期刊文献+
共找到1,889篇文章
< 1 2 95 >
每页显示 20 50 100
AIGC动画创作中结构化Prompt工程与人工创意主导的协同机制研究
1
作者 林惠清 欧振武 《产业创新研究》 2025年第22期52-54,共3页
本文重在探索动画创作中人工创意与人工智能生成(AI-Generated Content,AIGC)技术的协同机制。实践表明,AIGC在文本创意阶段发挥着参照系与迭代加速器的功能,即通过Prompt生成剧本初稿并提供多维度评估,辅助创作者识别角色塑造薄弱、文... 本文重在探索动画创作中人工创意与人工智能生成(AI-Generated Content,AIGC)技术的协同机制。实践表明,AIGC在文本创意阶段发挥着参照系与迭代加速器的功能,即通过Prompt生成剧本初稿并提供多维度评估,辅助创作者识别角色塑造薄弱、文化表达浅层化等关键问题;而人工创意则主导文化内涵深度挖掘、情感共鸣构建与独特风格重塑,通过实地研学体验注入AI不可替代的人文视角。在动画生成层面,提出结构化Prompt工程框架:人工通过模块化设计,构建初始指令,以细节融合Prompt技术,突破风格同质化;同时运用“关键帧人工精控+AI插帧补间”策略,使初级创作者聚焦核心创意。最终确立“人类构想驱动技术实现”原则,即AIGC作为创意增强体,其价值实现依赖于人工构建的审美判断体系、原创保障机制及动态调试能力,二者形成深度耦合的创作共同体。 展开更多
关键词 人工创意主导 AIGC协同 prompt工程
在线阅读 下载PDF
融合BERTopic和Prompt的学者研究兴趣生成模型——以计算机科学领域为例 被引量:2
2
作者 李豪 张柏苑 +3 位作者 邵蝶语 杨婧 杨波 石燕青 《情报科学》 北大核心 2025年第1期127-136,160,共11页
【目的/意义】学者研究兴趣是学者画像的关键特征,本研究通过识别学者研究兴趣的变化过程,能够帮助补齐学术履历,对构建完整的学者画像以及面向前沿需求的精准人才发现具有重要意义。【方法/过程】构建计算机科学领域论文文本语料库,训... 【目的/意义】学者研究兴趣是学者画像的关键特征,本研究通过识别学者研究兴趣的变化过程,能够帮助补齐学术履历,对构建完整的学者画像以及面向前沿需求的精准人才发现具有重要意义。【方法/过程】构建计算机科学领域论文文本语料库,训练BERTopic主题模型,进行领域研究主题挖掘和学者研究兴趣特征识别。创建Prompt,利用LLM进行主题词提取,结合主题模型分析结果,进行学者研究兴趣描述。【结果/结论】对于学者研究兴趣描述任务,相较基准模型,融合模型的ROUGE得分平均相对提升8.2%,BERTScore得分相对提升4.5%。通过层次分析法发现,BERTopic与LLM融合模型的学者研究兴趣识别效果优于其他评测模型,模型人工评测满意度达到81.4%。【创新/局限】所构建模型能够更好地识别学者研究主题,生成的学者研究兴趣描述文本质量较高。使用的语料库内中文语料占比较大,模型对外文成果的识别能力欠佳。 展开更多
关键词 研究主题挖掘 研究兴趣描述 BERTopic prompt LLM
原文传递
PromptVis:面向文本生成图片的提示词的交互式可视分析方法 被引量:2
3
作者 卢裕弘 封颖超杰 +4 位作者 朱琳 周海怡 朱航 喻晨昊 陈为 《计算机辅助设计与图形学学报》 北大核心 2025年第4期688-696,共9页
高效地使用提示词实现文本到图片的生成是当前大模型的一个研究热点.针对现有工作在提示词工程方面的不足,提出一种面向文本生成图片的提示词的交互式可视分析方法——PromptVis,帮助用户评估并迭代改进提示词,以提升图片质量.首先对用... 高效地使用提示词实现文本到图片的生成是当前大模型的一个研究热点.针对现有工作在提示词工程方面的不足,提出一种面向文本生成图片的提示词的交互式可视分析方法——PromptVis,帮助用户评估并迭代改进提示词,以提升图片质量.首先对用户输入的提示词语句进行成分解析,并提供改进提示词的建议,如推荐相关的提示词;然后将用户输入与系统推荐的提示词集合进行聚类呈现,并支持用户交互探索;第三,从多个维度自动评估文本提示词和生成的图片,为用户修改提示词提供参考;第四,根据推荐的提示词对现有图片进行局部调整,支持用户预览提示词的修改效果.通过用户对比实验,从提示词创作效率分析和实用性问卷评估2个角度,证明了所提方法在辅助用户进行提示词创作上的实用性与有效性. 展开更多
关键词 文本生成图片 提示词工程 提示词可视化
在线阅读 下载PDF
基于Prompt打分的实体链接方法
4
作者 郭俊辰 马御棠 +2 位作者 相艳 赵学东 郭军军 《计算机工程》 北大核心 2025年第3期334-341,共8页
实体链接旨在将自然语言文本中的提及链接到知识库中相应的目标实体,主要面临提及和候选实体的表征能力有限,导致候选实体精确排序困难的问题,而现有的知识库扩展和图嵌入等提高表征能力的方法依赖外部数据或知识,限制了其应用。提出一... 实体链接旨在将自然语言文本中的提及链接到知识库中相应的目标实体,主要面临提及和候选实体的表征能力有限,导致候选实体精确排序困难的问题,而现有的知识库扩展和图嵌入等提高表征能力的方法依赖外部数据或知识,限制了其应用。提出一种实体链接中提及和候选实体精确排序的方法,通过结合提及上下文构建prompt问句,将提及和候选实体相似度计算转化为基于prompt问句的打分模式。通过预训练模型微调打分器,得到提及和候选实体相似度的打分,并综合候选实体发现阶段的得分,以筛选出更准确的目标实体。这一过程无需额外的知识,能够融合上下文信息,从而更准确地衡量提及和实体之间的相似度。在两个公共数据集上将该模型与基线模型进行实验比较,结果表明,相比次优模型,该模型Acc@1值分别提升了0.88和0.41百分点。 展开更多
关键词 实体链接 prompt问句 预训练模型 实体消歧 精确排序
在线阅读 下载PDF
基于Chinese-CLIP模型和Prompt提示机制的图文检索方法 被引量:1
5
作者 陈道彬 张子诺 +2 位作者 付裕彬 黎晋铭 林彬 《现代信息科技》 2025年第6期130-134,共5页
为提升图像文本匹配任务的准确率,提出了一种基于Chinese-CLIP模型和Prompt提示机制的图文检索方法。一方面,对文本数据进行预处理,去除停用词和标点符号后,利用BERT模型提取文本特征;另一方面,使用卷积神经网络提取图像特征,并将得到... 为提升图像文本匹配任务的准确率,提出了一种基于Chinese-CLIP模型和Prompt提示机制的图文检索方法。一方面,对文本数据进行预处理,去除停用词和标点符号后,利用BERT模型提取文本特征;另一方面,使用卷积神经网络提取图像特征,并将得到的文本与图像特征进行序列化,以实现多模态特征融合。模型训练时,先使用Chinese-CLIP大模型进行初步训练,再引入Prompt提示机制对模型进行微调。实验结果表明,所提方法在文搜图和图搜文两个任务上均有效地提升了准确率与召回率。 展开更多
