期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Improved Dwarf Mongoose Optimization for Constrained Engineering Design Problems 被引量:3
1
作者 Jeffrey O.Agushaka Absalom E.Ezugwu +3 位作者 Oyelade N.Olaide Olatunji Akinola Raed Abu Zitar Laith Abualigah 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第3期1263-1295,共33页
This paper proposes a modified version of the Dwarf Mongoose Optimization Algorithm (IDMO) for constrained engineering design problems. This optimization technique modifies the base algorithm (DMO) in three simple but... This paper proposes a modified version of the Dwarf Mongoose Optimization Algorithm (IDMO) for constrained engineering design problems. This optimization technique modifies the base algorithm (DMO) in three simple but effective ways. First, the alpha selection in IDMO differs from the DMO, where evaluating the probability value of each fitness is just a computational overhead and contributes nothing to the quality of the alpha or other group members. The fittest dwarf mongoose is selected as the alpha, and a new operator ω is introduced, which controls the alpha movement, thereby enhancing the exploration ability and exploitability of the IDMO. Second, the scout group movements are modified by randomization to introduce diversity in the search process and explore unvisited areas. Finally, the babysitter's exchange criterium is modified such that once the criterium is met, the babysitters that are exchanged interact with the dwarf mongoose exchanging them to gain information about food sources and sleeping mounds, which could result in better-fitted mongooses instead of initializing them afresh as done in DMO, then the counter is reset to zero. The proposed IDMO was used to solve the classical and CEC 2020 benchmark functions and 12 continuous/discrete engineering optimization problems. The performance of the IDMO, using different performance metrics and statistical analysis, is compared with the DMO and eight other existing algorithms. In most cases, the results show that solutions achieved by the IDMO are better than those obtained by the existing algorithms. 展开更多
关键词 Improved dwarf mongoose Nature-inspired algorithms Constrained optimization Unconstrained optimization Engineering design problems
在线阅读 下载PDF
Comparative Performance Analysis of Differential Evolution Variants on Engineering Design Problems 被引量:2
2
作者 Sanjoy Chakraborty Apu Kumar Saha +2 位作者 Sushmita Sharma Saroj Kumar Sahoo Gautam Pal 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第4期1140-1160,共21页
Because of their superior problem-solving ability,nature-inspired optimization algorithms are being regularly used in solving complex real-world optimization problems.Engineering academics have recently focused on met... Because of their superior problem-solving ability,nature-inspired optimization algorithms are being regularly used in solving complex real-world optimization problems.Engineering academics have recently focused on meta-heuristic algorithms to solve various optimization challenges.Among the state-of-the-art algorithms,Differential Evolution(DE)is one of the most successful algorithms and is frequently used to solve various industrial problems.Over the previous 2 decades,DE has been heavily modified to improve its capabilities.Several DE variations secured positions in IEEE CEC competitions,establishing their efficacy.However,to our knowledge,there has never been a comparison of performance across various CEC-winning DE versions,which could aid in determining which is the most successful.In this study,the performance of DE and its eight other IEEE CEC competition-winning variants are compared.First,the algorithms have evaluated IEEE CEC 2019 and 2020 bound-constrained functions,and the performances have been compared.One unconstrained problem from IEEE CEC 2011 problem suite and five other constrained mechanical engineering design problems,out of which four issues have been taken from IEEE CEC 2020 non-convex constrained optimization suite,have been solved to compare the performances.Statistical analyses like Friedman's test and Wilcoxon's test are executed to verify the algorithm’s ability statistically.Performance analysis exposes that none of the DE variants can solve all the problems efficiently.Performance of SHADE and ELSHADE-SPACMA are considerable among the methods used for comparison to solve such mechanical design problems. 展开更多
关键词 Differential evolution Metaheuristics IEEE CEC Mechanical design problem
在线阅读 下载PDF
Hybridizing artificial bee colony with biogeography-based optimization for constrained mechanical design problems 被引量:2
3
作者 蔡绍洪 龙文 焦建军 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2250-2259,共10页
A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO c... A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO combined the exploration of ABC algorithm with the exploitation of BBO algorithm effectively, and hence it can generate the promising candidate individuals. The proposed hybrid algorithm speeds up the convergence and improves the algorithm's performance. Several benchmark test functions and mechanical design problems are applied to verifying the effects of these improvements and it is demonstrated that the performance of this proposed ABC-BBO is superior to or at least highly competitive with other population-based optimization approaches. 展开更多
