Hazards and risks assessment of dangerous geocryological processes is actual problem in connection with climate change.Permafrost is widespread in Russia,Canada,the USA(Alaska), China,Mongolia and in mountain regions....Hazards and risks assessment of dangerous geocryological processes is actual problem in connection with climate change.Permafrost is widespread in Russia,Canada,the USA(Alaska), China,Mongolia and in mountain regions.Currently there are many papers concerning permafrost-related hazards,but the conceptual and based techniques are not available.Different approaches for solving this problem are considered in the paper.The generally accessible techniques of geocryological processes quantitative risk assessment are not available.The problem lies in uncertainty appearing from展开更多
On 25 April, 2015, an Mw7.9 earthquake occurred in Nepal, which caused great economic loss and casualties. However, almost no surface ruptures were observed. Therefore, in order to interpret the phenomenon, we study t...On 25 April, 2015, an Mw7.9 earthquake occurred in Nepal, which caused great economic loss and casualties. However, almost no surface ruptures were observed. Therefore, in order to interpret the phenomenon, we study the rupture process of the earthquake to seek answers. Inversion of teleseismic body-wave data is applied to estimate the rupture process of the 2015 Nepal earthquake. To obtain stable solutions, smoothing and non-negative constraints are introduced. 48 teleseismic stations with good coverage are chosen. Finite fault model is established with length and width of 195 km and 150 km, and we set the initial seismic source parameters referring to CMT solutions. Inversion results indicate that the focal mechanism of this earthquake is a thrust fault type, and the strike, dip and rake angle are in accordance with CMT results. The seismic moment is 0.9195 ×10^(21)Nm(Mw7.9), and source duration is about 70s. The rupture nucleated near the hypocenter and then propagated along the dip direction to the southeast, and the maximum slip amounts to 5.2 m. Uncertainties on the amount of slip retrieved by different inversion methods still exist, the overall characteristics are inconsistent. The lack of shallow slip during the 2015 Gorkha earthquake implies future seismic hazard and this region should be paid more attention to.展开更多
Many detailed data on past geological hazard events are buried in geological hazard reports and have not been fully utilized. The growing developments in geographic information retrieval and temporal information retri...Many detailed data on past geological hazard events are buried in geological hazard reports and have not been fully utilized. The growing developments in geographic information retrieval and temporal information retrieval offer opportunities to analyse this wealth of data to mine the spatiotemporal evolution of geological disaster occurrence and enhance risk decision making. This study presents a combined NLP and ontology matching information extraction framework for automatically recognizing semantic and spatiotemporal information from geological hazard reports. This framework mainly extracts unstructured information from geological disaster reports through named entity recognition, ontology matching and gazetteer matching to identify and annotate elements, thus enabling users to quickly obtain key information and understand the general content of disaster reports. In addition, we present the final results obtained from the experiments through a reasonable visualization and analyse the visual results. The extraction and retrieval of semantic information related to the dynamics of geohazard events are performed from both natural and human perspectives to provide information on the progress of events.展开更多
The Taihang Mountains area is an area in North China where serious mudflow hazards take place frequently. The hazards often obstrust traffic and make it difficult to carry out conventional ground investigations of the...The Taihang Mountains area is an area in North China where serious mudflow hazards take place frequently. The hazards often obstrust traffic and make it difficult to carry out conventional ground investigations of the mudflow hazards. This paper introduces the feasibility study of mudflow hazards by using Landsat-5TM data. The study has achieved a great success through adopting both the faint spectral enhancement technique for mudflow fans (or other depositional areas) and comprehensive study of the environmental background of pregnant mudflows. Thus, remote sensing as a fast, convenient, low-cost and effective technical method can be used to recognise the situation of mudflow hazards so that effective rescue can be provided.展开更多
