To improve the inconsistency in the analytic hierarchy process(AHP), a new method based on marginal optimization theory is proposed. During the improving process, this paper regards the reduction of consistency ratio(...To improve the inconsistency in the analytic hierarchy process(AHP), a new method based on marginal optimization theory is proposed. During the improving process, this paper regards the reduction of consistency ratio(CR) as benefit, and the maximum modification compared to the original pairwise comparison matrix(PCM) as cost, then the improvement of consistency is transformed to a benefit/cost analysis problem. According to the maximal marginal effect principle, the elements of PCM are modified by a fixed increment(or decrement) step by step till the consistency ratio becomes acceptable, which can ensure minimum adjustment to the original PCM so that the decision makers’ judgment is preserved as much as possible. The correctness of the proposed method is proved mathematically by theorem. Firstly, the marginal benefit/cost ratio is calculated for each single element of the PCM when it has been modified by a fixed increment(or decrement).Then, modification to the element with the maximum marginal benefit/cost ratio is accepted. Next, the marginal benefit/cost ratio is calculated again upon the revised matrix, and followed by choosing the modification to the element with the maximum marginal benefit/cost ratio. The process of calculating marginal effect and choosing the best modified element is repeated for each revised matrix till acceptable consistency is reached, i.e., CR<0.1. Finally,illustrative examples show the proposed method is more effective and better in preserving the original comparison information than existing methods.展开更多
In this study, friction stir processing(FSP) was employed to modify cold-sprayed(CSed) AA2024/Al2 O3 metal matrix composites(MMCs). Three different rotation speeds with a constant traverse speed were used for FS...In this study, friction stir processing(FSP) was employed to modify cold-sprayed(CSed) AA2024/Al2 O3 metal matrix composites(MMCs). Three different rotation speeds with a constant traverse speed were used for FSP. Microstructural analysis of the FSPed specimens reveals significant Al2 O3 particle refinement and improved particle distribution over the as-sprayed deposits. After FSP, a microstructural and mechanical gradient MMC through the thickness direction was obtained. Therefore, a hybrid technique combining these two solid-state processes, i.e. CS and FSP, was proposed to produce functionally gradient deposits. The Guinier-Preston-Bagaryatskii zone was dissolved during FSP, while the amounts at different rotation speeds were approximately the same, which is possibly due to the excellent thermal conductivity of the used Cu substrate. Mechanical property tests confirm that FSP can effectively improve the tensile performance and Vickers hardness of CSed AA2024/Al2 O3 MMCs. The properties can be further enhanced with a larger rotation speed with a maximum increase of 25.9% in ultimate tensile strength and27.4% in elongation at 1500 rpm. Friction tests show that FSP decreases the wear resistance of CSed MMCs deposits due to the breakup of Al2 O3 particles. The average values and fluctuations of friction coefficients at different rotation speeds vary significantly.展开更多
In the last two decades, light-weight magnesium matrix composites have been the hot issue of material field due to their excellent mechanical and physical properties, e.g., high-specific strength and modulus, good wea...In the last two decades, light-weight magnesium matrix composites have been the hot issue of material field due to their excellent mechanical and physical properties, e.g., high-specific strength and modulus, good wear resistance, and damping capacity. As compared with aluminum matrix composites, magnesium matrix composites have merit in their specific weight and have wide applications in aerospace and aeronautical fields. Generally, the processing techniques for magnesium matrix composites can be categorized as conventional and special processing routes. In recent years, as a special processing route, metal melt infiltration into porous ceramic preform featured by its low cost and availability of high-volume fraction of reinforced ceramics have been receiving much attention. Thus, in this review, one emphasis was put on the description of this processing technique in association with the means to obtain good wettability, the prerequisite for this kind of processing method. Based on the recognized fact that there exist clean interface and bonding ability between ceramics and matrix metal, in-situ reaction synthesis is usually utilized to fabricate magnesium matrix composites. Therefore, the interfacial feature was also reviewed for the in-situ reaction synthesis. Characterizations of microstructures and various mechanical-physical properties were finally summarized for magnesium matrix composites including tensile response, wear resistance, creep behavior, and damping capacity.展开更多