关键词 artificial bee colony biogeography-based optimization constrained optimization mechanical design problem
在线阅读 下载PDF
Chaotic Social Group Optimization for Structural Engineering Design Problems 被引量:1
4
作者 Anima Naik 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第4期1852-1877,共26页
Till now,several novel metaheuristic algorithms are proposed for global search.But only specific algorithms have become popular or attracted researchers,who are efficient in solving global optimization problems as wel... Till now,several novel metaheuristic algorithms are proposed for global search.But only specific algorithms have become popular or attracted researchers,who are efficient in solving global optimization problems as well as real-world application problems.The Social Group Optimization(SGO)algorithm is a new metaheuristic bioinspired algorithm inspired by human social behavior that attracted researchers due to its simplicity and problem-solving capability.In this study,to deal with the problems of low accuracy and local convergence in SGO,the chaos theory is introduced into the evolutionary process of SGO.Since chaotic mapping has certainty,ergodicity,and stochastic property,by replacing the constant value of the self-introspection parameter with chaotic maps,the proposed chaotic social group optimization algorithm increases its convergence rate and resulting precision.The proposal chaotic SGO is validated through 13 benchmark functions and after that 9 structural engineering design problems have been solved.The simulated results have been noticed as competent with that of state-of-art algorithms regarding convergence quality and accuracy,which certifies that improved SGO with chaos is valid and feasible. 展开更多
关键词 CHAOS Bionic algorithm Constrained optimization SGO design problem
在线阅读 下载PDF
Hybrid Meta-Model Based Design Space Differentiation Method for Expensive Problems 被引量:1
5
作者 Nianfei Gan Guangyao Li Jichao Gu 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2016年第2期120-132,共13页
In this work,a hybrid meta-model based design space differentiation(HMDSD)method is proposed for practical problems.In the proposed method,an iteratively reduced promising region is constructed using the expensive p... In this work,a hybrid meta-model based design space differentiation(HMDSD)method is proposed for practical problems.In the proposed method,an iteratively reduced promising region is constructed using the expensive points,with two different search strategies respectively applied inside and outside the promising region.Besides,the hybrid meta-model strategy applied in the search process makes it possible to solve the complex practical problems.Tested upon a serial of benchmark math functions,the HMDSD method shows great efficiency and search accuracy.On top of that,a practical lightweight design demonstrates its superior performance. 展开更多
关键词 hybrid meta-model design space differentiation expensive problems global optimization
原文传递
Designing Physics Problems with Mathematica 被引量:1
6
作者 Haiduke Sarafian 《American Journal of Computational Mathematics》 2022年第2期191-196,共6页
We envision utilizing the versatility of a Computer Algebra System, specifically Mathematica to explore designing physics problems. As a focused project, we consider for instance a thermo-mechanical-physics problem sh... We envision utilizing the versatility of a Computer Algebra System, specifically Mathematica to explore designing physics problems. As a focused project, we consider for instance a thermo-mechanical-physics problem showing its development from the ground up. Following the objectives of this investigation first by applying the fundamentals of physics principles we solve the problem symbolically. Applying the solution we investigate the sensitivities of the quantities of interest for various scenarios generating feasible numeric parameters. Although a physics problem is investigated, the proposed methodology may as well be applied to other scientific fields. The codes needed for this particular project are included enabling the interested reader to duplicate the results, extend and modify them as needed to explore various extended scenarios. 展开更多
关键词 Thermo-Mechanical Physics designing Physics problems Computer Algebra System MATHEMATICA
在线阅读 下载PDF
A Multi-strategy Improved Snake Optimizer Assisted with Population Crowding Analysis for Engineering Design Problems
7
作者 Lei Peng Zhuoming Yuan +4 位作者 Guangming Dai Maocai Wang Jian Li Zhiming Song Xiaoyu Chen 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第3期1567-1591,共25页