Avalanches are one of the most natural hazard in the mountain areas and therefore, identification of avalanche hazard is necessary for planning future development activities. The study area falls under the internation...Avalanches are one of the most natural hazard in the mountain areas and therefore, identification of avalanche hazard is necessary for planning future development activities. The study area falls under the international boundary region which generally covered by the snow(38%) on high altitude regions of the western part of Himalayas. Avalanches are triggered in study area during snowfall resulting in loss of human life, property and moreover the transportation and communication affected by the debris which ultimately delays the relief measures. Therefore in this study three major causative parameters i.e terrain, ground cover and meteorological have been incorporated for the identification of avalanche hazard zones(AHZ) by integrating Analytical Hierarchical Process(AHP) method in Geographical Information System(GIS). In the first part of study, avalanche sites have been identified by the criteria related to terrain(slope, aspect and curvature) and ground cover. Weights and ratings to these causative factors and their cumulative effects have been assigned on the basis of experience and knowledge of field. In the second part of the study, single point interpolation and Inverse Distance Weighted(IDW) method has been employed as only one weather station falls in study area. Accordingly, it has been performed to generate the meteorological parameter maps(viz. air temperature and relative humidity) from the field observatories and Automatic Weather Stations(AWS) located at Baaj OP in Uri sector. Finally, the meteorological parameter maps were superimposed on the terrain-based avalanche hazard thematic layers to identify the dynamic avalanche hazard sites. Conventional weighted approach and Analytical Hierarchical Process(AHP) method have been implemented for the identification of AHZ that shows approximately 55% area under maximum hazard zone. Further, the results were validated by overlapping the existing registered avalanche sites. The sites were identified through field survey and avalanche data card followed by its delineation from the toposheet(1:50,000 scale). Interestingly study found that 28% area under moderate and maximum AHZ correlated well with registered avalanche sites when they were overlapped. The accuracy for such works can be increased by field survey under favorable weather condition and by adding data from more number of AWS for predicting avalanche hazards in mountainous regions.展开更多
Hazards and risks assessment of dangerous geocryological processes is an actual problem in connection with climate change.Permafrost is widespread in Russia,Canada,the USA(Alaska),China,Mongolia and in mountain region...Hazards and risks assessment of dangerous geocryological processes is an actual problem in connection with climate change.Permafrost is widespread in Russia,Canada,the USA(Alaska),China,Mongolia and in mountain regions.Currently there are many papers concerning permafrost-related hazards,but the conceptual and basic techniques are not available. Different approaches for solving this problem are considered in the paper.The generally accessible techniques of geocryological processes quantitative risk assessment are not available.The problem lies展开更多
The Tunisian territory (area of diapirs) is exposed to the risks of ground movements linked to water, some of which are related to the phenomenon of dissolution of gypsum, allowing the appearance of underground caviti...The Tunisian territory (area of diapirs) is exposed to the risks of ground movements linked to water, some of which are related to the phenomenon of dissolution of gypsum, allowing the appearance of underground cavities which present natural risks and set people in danger. The analysis of the hazard was determined by the field study coupled with the application of geophysical methods to locate and map the cavities and identify their dimensions and their positions in the subsoil. In the region of El Fahs (40 km NW of Tunis): we used a non-destructive method, georadar (GPR) with a 200 MHz antenna band-width, and an electric method, by using the electric tomography of which we have applicated the sequence of dipole-dipole measurement. The results ob-tained were examined and interpreted according to 2D profiles. The geophysi-cal methods of GPR and electrical tomography aim to detect many calvities in different depths. However, the geological radar was able to identify several cavities and the zones of dissolution whose investigation depth did not exceed the first 3 meters. On the contrary, the electric tomography method allowing the presence of several deeper underground cavities with larger dimensions ex-tended to 64 meters. To conclude, the geological and hydrogeological contexts of the terrain studied and on the state of the soil and subsoil allow us to better understanding the mechanisms of the establishment of the dissolution phe-nomenon and the appearance of cavities in the basement. The analysis of the predisposing factors present in the study area shows that the geodynamic con-text of the Triassic ascent takes place according to a precise thermodynamic process that favors the phenomenon of dissolution of the gypsum.展开更多
