processable MoS2 metal-oxide-semiconductor(MOS)charge-trapping memory structure—the basic structure for charge-coupled devices(CCD)—and showing its suitability for in-memory light sensing and artificial visual perception.The memory window of the device increased from 2.8 V to more than 6V when the device was irradiated with optical lights of different wavelengths during the program operation.Furthermore,the charge retention capability of the device at a high temperature(100 ℃)was enhanced from 36 to 64%when exposed to a light wavelength of 400 nm.The larger shift in the threshold voltage with an increasing operating voltage confirmed that more charges were trapped at the Al_(2)O_(3)/MoS_(2) interface and in the MoS_(2) layer.A small convolutional neural network was proposed to measure the optical sensing and electrical programming abilities of the device.The array simulation received optical images transmitted using a blue light wavelength and performed inference computation to process and recognize the images with 91%accuracy.This study is a significant step toward the development of optoelectronic MOS memory devices for neuromorphic visual perception,adaptive parallel processing networks for in-memory light sensing,and smart CCD cameras with artificial visual perception capabilities.
基金supported by the National Natural Science Foundation of China(52303054)the Natural Science Foundation of Jiangsu Province(BK20231056)+3 种基金the fellowship of China Postdoctoral Science Foundation(2022TQ0123)the Fundamental Research Funds for the Central Universities(JUSRP122003,JUSRP123005)“Taihuzhiguang”Science and Technology Research(fundamental research)Project of Wuxi(K20221007)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX22_2345).
文摘With the rapid development of the global economy and the continuous consumption of fossil resources,sustainable and biodegradable natural biomass has garnered extensive attention as a promising substitute for synthetic polymers.Due to their hierarchical and nanoscale structures,natural biopolymers exhibit remarkable mechanical properties,along with excellent innate biocompatibility and biodegradability,demonstrating significant potential in various application scenarios.Among these biopolymers,proteins and polysaccharides are the most commonly studied due to their low cost,abundance,and ease of use.However,the direct processing/conversion of proteins and polysaccharides into theirfinal products has been a long-standing challenge due to their natural morphology and compositions.In this review,we emphasize the importance of processing natural biopolymers into high-value-added products through sustainable and cost-effective methods.We begin with the extraction of four types of natural biopolymers:cellulose,chitosan,eggshell membrane,and silkfibroin.The processing and postfunctionalization strategies for these natural biopolymers are then highlighted.Alongside their unique structures,the versatile potential applications of these processable natural biopolymers in biomedical engineering,biosensors,environmental engineering,and energy applications are illustrated.Finally,we provide a summary and future outlook on processable natural biopolymers,underscoring the significance of converting natural biopolymers into valuable biomaterial platforms.
基金supported by the National Natural Science Foundation of China (50633050,50803071 and 20721061)
文摘We report red-emission organic light-emitting diodes (OLEDs) based on solution-processable organic molecules with triphenylamine (TPA) as core and benzothiadiazole-(4-hexyl)thiophene (BT-4HT) as arms.Bi-armed molecule B(TPA-BT-4HT) and star-shaped (tri-armed) molecule S(TPA-BT-4HT) both show pure red-emission peaked at 646 and 657 nm,respectively.The red-emission OLED with S(TPA-BT-4HT) as the emitting layer displays a higher maximum luminance of ca.7794 cd/m2 and a maximum EL efficiency of 0.91 cd/A.
基金the National Research Foundation(NRF)grant(NRF-2015R1A5A1037668)funded by Ministry of Science and ICT of the Korean government.
文摘A facile and scalable lithography-free fabrication technique,named solution-processable electrode-material embedding in dynamically inscribed nanopatterns(SPEEDIN),is developed to produce highly durable electronics.SPEEDIN uniquely utilizes a single continuous flow-line manufacturing process comprised of dynamic nanoinscribing and metal nanoparticle solution coating with selective embedding.Nano-and/or micro-trenches are inscribed into arbitrary polymers,and then an Ag nanoparticle solution is dispersed,soft-baked,doctor-bladed,and hard-baked to embed Ag micro-and nanowire structures into the trenches.Compared to lithographically embossed metal structures,the embedded SPEEDIN architectures can achieve higher durability with comparable optical and electrical properties and are robust and power-efficient even under extreme stresses such as scratching and bending.As one tangible application of SPEEDIN,we demonstrate a flexible metal electrode that can operate at 5 V at temperatures up to 300℃even under the influence of harsh external stimuli.SPEEDIN can be applied to the scalable fabrication of diverse flexible devices that are reliable for heavy-duty operation in harsh environments involving high temperatures,mechanical deformations,and chemical hazards.