he Al_2O_3 particle reinforced aluminum matrix composite was prepared by using a new pressureless infiltration process. The microstructure of (Al_2O_3)p/Al was analyzed. The tension and the thermal conductivity of the...he Al_2O_3 particle reinforced aluminum matrix composite was prepared by using a new pressureless infiltration process. The microstructure of (Al_2O_3)p/Al was analyzed. The tension and the thermal conductivity of the composite were studied as well.展开更多
The hot deformation characteristics of TiC particles reinforced titanium matrix composite were studied in the temperature range from 900 ℃ to 1 150 ℃ and in the strain rate range of 10-3-10 s-1 by compression tests ...The hot deformation characteristics of TiC particles reinforced titanium matrix composite were studied in the temperature range from 900 ℃ to 1 150 ℃ and in the strain rate range of 10-3-10 s-1 by compression tests with Gleeble1500 simulator system. The flow behavior was described by the hyperbolic sine constitutive equation,and an average activation energy of 436.72 kJ/mol was calculated. The processing maps were calculated and analyzed according to the dynamic materials model. The maps show domains in some combinations of temperatures and strain rates and these domains are correlated with specific microstructural processes occurring during hot deformation by metallographic investigations and kinetic analysis. At the low strain rate domain occurs in the temperature range of 900-960 ℃ and strain rate range of 0.001-0.03 s-1 superplasticity and dynamic recrystallization were observed. At a high strain rate domain occurs in the temperature range of 980-1 120 ℃ and strain rate range of 0.1-10 s-1 the β phase undergoes dynamic recrystallization. Also,at a strain rate range of 0.1-10 s-1 and the temperature range of 900-930 ℃,the material exhibits flow localization.展开更多
Rutile(TiO_2) particle-reinforced aluminum matrix composites were prepared by friction stir processing. The microstructure was studied using conventional and advanced characterization techniques. TiO_2 particles were ...Rutile(TiO_2) particle-reinforced aluminum matrix composites were prepared by friction stir processing. The microstructure was studied using conventional and advanced characterization techniques. TiO_2 particles were found to be dispersed uniformly in the composite. Clusters of TiO_2 particles were observed at a higher particle content of 18 vol%. The interface between the TiO_2 particle and the aluminum matrix was characterized by the absence of pores and reactive layer.Sub-grain boundaries, ultra-fine grains and dislocation density were observed in the composites. TiO_2 particles improved the mechanical properties of the composites. However, a drop in tensile strength was observed at a higher particle content due to cluster formation. All the prepared composites exhibited ductile mode of fracture.展开更多
A route combining powder metallurgy and subsequent friction stir processing was utilized to fabricate carbon nanotube (CNT) reinforced AI (CNT/AI) and 6061AI (CNT/6061AI) composites. Microstructural observations...A route combining powder metallurgy and subsequent friction stir processing was utilized to fabricate carbon nanotube (CNT) reinforced AI (CNT/AI) and 6061AI (CNT/6061AI) composites. Microstructural observations indicated that CNTs were uniformly dispersed in the matrix in both CNT/AI and CNT/6061AI composites. Mg and Si elements tended to segregate at CNT-AI interfaces in the CNT/6061AI composite during artificial aging treatment. The tensile properties of both the AI and 6061AI were increased by CNT incorporation. The electrical conductivity of CNT/AI was decreased by CNT addition, while CNT/6061AI exhibited an increase in electrical conductivity due to the Mg and Si segregation.展开更多