Debris flow runoff process is one of key parameters for the design of emergency measures and control engineering. The Shenxi gully in Dujiangyan region,located in the meizoseismal areas of Wenchuan earthquake,was sele...Debris flow runoff process is one of key parameters for the design of emergency measures and control engineering. The Shenxi gully in Dujiangyan region,located in the meizoseismal areas of Wenchuan earthquake,was selected as the study area. Based on the research of hazard inducing environment,a soil conservation service( SCS) hydrological model was used to simulate the process of water flow,and then the debris flow runoff process was calculated using the empirical formula combining the results from the SCS hydrological model. Taking the debris flow event occurred on July 9th,2013 as an example,the peak discharges of water flow and debris flow were calculated as 162. 12 and 689. 22 m3/s,with error of 6. 03% compared to the measured values. The debris flow confluence process lasted 1. 8h, which was similar with the actual result. The proposed methodology can be applied to predict the debris flow runoff process in quake-hit areas of the Wenchuan earthquake and is of great importance for debris flow mitigation.展开更多
丙型肝炎是一种由HCV(hepatitis C Virus,HCV)病毒感染引起的慢性疾病,是引发肝硬化和肝癌的常见重要病因之一,也是《中华人民共和国传染病防治法》规定的乙类传染病,目前已成为危害我国人民群众健康的公共卫生问题。本文通过对目前我...丙型肝炎是一种由HCV(hepatitis C Virus,HCV)病毒感染引起的慢性疾病,是引发肝硬化和肝癌的常见重要病因之一,也是《中华人民共和国传染病防治法》规定的乙类传染病,目前已成为危害我国人民群众健康的公共卫生问题。本文通过对目前我国丙型肝炎流行情况、消除丙型肝炎公共卫生危害进程和国外丙肝防控经验等内容进行综述,提出下一阶段全面推动我国消除丙型肝炎公共卫生危害行动方案的落实建议:加强检测力度和综合干预,以阻断病毒传播;拓宽健康教育工作覆盖面,普及防治知识;加大经费投入力度,提高监测能力和防控水平;落实医保政策,提升诊疗可及性和可负担性。促进全民参与丙肝防治行动,推动丙肝防治工作的纵深开展,为后续提升我国丙型肝炎防控能力、重大传染病防治资源整合和相关政策制定提供参考,最终实现消除丙型肝炎公共卫生危害的目标。展开更多
Maximum Likelihood (MLH) supervised classification of atmospherically corrected Landsat 8 imagery was applied successfully for delineating main geologic units with a good accuracy (about 90%) according to reliable gro...Maximum Likelihood (MLH) supervised classification of atmospherically corrected Landsat 8 imagery was applied successfully for delineating main geologic units with a good accuracy (about 90%) according to reliable ground truth areas, which reflected the ability of remote sensing data in mapping poorly-accessed and remote regions such as playa (Sabkha) environs, subdued topography and sand dunes. Ground gamma-ray spectrometric survey was to delineate radioactive anomalies within Quaternary sediments at Wadi Diit. The mean absorbed dose rate (D), annual effective dose equivalent (AEDE) and external hazard index (H<sub>ex</sub>) were found to be within the average worldwide ranges. Therefore, Wadi Diit environment is said to be radiological hazard safe except at the black-sand lens whose absorbed dose rate of 100.77 nGy/h exceeds the world average. So, the inhabitants will receive a relatively high radioactive dose generated mainly by monazite and zircon minerals from black-sand lens.展开更多
文摘Hazards and risks assessment of dangerous geocryological processes is actual problem in connection with climate change.Permafrost is widespread in Russia,Canada,the USA(Alaska), China,Mongolia and in mountain regions.Currently there are many papers concerning permafrost-related hazards,but the conceptual and based techniques are not available.Different approaches for solving this problem are considered in the paper.The generally accessible techniques of geocryological processes quantitative risk assessment are not available.The problem lies in uncertainty appearing from
基金supported by National Natural Science Foundation of China (41304046)
文摘On 25 April, 2015, an Mw7.9 earthquake occurred in Nepal, which caused great economic loss and casualties. However, almost no surface ruptures were observed. Therefore, in order to interpret the phenomenon, we study the rupture process of the earthquake to seek answers. Inversion of teleseismic body-wave data is applied to estimate the rupture process of the 2015 Nepal earthquake. To obtain stable solutions, smoothing and non-negative constraints are introduced. 48 teleseismic stations with good coverage are chosen. Finite fault model is established with length and width of 195 km and 150 km, and we set the initial seismic source parameters referring to CMT solutions. Inversion results indicate that the focal mechanism of this earthquake is a thrust fault type, and the strike, dip and rake angle are in accordance with CMT results. The seismic moment is 0.9195 ×10^(21)Nm(Mw7.9), and source duration is about 70s. The rupture nucleated near the hypocenter and then propagated along the dip direction to the southeast, and the maximum slip amounts to 5.2 m. Uncertainties on the amount of slip retrieved by different inversion methods still exist, the overall characteristics are inconsistent. The lack of shallow slip during the 2015 Gorkha earthquake implies future seismic hazard and this region should be paid more attention to.