关键词 图文检索 多模态特征融合 Chinese-CLIP模型 prompt提示机制
在线阅读 下载PDF
基于关键词扩展与Prompt-BERT-RCNN模型的医疗问答社区短文本分类
6
作者 臧志栋 汤祖懿 +1 位作者 秦振凯 程结晶 《情报科学》 北大核心 2025年第6期148-155,163,共9页
【目的/意义】在医疗问答社区中实现短文本的自动分类对于提高其服务效率和改善用户体验至关重要。通过构建一个结合关键词扩展技术和深度学习模型的短文本分类方法,以解决短文本分类中的特征稀疏和语义不明确问题。【方法/过程】首先... 【目的/意义】在医疗问答社区中实现短文本的自动分类对于提高其服务效率和改善用户体验至关重要。通过构建一个结合关键词扩展技术和深度学习模型的短文本分类方法,以解决短文本分类中的特征稀疏和语义不明确问题。【方法/过程】首先运用网络爬虫获取医疗问答社区“寻医问药网”的用户问题短文本;然后利用TF-IWF加权关键词重要性,并通过FastText计算关键词相似度来扩展短文本特征;接着将提示学习与深度学习模型融合,构建Prompt-BERT-RCNN模型,实现医疗短文本的有效分类。【结果/结论】实证研究表明,关键词扩展后的分类效果显著高于扩展前,且Prompt-BERT-RCNN模型对扩展后的医疗短文本的分类准确率高达97.92%,并在9个不同医疗类别中均表现优异。【创新/局限】TF-IWF与FastText的短文本扩展方法弥补了Word2vec未考虑关键词稀有度和子词上下文信息方面的缺陷,Prompt-BERT-RCNN模型通过融合Prompt的引导、BERT的深层语义理解以及RCNN的区域感知和特征提取能力进一步提升了短文本的分类准确率;但模型在个别主题的准确率仍有待提升。 展开更多
关键词 医疗问答社区 关键词扩展 短文本分类 BERT-RCNN模型 提示学习
原文传递
Exploration of augmented prompting methods for information extraction using large language models
7
作者 Yishuo Fu Benfeng Xu +2 位作者 Mingxuan Du Quan Wang Zhendong Mao 《中国科学技术大学学报》 北大核心 2025年第7期15-24,14,I0001,共12页
Information extraction(IE)aims to automatically identify and extract information about specific interests from raw texts.Despite the abundance of solutions based on fine-tuning pretrained language models,IE in the con... Information extraction(IE)aims to automatically identify and extract information about specific interests from raw texts.Despite the abundance of solutions based on fine-tuning pretrained language models,IE in the context of fewshot and zero-shot scenarios remains highly challenging due to the scarcity of training data.Large language models(LLMs),on the other hand,can generalize well to unseen tasks with few-shot demonstrations or even zero-shot instructions and have demonstrated impressive ability for a wide range of natural language understanding or generation tasks.Nevertheless,it is unclear,whether such effectiveness can be replicated in the task of IE,where the target tasks involve specialized schema and quite abstractive entity or relation concepts.In this paper,we first examine the validity of LLMs in executing IE tasks with an established prompting strategy and further propose multiple types of augmented prompting methods,including the structured fundamental prompt(SFP),the structured interactive reasoning prompt(SIRP),and the voting-enabled structured interactive reasoning prompt(VESIRP).The experimental results demonstrate that while directly promotes inferior performance,the proposed augmented prompt methods significantly improve the extraction accuracy,achieving comparable or even better performance(e.g.,zero-shot FewNERD,FewNERD-INTRA)than state-of-theart methods that require large-scale training samples.This study represents a systematic exploration of employing instruction-following LLM for the task of IE.It not only establishes a performance benchmark for this novel paradigm but,more importantly,validates a practical technical pathway through the proposed prompt enhancement method,offering a viable solution for efficient IE in low-resource settings. 展开更多