Snake Optimizer(SO)is a novel Meta-heuristic Algorithm(MA)inspired by the mating behaviour of snakes,which has achieved success in global numerical optimization problems and practical engineering applications.However,... Snake Optimizer(SO)is a novel Meta-heuristic Algorithm(MA)inspired by the mating behaviour of snakes,which has achieved success in global numerical optimization problems and practical engineering applications.However,it also has certain drawbacks for the exploration stage and the egg hatch process,resulting in slow convergence speed and inferior solution quality.To address the above issues,a novel multi-strategy improved SO(MISO)with the assistance of population crowding analysis is proposed in this article.In the algorithm,a novel multi-strategy operator is designed for the exploration stage,which not only focuses on using the information of better performing individuals to improve the quality of solution,but also focuses on maintaining population diversity.To boost the efficiency of the egg hatch process,the multi-strategy egg hatch process is proposed to regenerate individuals according to the results of the population crowding analysis.In addition,a local search method is employed to further enhance the convergence speed and the local search capability.MISO is first compared with three sets of algorithms in the CEC2020 benchmark functions,including SO with its two recently discussed variants,ten advanced MAs,and six powerful CEC competition algorithms.The performance of MISO is then verified on five practical engineering design problems.The experimental results show that MISO provides a promising performance for the above optimization cases in terms of convergence speed and solution quality. 展开更多
关键词 Snake optimizer Multi-strategy Population crowding analysis Engineering design problem
在线阅读 下载PDF
A Comparative Study of Metaheuristic Optimization Algorithms for Solving Real-World Engineering Design Problems
8
作者 Elif Varol Altay Osman Altay Yusuf Ovik 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期1039-1094,共56页
Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as ... Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as industry,automotive,construction,machinery,and interdisciplinary research.However,there are established optimization techniques that have shown effectiveness in addressing these types of issues.This research paper gives a comparative study of the implementation of seventeen new metaheuristic methods in order to optimize twelve distinct engineering design issues.The algorithms used in the study are listed as:transient search optimization(TSO),equilibrium optimizer(EO),grey wolf optimizer(GWO),moth-flame optimization(MFO),whale optimization algorithm(WOA),slimemould algorithm(SMA),harris hawks optimization(HHO),chimp optimization algorithm(COA),coot optimization algorithm(COOT),multi-verse optimization(MVO),arithmetic optimization algorithm(AOA),aquila optimizer(AO),sine cosine algorithm(SCA),smell agent optimization(SAO),and seagull optimization algorithm(SOA),pelican optimization algorithm(POA),and coati optimization algorithm(CA).As far as we know,there is no comparative analysis of recent and popular methods against the concrete conditions of real-world engineering problems.Hence,a remarkable research guideline is presented in the study for researchersworking in the fields of engineering and artificial intelligence,especiallywhen applying the optimization methods that have emerged recently.Future research can rely on this work for a literature search on comparisons of metaheuristic optimization methods in real-world problems under similar conditions. 展开更多
关键词 Metaheuristic optimization algorithms real-world engineering design problems multidisciplinary design optimization problems
在线阅读 下载PDF
A Water Line Network Failure Application of Network Design Problems
9
作者 Hiroaki Mohri Jun-ichi Takeshita 《Journal of Mathematics and System Science》 2015年第12期493-500,共8页
This study investigated a water supply recovery problem involving municipal water service piping. The problem consisted in recovering full service after network failure, in order to rapidly satisfy all urgent citywide... This study investigated a water supply recovery problem involving municipal water service piping. The problem consisted in recovering full service after network failure, in order to rapidly satisfy all urgent citywide demands. The optimal recovery solution was achieved through the application of so-called network design problems (NDPs), which are a form of combinatorial optimization problem. However, a conventional NDP is not suitable for addressing urgent situations because (1) it does not utilize the non-failure arcs in the network, and (2) it is solely concerned with stable costs such as flow costs. Therefore, to adapt the technique to such urgent situations, the conventional NDP is here modified to deal with the specified water supply problem. In addition, a numerical illustration using the Sendai water network is presented. 展开更多
关键词 Water supply recovery problem Network design problem Network failure Recovery and reconstruction plan Combinatorial optimization Risk assessment/management
在线阅读 下载PDF
Analysis and Countermeasures of Common Problems in Civil HVAC Design
10
作者 LIYue 《外文科技期刊数据库(文摘版)工程技术》 2022年第9期032-035,共4页
