Dear Editor,This letter studies the event-triggered adaptive horizon distributed model predictive control problem for discrete-time coupled nonlinear systems with additive disturbances.By constructing a new dualmodel ...Dear Editor,This letter studies the event-triggered adaptive horizon distributed model predictive control problem for discrete-time coupled nonlinear systems with additive disturbances.By constructing a new dualmodel optimal control problem,an event-triggered mechanism and an adaptive prediction horizon scheme are co-designed in the proposed scheme.Notably,the upper bound of the triggering interval remains independent of the dynamically shrinking prediction horizon.This enables the event-triggered mechanism to operate effectively even when the prediction horizon becomes zero,thus achieving cost savings throughout the control process.In addition,the sufficient conditions of the proposed scheme associated with the feasibility and stability are provided.The effectiveness is illustrated through a practical example.展开更多
基金supported by the National Natural Science Foundation of China(62473265,62476176,12426311).
文摘Dear Editor,This letter studies the event-triggered adaptive horizon distributed model predictive control problem for discrete-time coupled nonlinear systems with additive disturbances.By constructing a new dualmodel optimal control problem,an event-triggered mechanism and an adaptive prediction horizon scheme are co-designed in the proposed scheme.Notably,the upper bound of the triggering interval remains independent of the dynamically shrinking prediction horizon.This enables the event-triggered mechanism to operate effectively even when the prediction horizon becomes zero,thus achieving cost savings throughout the control process.In addition,the sufficient conditions of the proposed scheme associated with the feasibility and stability are provided.The effectiveness is illustrated through a practical example.