A quenching and partitioning(Q&P) process was applied to vanadium carbide particle(VCp)-reinforced Fe-matrix composites(VC-Fe-MCs) to obtain a multiphase microstructure comprising VC, V8 C7, M3 C, α-Fe, and γ-Fe...A quenching and partitioning(Q&P) process was applied to vanadium carbide particle(VCp)-reinforced Fe-matrix composites(VC-Fe-MCs) to obtain a multiphase microstructure comprising VC, V8 C7, M3 C, α-Fe, and γ-Fe. The effects of the austenitizing temperature and the quenching temperature on the microstructure, mechanical properties, and wear resistance of the VC-Fe-MCs were studied. The results show that the size of the carbide became coarse and that the shape of some particles began to transform from diffused graininess into a chrysanthemum-shaped structure with increasing austenitizing temperature. The microhardness decreased with increasing austenitizing temperature but substantially increased after wear testing compared with the microhardness before wear testing; the microhardness values improved by 20.0% ± 2.5%. Retained austenite enhanced the impact toughness and promoted the transformation-induced plasticity(TRIP) effect to improve wear resistance under certain load conditions.展开更多
Semisolid-rolling method was successfully developed to prepare the Ni-coated woven carbon fibers reinforced Al-matrix composite. Due to the appropriate matrix flowability and rolling pressure, the Al-matrix could infi...Semisolid-rolling method was successfully developed to prepare the Ni-coated woven carbon fibers reinforced Al-matrix composite. Due to the appropriate matrix flowability and rolling pressure, the Al-matrix could infiltrate into the woven fibers sufficiently and attach to the reinforcements closely forming a smooth interface. The rolling speed of 4 rad/min offered a subtle equilibrium between the heat transfer and the material deformation. The covering matrix should be controlled at semisolid state to provide a better infiltration behavior and a protective effect on the carbon fibers. With the addition of fibers, an improvement for more than 25% was obtained in the bending strength of the materials. Furthermore, the woven carbon fibers could strengthen the composite in multiple directions, rather than only along the fiber longitudinal directions. The annealing process promoted the Ni coating to react with and to diffuse into the matrix, resulted in an obvious increase of the bending strength.展开更多
In this paper the Expendable Pattern Casting with dry sand Vacuum(EPC-V) process is used to manufacture iron matrix composites with tungsten carbide particle.Microstructures of the composites layers were analyzed.The ...In this paper the Expendable Pattern Casting with dry sand Vacuum(EPC-V) process is used to manufacture iron matrix composites with tungsten carbide particle.Microstructures of the composites layers were analyzed.The abrasive wear resistance of the composites layers were tested and compared with that of high chromium cast iron.The results show that the iron matrix composites with tungsten carbide particle have high hardness.The abrasive wear resistance of composites with tungsten carbide particle is higher than that of high chromium cast iron.The properties of the matrix materials have been improved remarkably.展开更多
基金supported by the National Natural Science Foundation of China(6160150161502521)
文摘To improve the inconsistency in the analytic hierarchy process(AHP), a new method based on marginal optimization theory is proposed. During the improving process, this paper regards the reduction of consistency ratio(CR) as benefit, and the maximum modification compared to the original pairwise comparison matrix(PCM) as cost, then the improvement of consistency is transformed to a benefit/cost analysis problem. According to the maximal marginal effect principle, the elements of PCM are modified by a fixed increment(or decrement) step by step till the consistency ratio becomes acceptable, which can ensure minimum adjustment to the original PCM so that the decision makers’ judgment is preserved as much as possible. The correctness of the proposed method is proved mathematically by theorem. Firstly, the marginal benefit/cost ratio is calculated for each single element of the PCM when it has been modified by a fixed increment(or decrement).Then, modification to the element with the maximum marginal benefit/cost ratio is accepted. Next, the marginal benefit/cost ratio is calculated again upon the revised matrix, and followed by choosing the modification to the element with the maximum marginal benefit/cost ratio. The process of calculating marginal effect and choosing the best modified element is repeated for each revised matrix till acceptable consistency is reached, i.e., CR<0.1. Finally,illustrative examples show the proposed method is more effective and better in preserving the original comparison information than existing methods.