With the continuous improvement of social and economic construction level, people put forward higher requirements for the internal environment of buildings. Usually, industrial buildings pay more attention to technolo... With the continuous improvement of social and economic construction level, people put forward higher requirements for the internal environment of buildings. Usually, industrial buildings pay more attention to technological requirements, while civil buildings pay more attention to comfort. On the premise of ensuring a healthy and comfortable working and living environment, they should also meet the requirements of energy conservation and fire protection. The current national standard "Code for Design of Heating, Ventilation and Air Conditioning of Civil Buildings" (GB50736) and other relevant codes have made relevant provisions on indoor and outdoor design parameters and fresh air volume. Based on this, the problems of heating system design, fresh air system and ventilation design are discussed. 展开更多
关键词 civil architecture HVAC design problems SOLUTIONS
原文传递
Analysis of the Problems Existing in the Construction Drawing Design of Engineering Structure and Suggestions for Improvement
11
作者 HOUXu 《外文科技期刊数据库(文摘版)工程技术》 2022年第9期036-039,共4页
The design quality of construction drawing of building structure is an important basis of engineering construction quality, which can fully reflect the design concept. Any problems existing in the design of constructi... The design quality of construction drawing of building structure is an important basis of engineering construction quality, which can fully reflect the design concept. Any problems existing in the design of construction drawing will affect the safety of building. At the same time, the design of construction drawing has certain technical content, which reflects the architects grasp of the scheme and the ability to apply technology. Therefore, in order to conscientiously implement the relevant regulations of national architectural design and improve the design quality of structural construction drawings, this paper analyzes the problems existing in the design of structural construction drawings of architectural engineering, and puts forward some improvement suggestions for reference by structural construction drawing designers. 展开更多
关键词 construction engineering structural construction drawing design problems suggestions for improvement
原文传递
Dimension-down iterative algorithm for the mixed transportation network design problem
12
作者 陈群 姚加林 《Journal of Southeast University(English Edition)》 EI CAS 2012年第2期236-239,共4页
An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programmin... An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraints (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) model. The idea of the proposed DDIA is to reduce the dimensions of the problem. A group of variables (discrete/continuous) are fixed to altemately optimize another group of variables (continuous/discrete). Some continuous network design problems (CNDPs) and discrete network design problems (DNDPs) are solved repeatedly until the optimal solution is obtained. A numerical example is given to demonstrate the efficiency of the proposed algorithm. 展开更多
关键词 mixed network design problem (MNDP) dimension-down iterative algorithm (DDIA) mathematical programming with equilibrium constraint (MPEC)
在线阅读 下载PDF
An Improved Artificial Rabbits Optimization Algorithm with Chaotic Local Search and Opposition-Based Learning for Engineering Problems and Its Applications in Breast Cancer Problem 被引量:1
13
作者 Feyza AltunbeyÖzbay ErdalÖzbay Farhad Soleimanian Gharehchopogh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1067-1110,共44页
Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems... Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms. 展开更多
关键词 Artificial rabbit optimization binary optimization breast cancer chaotic local search engineering design problem opposition-based learning
在线阅读 下载PDF
Research on Design and Application of Elementary School Mathematics Inquiry Problem Based on Cognitive Process Analysis
14
作者 TANG Pei 《外文科技期刊数据库(文摘版)教育科学》 2021年第2期121-123,共3页
Primary school education is an important part of laying a good foundation for students' growth and development. Therefore, in primary school mathematics teaching, teachers should help students to have good mathema... Primary school education is an important part of laying a good foundation for students' growth and development. Therefore, in primary school mathematics teaching, teachers should help students to have good mathematical thinking so as to realize students' healthy growth and all-round development. For this reason, teachers should pay attention to the effectiveness and pertinence of problem design in the actual primary mathematics teaching. Through the design of inquiry problems, students' learning desire can be stimulated, so as to improve the efficiency of classroom teaching and lay a good foundation for the realization of students' all-round development. 展开更多
关键词 cognitive process primary school mathematics research problem design and application
在线阅读 下载PDF
mLBOA:A Modified Butterfly Optimization Algorithm with Lagrange Interpolation for Global Optimization 被引量:5
15
作者 Sushmita Sharma Sanjoy Chakraborty +2 位作者 Apu Kumar Saha Sukanta Nama Saroj Kumar Sahoo 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第4期1161-1176,共16页
