The control of gas fractionation unit(GFU) in petroleum industry is very difficult due to multivariable characteristics and a large time delay.PID controllers are still applied in most industry processes.However,the t...The control of gas fractionation unit(GFU) in petroleum industry is very difficult due to multivariable characteristics and a large time delay.PID controllers are still applied in most industry processes.However,the traditional PID control has been proven not sufficient and capable for this particular petro-chemical process.In this work,an incremental multivariable predictive functional control(IMPFC) algorithm was proposed with less online computation,great precision and fast response.An incremental transfer function matrix model was set up through the step-response data,and predictive outputs were deduced with the theory of single-value optimization.The results show that the method can optimize the incremental control variable and reject the constraint of the incremental control variable with the positional predictive functional control algorithm,and thereby making the control variable smoother.The predictive output error and future set-point were approximated by a polynomial,which can overcome the problem under the model mismatch and make the predictive outputs track the reference trajectory.Then,the design of incremental multivariable predictive functional control was studied.Simulation and application results show that the proposed control strategy is effective and feasible to improve control performance and robustness of process.展开更多
Population stratification is a problem in genetic association studies because it is likely to highlight loci that underlie the population structure rather than disease-related loci. At present, principal component ana...Population stratification is a problem in genetic association studies because it is likely to highlight loci that underlie the population structure rather than disease-related loci. At present, principal component analysis (PCA) has been proven to be an effective way to correct for population stratification. However, the conventional PCA algorithm is time-consuming when dealing with large datasets. We developed a Graphic processing unit (GPU)-based PCA software named SHEsisPCA (http://analysis.bio-x.cn/SHEsisMain.htm) that is highly parallel with a highest speedup greater than 100 compared with its CPU version. A cluster algorithm based on X-means was also implemented as a way to detect population subgroups and to obtain matched cases and controls in order to reduce the genomic inflation and increase the power. A study of both simulated and real datasets showed that SHEsisPCA ran at an extremely high speed while the accuracy was hardly reduced. Therefore, SHEsisPCA can help correct for population stratification much more efficiently than the conventional CPU-based algorithms.展开更多
基金Project(61203021)supported by the National Natural Science Foundation of ChinaProject(2011216011)supported by the Scientific and Technological Program of Liaoning Province,China+2 种基金Project(2013020024)supported by the Natural Science Foundation of Liaoning Province,ChinaProject(2012BAF05B00)supported by the National Science and Technology Support Program,ChinaProject(LJQ2015061)supported by the Program for Liaoning Excellent Talents in Universities,China
文摘The control of gas fractionation unit(GFU) in petroleum industry is very difficult due to multivariable characteristics and a large time delay.PID controllers are still applied in most industry processes.However,the traditional PID control has been proven not sufficient and capable for this particular petro-chemical process.In this work,an incremental multivariable predictive functional control(IMPFC) algorithm was proposed with less online computation,great precision and fast response.An incremental transfer function matrix model was set up through the step-response data,and predictive outputs were deduced with the theory of single-value optimization.The results show that the method can optimize the incremental control variable and reject the constraint of the incremental control variable with the positional predictive functional control algorithm,and thereby making the control variable smoother.The predictive output error and future set-point were approximated by a polynomial,which can overcome the problem under the model mismatch and make the predictive outputs track the reference trajectory.Then,the design of incremental multivariable predictive functional control was studied.Simulation and application results show that the proposed control strategy is effective and feasible to improve control performance and robustness of process.
基金supported by the National Key Basic Research Program of China (973 Program) (No. 2015CB559100)the National High Technology Research and Development Program of China (863 Program) (Nos. 2012AA02A515 and2012AA021802)+2 种基金the Natural Science Foundation of China (Nos. 31325014, 81130022, 81272302 and 81421061)the National Program for Support of Top-Notch Young Professionals, the Program of Shanghai Subject Chief Scientist (No. 15XD1502200)"Shu Guang" project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (No. 12SG17)
文摘Population stratification is a problem in genetic association studies because it is likely to highlight loci that underlie the population structure rather than disease-related loci. At present, principal component analysis (PCA) has been proven to be an effective way to correct for population stratification. However, the conventional PCA algorithm is time-consuming when dealing with large datasets. We developed a Graphic processing unit (GPU)-based PCA software named SHEsisPCA (http://analysis.bio-x.cn/SHEsisMain.htm) that is highly parallel with a highest speedup greater than 100 compared with its CPU version. A cluster algorithm based on X-means was also implemented as a way to detect population subgroups and to obtain matched cases and controls in order to reduce the genomic inflation and increase the power. A study of both simulated and real datasets showed that SHEsisPCA ran at an extremely high speed while the accuracy was hardly reduced. Therefore, SHEsisPCA can help correct for population stratification much more efficiently than the conventional CPU-based algorithms.