基金financially by the National Key Research and Development Program of China (No. 2016YFB1100104)the Fund of SAST (No. SAST2016043)the 111 Project (No. B08040)
文摘In this study, friction stir processing(FSP) was employed to modify cold-sprayed(CSed) AA2024/Al2 O3 metal matrix composites(MMCs). Three different rotation speeds with a constant traverse speed were used for FSP. Microstructural analysis of the FSPed specimens reveals significant Al2 O3 particle refinement and improved particle distribution over the as-sprayed deposits. After FSP, a microstructural and mechanical gradient MMC through the thickness direction was obtained. Therefore, a hybrid technique combining these two solid-state processes, i.e. CS and FSP, was proposed to produce functionally gradient deposits. The Guinier-Preston-Bagaryatskii zone was dissolved during FSP, while the amounts at different rotation speeds were approximately the same, which is possibly due to the excellent thermal conductivity of the used Cu substrate. Mechanical property tests confirm that FSP can effectively improve the tensile performance and Vickers hardness of CSed AA2024/Al2 O3 MMCs. The properties can be further enhanced with a larger rotation speed with a maximum increase of 25.9% in ultimate tensile strength and27.4% in elongation at 1500 rpm. Friction tests show that FSP decreases the wear resistance of CSed MMCs deposits due to the breakup of Al2 O3 particles. The average values and fluctuations of friction coefficients at different rotation speeds vary significantly.
基金financially supported by the National Natural Science Foundation of China (Grant No.51271051)
文摘In the last two decades, light-weight magnesium matrix composites have been the hot issue of material field due to their excellent mechanical and physical properties, e.g., high-specific strength and modulus, good wear resistance, and damping capacity. As compared with aluminum matrix composites, magnesium matrix composites have merit in their specific weight and have wide applications in aerospace and aeronautical fields. Generally, the processing techniques for magnesium matrix composites can be categorized as conventional and special processing routes. In recent years, as a special processing route, metal melt infiltration into porous ceramic preform featured by its low cost and availability of high-volume fraction of reinforced ceramics have been receiving much attention. Thus, in this review, one emphasis was put on the description of this processing technique in association with the means to obtain good wettability, the prerequisite for this kind of processing method. Based on the recognized fact that there exist clean interface and bonding ability between ceramics and matrix metal, in-situ reaction synthesis is usually utilized to fabricate magnesium matrix composites. Therefore, the interfacial feature was also reviewed for the in-situ reaction synthesis. Characterizations of microstructures and various mechanical-physical properties were finally summarized for magnesium matrix composites including tensile response, wear resistance, creep behavior, and damping capacity.
文摘he Al_2O_3 particle reinforced aluminum matrix composite was prepared by using a new pressureless infiltration process. The microstructure of (Al_2O_3)p/Al was analyzed. The tension and the thermal conductivity of the composite were studied as well.
基金Projects(50434030) supported by the National Natural Science Foundation of China
文摘The hot deformation characteristics of TiC particles reinforced titanium matrix composite were studied in the temperature range from 900 ℃ to 1 150 ℃ and in the strain rate range of 10-3-10 s-1 by compression tests with Gleeble1500 simulator system. The flow behavior was described by the hyperbolic sine constitutive equation,and an average activation energy of 436.72 kJ/mol was calculated. The processing maps were calculated and analyzed according to the dynamic materials model. The maps show domains in some combinations of temperatures and strain rates and these domains are correlated with specific microstructural processes occurring during hot deformation by metallographic investigations and kinetic analysis. At the low strain rate domain occurs in the temperature range of 900-960 ℃ and strain rate range of 0.001-0.03 s-1 superplasticity and dynamic recrystallization were observed. At a high strain rate domain occurs in the temperature range of 980-1 120 ℃ and strain rate range of 0.1-10 s-1 the β phase undergoes dynamic recrystallization. Also,at a strain rate range of 0.1-10 s-1 and the temperature range of 900-930 ℃,the material exhibits flow localization.
文摘Rutile(TiO_2) particle-reinforced aluminum matrix composites were prepared by friction stir processing. The microstructure was studied using conventional and advanced characterization techniques. TiO_2 particles were found to be dispersed uniformly in the composite. Clusters of TiO_2 particles were observed at a higher particle content of 18 vol%. The interface between the TiO_2 particle and the aluminum matrix was characterized by the absence of pores and reactive layer.Sub-grain boundaries, ultra-fine grains and dislocation density were observed in the composites. TiO_2 particles improved the mechanical properties of the composites. However, a drop in tensile strength was observed at a higher particle content due to cluster formation. All the prepared composites exhibited ductile mode of fracture.