关键词 prompt learning natural language processing few-shot information extraction zero-shot information extraction
在线阅读 下载PDF
基于prompt的医疗大语言模型自适应优化方法 被引量:1
8
作者 陆鑫涛 孙丽萍 +2 位作者 童子龙 刘佳霖 凌晨 《智能计算机与应用》 2025年第8期190-196,共7页
在不需要人工参与及微调的情况下对回答进行自适应优化,提升医疗大语言模型的回答质量。本文提出了一种基于自适应提示的自适应优化方法,让模型对生成的答案进行自我批判分析并进行优化,实现改进医疗大语言模型的回答效果。经过GPT-4与... 在不需要人工参与及微调的情况下对回答进行自适应优化,提升医疗大语言模型的回答质量。本文提出了一种基于自适应提示的自适应优化方法,让模型对生成的答案进行自我批判分析并进行优化,实现改进医疗大语言模型的回答效果。经过GPT-4与医生的评判,经过该方法优化后,各医疗大语言模型的回答质量综合提升了8%~10%。受限于该方法本身基于循环迭代的特性,导致生成回答的速度较慢。此外,受限于医疗大模型的小参数量,导致个别情况下模型的评判分析能力不足,导致生成结果的瑕疵。本文提出的自适应优化方法能有效提升医疗大语言模型问答的准确性和相关性。 展开更多
关键词 医疗对话生成 受控文本生成 提示工程
在线阅读 下载PDF
基于黄炎培“学生中心”教学观的《纸制品营销》课程Prompt教学模式的构建与实践
9
作者 袁静薇 《纸和造纸》 2025年第3期31-36,共6页
大模型时代,如何应用Prompt技术赋能个性化学习成为关键问题。本研究基于黄炎培“学生中心”教学观,围绕“个性之发展、谋生之准备、个人服务社会之准备、国家与社会增进生产力之准备”目标,针对《纸制品营销》教学的“四阶”Prompt教... 大模型时代,如何应用Prompt技术赋能个性化学习成为关键问题。本研究基于黄炎培“学生中心”教学观,围绕“个性之发展、谋生之准备、个人服务社会之准备、国家与社会增进生产力之准备”目标,针对《纸制品营销》教学的“四阶”Prompt教学模式研究,设计了Prompt参考框架,开发了四轮人机对话机制,解决了学生学习需求表达不清、批判性思维欠缺等问题。教学实践表明,教学模式有效提升了学生的学习成效和参与度,为《纸制品营销》课程开展个性化教学提供了可借鉴的实践范式。 展开更多
关键词 prompt技术 纸制品营销 黄炎培“学生中心”教学观 个性化学习
原文传递
Adversarial Prompt Detection in Large Language Models:A Classification-Driven Approach
10
作者 Ahmet Emre Ergün Aytug Onan 《Computers, Materials & Continua》 2025年第6期4855-4877,共23页
Large Language Models(LLMs)have significantly advanced human-computer interaction by improving natural language understanding and generation.However,their vulnerability to adversarial prompts–carefully designed input... Large Language Models(LLMs)have significantly advanced human-computer interaction by improving natural language understanding and generation.However,their vulnerability to adversarial prompts–carefully designed inputs that manipulate model outputs–presents substantial challenges.This paper introduces a classification-based approach to detect adversarial prompts by utilizing both prompt features and prompt response features.Elevenmachine learning models were evaluated based on key metrics such as accuracy,precision,recall,and F1-score.The results show that the Convolutional Neural Network–Long Short-Term Memory(CNN-LSTM)cascade model delivers the best performance,especially when using prompt features,achieving an accuracy of over 97%in all adversarial scenarios.Furthermore,the Support Vector Machine(SVM)model performed best with prompt response features,particularly excelling in prompt type classification tasks.Classification results revealed that certain types of adversarial attacks,such as“Word Level”and“Adversarial Prefix”,were particularly difficult to detect,as indicated by their low recall and F1-scores.These findings suggest that more subtle manipulations can evade detection mechanisms.In contrast,attacks like“Sentence Level”and“Adversarial Insertion”were easier to identify,due to the model’s effectiveness in recognizing inserted content.Natural Language Processing(NLP)techniques played a critical role by enabling the extraction of semantic and syntactic features from both prompts and their corresponding responses.These insights highlight the importance of combining traditional and deep learning approaches,along with advanced NLP techniques,to build more reliable adversarial prompt detection systems for LLMs. 展开更多