Though the Butterfly Bptimization Algorithm(BOA)has already proved its effectiveness as a robust optimization algorithm,it has certain disadvantages.So,a new variant of BOA,namely mLBOA,is proposed here to improve its... Though the Butterfly Bptimization Algorithm(BOA)has already proved its effectiveness as a robust optimization algorithm,it has certain disadvantages.So,a new variant of BOA,namely mLBOA,is proposed here to improve its performance.The proposed algorithm employs a self-adaptive parameter setting,Lagrange interpolation formula,and a new local search strategy embedded with Levy flight search to enhance its searching ability to make a better trade-off between exploration and exploitation.Also,the fragrance generation scheme of BOA is modified,which leads for exploring the domain effectively for better searching.To evaluate the performance,it has been applied to solve the IEEE CEC 2017 benchmark suite.The results have been compared to that of six state-of-the-art algorithms and five BOA variants.Moreover,various statistical tests,such as the Friedman rank test,Wilcoxon rank test,convergence analysis,and complexity analysis,have been conducted to justify the rank,significance,and complexity of the proposed mLBOA.Finally,the mLBOA has been applied to solve three real-world engineering design problems.From all the analyses,it has been found that the proposed mLBOA is a competitive algorithm compared to other popular state-of-the-art algorithms and BOA variants. 展开更多
关键词 Butterfly optimization algorithm Lagrange interpolation Levy flight search IEEE CEC 2017 functions Engineering design problems
在线阅读 下载PDF
A surrogate-based optimization algorithm for network design problems 被引量:2
16
作者 Meng LI Xi LIN Xi-qun CHEN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第11期1693-1704,共12页
Network design problems (NDPs) have long been regarded as one of the most challenging problems in the field of transportation planning due to the intrinsic non-convexity of their bi-level programming form. Furthermo... Network design problems (NDPs) have long been regarded as one of the most challenging problems in the field of transportation planning due to the intrinsic non-convexity of their bi-level programming form. Furthermore, a mixture of continuous/discrete decision variables makes the mixed network design problem (MNDP) more complicated and difficult to solve. We adopt a surrogate-based optimization (SBO) framework to solve three featured categories of NDPs (continuous, discrete, and mixed-integer). We prove that the method is asymptotically completely convergent when solving continuous NDPs, guaranteeing a global optimum with probability one through an indefinitely long run. To demonstrate the practical performance of the proposed framework, numerical examples are provided to compare SBO with some existing solving algorithms and other heuristics in the literature for NDP. The results show that SBO is one of the best algorithms in terms of both accuracy and efficiency, and it is efficient for solving large-scale problems with more than 20 decision variables. The SBO approach presented in this paper is a general algorithm of solving other optimization problems in the transportation field. 展开更多
关键词 Network design problem Surrogate-based optimization Transportation planning HEURISTICS
原文传递
Multi-trial Vector-based Whale Optimization Algorithm
17
作者 Mohammad H.Nadimi-Shahraki Hajar Farhanginasab +2 位作者 Shokooh Taghian Ali Safaa Sadiq Seyedali Mirjalili 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第3期1465-1495,共31页
The Whale Optimization Algorithm(WOA)is a swarm intelligence metaheuristic inspired by the bubble-net hunting tactic of humpback whales.In spite of its popularity due to simplicity,ease of implementation,and a limited... The Whale Optimization Algorithm(WOA)is a swarm intelligence metaheuristic inspired by the bubble-net hunting tactic of humpback whales.In spite of its popularity due to simplicity,ease of implementation,and a limited number of parameters,WOA’s search strategy can adversely affect the convergence and equilibrium between exploration and exploitation in complex problems.To address this limitation,we propose a new algorithm called Multi-trial Vector-based Whale Optimization Algorithm(MTV-WOA)that incorporates a Balancing Strategy-based Trial-vector Producer(BS_TVP),a Local Strategy-based Trial-vector Producer(LS_TVP),and a Global Strategy-based Trial-vector Producer(GS_TVP)to address real-world optimization problems of varied degrees of difficulty.MTV-WOA has the potential to enhance exploitation and exploration,reduce the probability of being stranded in local optima,and preserve the equilibrium between exploration and exploitation.For the purpose of evaluating the proposed algorithm's performance,it is compared to eight metaheuristic algorithms utilizing CEC 2018 test functions.Moreover,MTV-WOA is compared with well-stablished,recent,and WOA variant algorithms.The experimental results demonstrate that MTV-WOA surpasses comparative algorithms in terms of the accuracy of the solutions and convergence rate.Additionally,we conducted the Friedman test to assess the gained results statistically and observed that MTV-WOA significantly outperforms comparative algorithms.Finally,we solved five engineering design problems to demonstrate the practicality of MTV-WOA.The results indicate that the proposed MTV-WOA can efficiently address the complexities of engineering challenges and provide superior solutions that are superior to those of other algorithms. 展开更多