基金the support of the National Basic Research Program,China(Grant Nos.2011CB932603 and 2012CB619600)the National Natural Science Foundation, China(Grant No.51331008)
文摘A route combining powder metallurgy and subsequent friction stir processing was utilized to fabricate carbon nanotube (CNT) reinforced AI (CNT/AI) and 6061AI (CNT/6061AI) composites. Microstructural observations indicated that CNTs were uniformly dispersed in the matrix in both CNT/AI and CNT/6061AI composites. Mg and Si elements tended to segregate at CNT-AI interfaces in the CNT/6061AI composite during artificial aging treatment. The tensile properties of both the AI and 6061AI were increased by CNT incorporation. The electrical conductivity of CNT/AI was decreased by CNT addition, while CNT/6061AI exhibited an increase in electrical conductivity due to the Mg and Si segregation.
基金financially supported by the National Natural Science Foundation of China(Nos.51475480 and U1637601)the Research Funding from the State Key Laboratory of High-Performance Complex Manufacturing(No.ZZYJKT2017-01)+1 种基金Innovation Platform and Talent Plan of Hunan Province(No.2016RS2015)the Project of Innovation Driven Plan in Central South University(No.2015CX002)
文摘A quenching and partitioning(Q&P) process was applied to vanadium carbide particle(VCp)-reinforced Fe-matrix composites(VC-Fe-MCs) to obtain a multiphase microstructure comprising VC, V8 C7, M3 C, α-Fe, and γ-Fe. The effects of the austenitizing temperature and the quenching temperature on the microstructure, mechanical properties, and wear resistance of the VC-Fe-MCs were studied. The results show that the size of the carbide became coarse and that the shape of some particles began to transform from diffused graininess into a chrysanthemum-shaped structure with increasing austenitizing temperature. The microhardness decreased with increasing austenitizing temperature but substantially increased after wear testing compared with the microhardness before wear testing; the microhardness values improved by 20.0% ± 2.5%. Retained austenite enhanced the impact toughness and promoted the transformation-induced plasticity(TRIP) effect to improve wear resistance under certain load conditions.
基金supported by the National Natural Science Foundation of China (Nos. 51271042 and 51501027)the Fundamental Research Funds for the Central Universities, the Key Laboratory of Basic Research Projects of Liaoning Province Department of Education (No. LZ2014007)+1 种基金the Natural Science Foundation of Liaoning Province (No. 2014028013)China Postdoctoral Science Foundation (No. 2015M570246)
文摘Semisolid-rolling method was successfully developed to prepare the Ni-coated woven carbon fibers reinforced Al-matrix composite. Due to the appropriate matrix flowability and rolling pressure, the Al-matrix could infiltrate into the woven fibers sufficiently and attach to the reinforcements closely forming a smooth interface. The rolling speed of 4 rad/min offered a subtle equilibrium between the heat transfer and the material deformation. The covering matrix should be controlled at semisolid state to provide a better infiltration behavior and a protective effect on the carbon fibers. With the addition of fibers, an improvement for more than 25% was obtained in the bending strength of the materials. Furthermore, the woven carbon fibers could strengthen the composite in multiple directions, rather than only along the fiber longitudinal directions. The annealing process promoted the Ni coating to react with and to diffuse into the matrix, resulted in an obvious increase of the bending strength.
文摘In this paper the Expendable Pattern Casting with dry sand Vacuum(EPC-V) process is used to manufacture iron matrix composites with tungsten carbide particle.Microstructures of the composites layers were analyzed.The abrasive wear resistance of the composites layers were tested and compared with that of high chromium cast iron.The results show that the iron matrix composites with tungsten carbide particle have high hardness.The abrasive wear resistance of composites with tungsten carbide particle is higher than that of high chromium cast iron.The properties of the matrix materials have been improved remarkably.