基金the IUGS Deep-time Digital Earth (DDE) Big Science Programfinancially supported by the National Key R & D Program of China (No.2022YFB3904200)+4 种基金the Natural Science Foundation of Hubei Province of China (No.2022CFB640)the Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Natural Resources (No.KF-202207-014)the Opening Fund of Hubei Key Laboratory of Intelligent Vision-Based Monitoring for Hydroelectric Engineering (No.2022SDSJ04)the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education (No.GLAB 2023ZR01)the Fundamental Research Funds for the Central Universities。
文摘Many detailed data on past geological hazard events are buried in geological hazard reports and have not been fully utilized. The growing developments in geographic information retrieval and temporal information retrieval offer opportunities to analyse this wealth of data to mine the spatiotemporal evolution of geological disaster occurrence and enhance risk decision making. This study presents a combined NLP and ontology matching information extraction framework for automatically recognizing semantic and spatiotemporal information from geological hazard reports. This framework mainly extracts unstructured information from geological disaster reports through named entity recognition, ontology matching and gazetteer matching to identify and annotate elements, thus enabling users to quickly obtain key information and understand the general content of disaster reports. In addition, we present the final results obtained from the experiments through a reasonable visualization and analyse the visual results. The extraction and retrieval of semantic information related to the dynamics of geohazard events are performed from both natural and human perspectives to provide information on the progress of events.
文摘The Taihang Mountains area is an area in North China where serious mudflow hazards take place frequently. The hazards often obstrust traffic and make it difficult to carry out conventional ground investigations of the mudflow hazards. This paper introduces the feasibility study of mudflow hazards by using Landsat-5TM data. The study has achieved a great success through adopting both the faint spectral enhancement technique for mudflow fans (or other depositional areas) and comprehensive study of the environmental background of pregnant mudflows. Thus, remote sensing as a fast, convenient, low-cost and effective technical method can be used to recognise the situation of mudflow hazards so that effective rescue can be provided.
文摘Avalanches are one of the most natural hazard in the mountain areas and therefore, identification of avalanche hazard is necessary for planning future development activities. The study area falls under the international boundary region which generally covered by the snow(38%) on high altitude regions of the western part of Himalayas. Avalanches are triggered in study area during snowfall resulting in loss of human life, property and moreover the transportation and communication affected by the debris which ultimately delays the relief measures. Therefore in this study three major causative parameters i.e terrain, ground cover and meteorological have been incorporated for the identification of avalanche hazard zones(AHZ) by integrating Analytical Hierarchical Process(AHP) method in Geographical Information System(GIS). In the first part of study, avalanche sites have been identified by the criteria related to terrain(slope, aspect and curvature) and ground cover. Weights and ratings to these causative factors and their cumulative effects have been assigned on the basis of experience and knowledge of field. In the second part of the study, single point interpolation and Inverse Distance Weighted(IDW) method has been employed as only one weather station falls in study area. Accordingly, it has been performed to generate the meteorological parameter maps(viz. air temperature and relative humidity) from the field observatories and Automatic Weather Stations(AWS) located at Baaj OP in Uri sector. Finally, the meteorological parameter maps were superimposed on the terrain-based avalanche hazard thematic layers to identify the dynamic avalanche hazard sites. Conventional weighted approach and Analytical Hierarchical Process(AHP) method have been implemented for the identification of AHZ that shows approximately 55% area under maximum hazard zone. Further, the results were validated by overlapping the existing registered avalanche sites. The sites were identified through field survey and avalanche data card followed by its delineation from the toposheet(1:50,000 scale). Interestingly study found that 28% area under moderate and maximum AHZ correlated well with registered avalanche sites when they were overlapped. The accuracy for such works can be increased by field survey under favorable weather condition and by adding data from more number of AWS for predicting avalanche hazards in mountainous regions.