关键词 Swarm intelligence algorithms Metaheuristic algorithms Optimization Engineering design problems Whale optimization algorithm
在线阅读 下载PDF
PARTIAL REGULARITY FOR OPTIMAL DESIGN PROBLEMS INVOLVING BOTH BULK AND SURFACE ENERGIES
18
作者 F.H.LIN R.V.KOHN 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1999年第2期137-158,共22页
This paper studies a class of variational problems which involving both bulk and surfaceenergies. The bulk energy is of Dirichlet type though it can be in very general forms allowingunknowns to be scalar or vectors.Th... This paper studies a class of variational problems which involving both bulk and surfaceenergies. The bulk energy is of Dirichlet type though it can be in very general forms allowingunknowns to be scalar or vectors.The surface energy is an arbitrary elliptic parametric integralwhich is defined on a free interface. One also allows other constraints such as volumes of partitioning sets. One establishes the existence and regularity theory, in particular, the regularityof the free interface of such problems. 展开更多
关键词 Partial regularity Optimal design problem Nonlinear variational problems
原文传递
New Classes of Interconnection Topology Structures and Their Properties
19
作者 Hong Zhu Zheng Sun(Department of Computer Science, Fudan University, Shanghai 200133, China)(Tel. +86 21 65492222-2821 or 65482082 Fax. +86 21 65490475 Telex. 33317 HUAFU CN E-mail: hzhu@solaris.fudan.sh.cn or sum@math.vanderbilt.edu) 《Wuhan University Journal of Natural Sciences》 CAS 1996年第Z1期371-385,共15页
In the first part of this- paper, three generalizations of arrangement graph A.,k of [1], namely Bn,k, Cn,k and Dn,k , are introduced. We prove that all the three classes of graphs are vertex symmetric, two of them ar... In the first part of this- paper, three generalizations of arrangement graph A.,k of [1], namely Bn,k, Cn,k and Dn,k , are introduced. We prove that all the three classes of graphs are vertex symmetric, two of them are edge symmetric. They have great faulty tolerance and high connectivity. We give the diameters of B..k and Cn,k, the Hamiltonian cycle of Cn,k and Hamiltonian path of B.,k. We list several open problems, one of them related to the complexity of sorting algorithm on the arrangement graphs. All these graphs can be thought as generalizations of star graph but are more flexible so that they can be considered as new interconnection network topologies. In the second part of this paper, we provide other four classes of combinatorial graphes, Chn , Cyn, Zhn and Zyn. Many good properties of them, such as high node--connectivity, node symmetry, edge symmetry, diameter, ets., are shown in this paper. 展开更多
关键词 Combinatorial problem design of algorithms parallel algorithms faulty tolerance routing star graphs symmetry.
在线阅读 下载PDF
Chase,Pounce,and Escape Optimization Algorithm
20
作者 Adel Sabry Eesa 《Intelligent Automation & Soft Computing》 2024年第4期697-723,共27页
While many metaheuristic optimization algorithms strive to address optimization challenges,they often grapple with the delicate balance between exploration and exploitation,leading to issues such as premature converge... While many metaheuristic optimization algorithms strive to address optimization challenges,they often grapple with the delicate balance between exploration and exploitation,leading to issues such as premature convergence,sensitivity to parameter settings,and difficulty in maintaining population diversity.In response to these challenges,this study introduces the Chase,Pounce,and Escape(CPE)algorithm,drawing inspiration from predator-prey dynamics.Unlike traditional optimization approaches,the CPE algorithm divides the population into two groups,each independently exploring the search space to efficiently navigate complex problem domains and avoid local optima.By incorporating a unique search mechanism that integrates both the average of the best solution and the current solution,the CPE algorithm demonstrates superior convergence properties.Additionally,the inclusion of a pouncing process facilitates rapid movement towards optimal solutions.Through comprehensive evaluations across various optimization scenarios,including standard test functions,Congress on Evolutionary Computation(CEC)-2017 benchmarks,and real-world engineering challenges,the effectiveness of the CPE algorithm is demonstrated.Results consistently highlight the algorithm’s performance,surpassing that of other well-known optimization techniques,and achieving remarkable outcomes in terms of mean,best,and standard deviation values across different problem domains,underscoring its robustness and versatility. 展开更多
关键词 Bio-inspired optimization METAHEURISTIC chase pounce and escape optimizer collective behavior engineering design problems
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部