文摘Hazards and risks assessment of dangerous geocryological processes is an actual problem in connection with climate change.Permafrost is widespread in Russia,Canada,the USA(Alaska),China,Mongolia and in mountain regions.Currently there are many papers concerning permafrost-related hazards,but the conceptual and basic techniques are not available. Different approaches for solving this problem are considered in the paper.The generally accessible techniques of geocryological processes quantitative risk assessment are not available.The problem lies
文摘The Tunisian territory (area of diapirs) is exposed to the risks of ground movements linked to water, some of which are related to the phenomenon of dissolution of gypsum, allowing the appearance of underground cavities which present natural risks and set people in danger. The analysis of the hazard was determined by the field study coupled with the application of geophysical methods to locate and map the cavities and identify their dimensions and their positions in the subsoil. In the region of El Fahs (40 km NW of Tunis): we used a non-destructive method, georadar (GPR) with a 200 MHz antenna band-width, and an electric method, by using the electric tomography of which we have applicated the sequence of dipole-dipole measurement. The results ob-tained were examined and interpreted according to 2D profiles. The geophysi-cal methods of GPR and electrical tomography aim to detect many calvities in different depths. However, the geological radar was able to identify several cavities and the zones of dissolution whose investigation depth did not exceed the first 3 meters. On the contrary, the electric tomography method allowing the presence of several deeper underground cavities with larger dimensions ex-tended to 64 meters. To conclude, the geological and hydrogeological contexts of the terrain studied and on the state of the soil and subsoil allow us to better understanding the mechanisms of the establishment of the dissolution phe-nomenon and the appearance of cavities in the basement. The analysis of the predisposing factors present in the study area shows that the geodynamic con-text of the Triassic ascent takes place according to a precise thermodynamic process that favors the phenomenon of dissolution of the gypsum.
基金Water Resources Science and Technology Innovation Project of Guangdong Province,China(No.2016-15)National Natural Science Foundation of China(No.41372331)Science and Technology Planning Projects of Guangdong Province,China(Nos.2014A020219006,2014A020219006)
文摘Debris flow runoff process is one of key parameters for the design of emergency measures and control engineering. The Shenxi gully in Dujiangyan region,located in the meizoseismal areas of Wenchuan earthquake,was selected as the study area. Based on the research of hazard inducing environment,a soil conservation service( SCS) hydrological model was used to simulate the process of water flow,and then the debris flow runoff process was calculated using the empirical formula combining the results from the SCS hydrological model. Taking the debris flow event occurred on July 9th,2013 as an example,the peak discharges of water flow and debris flow were calculated as 162. 12 and 689. 22 m3/s,with error of 6. 03% compared to the measured values. The debris flow confluence process lasted 1. 8h, which was similar with the actual result. The proposed methodology can be applied to predict the debris flow runoff process in quake-hit areas of the Wenchuan earthquake and is of great importance for debris flow mitigation.
文摘丙型肝炎是一种由HCV(hepatitis C Virus,HCV)病毒感染引起的慢性疾病,是引发肝硬化和肝癌的常见重要病因之一,也是《中华人民共和国传染病防治法》规定的乙类传染病,目前已成为危害我国人民群众健康的公共卫生问题。本文通过对目前我国丙型肝炎流行情况、消除丙型肝炎公共卫生危害进程和国外丙肝防控经验等内容进行综述,提出下一阶段全面推动我国消除丙型肝炎公共卫生危害行动方案的落实建议:加强检测力度和综合干预,以阻断病毒传播;拓宽健康教育工作覆盖面,普及防治知识;加大经费投入力度,提高监测能力和防控水平;落实医保政策,提升诊疗可及性和可负担性。促进全民参与丙肝防治行动,推动丙肝防治工作的纵深开展,为后续提升我国丙型肝炎防控能力、重大传染病防治资源整合和相关政策制定提供参考,最终实现消除丙型肝炎公共卫生危害的目标。
文摘Maximum Likelihood (MLH) supervised classification of atmospherically corrected Landsat 8 imagery was applied successfully for delineating main geologic units with a good accuracy (about 90%) according to reliable ground truth areas, which reflected the ability of remote sensing data in mapping poorly-accessed and remote regions such as playa (Sabkha) environs, subdued topography and sand dunes. Ground gamma-ray spectrometric survey was to delineate radioactive anomalies within Quaternary sediments at Wadi Diit. The mean absorbed dose rate (D), annual effective dose equivalent (AEDE) and external hazard index (H<sub>ex</sub>) were found to be within the average worldwide ranges. Therefore, Wadi Diit environment is said to be radiological hazard safe except at the black-sand lens whose absorbed dose rate of 100.77 nGy/h exceeds the world average. So, the inhabitants will receive a relatively high radioactive dose generated mainly by monazite and zircon minerals from black-sand lens.