关键词 LLM CLASSIFICATION NLP adversarial prompt machine learning deep learning
在线阅读 下载PDF
VPM-Net:Person Re-ID Network Based on Visual Prompt Technology and Multi-Instance Negative Pooling
11
作者 Haitao Xie Yuliang Chen +3 位作者 Yunjie Zeng Lingyu Yan Zhizhi Wang Zhiwei Ye 《Computers, Materials & Continua》 2025年第5期3389-3410,共22页
With the rapid development of intelligent video surveillance technology,pedestrian re-identification has become increasingly important inmulti-camera surveillance systems.This technology plays a critical role in enhan... With the rapid development of intelligent video surveillance technology,pedestrian re-identification has become increasingly important inmulti-camera surveillance systems.This technology plays a critical role in enhancing public safety.However,traditional methods typically process images and text separately,applying upstream models directly to downstream tasks.This approach significantly increases the complexity ofmodel training and computational costs.Furthermore,the common class imbalance in existing training datasets limitsmodel performance improvement.To address these challenges,we propose an innovative framework named Person Re-ID Network Based on Visual Prompt Technology andMulti-Instance Negative Pooling(VPM-Net).First,we incorporate the Contrastive Language-Image Pre-training(CLIP)pre-trained model to accurately map visual and textual features into a unified embedding space,effectively mitigating inconsistencies in data distribution and the training process.To enhancemodel adaptability and generalization,we introduce an efficient and task-specific Visual Prompt Tuning(VPT)technique,which improves the model’s relevance to specific tasks.Additionally,we design two key modules:the Knowledge-Aware Network(KAN)and theMulti-Instance Negative Pooling(MINP)module.The KAN module significantly enhances the model’s understanding of complex scenarios through deep contextual semantic modeling.MINP module handles samples,effectively improving the model’s ability to distinguish fine-grained features.The experimental outcomes across diverse datasets underscore the remarkable performance of VPM-Net.These results vividly demonstrate the unique advantages and robust reliability of VPM-Net in fine-grained retrieval tasks. 展开更多
关键词 Person re-identification multi-instance negative pooling visual prompt tuning
在线阅读 下载PDF
PromptFusion:Harmonized Semantic Prompt Learning for Infrared and Visible Image Fusion
12
作者 Jinyuan Liu Xingyuan Li +4 位作者 Zirui Wang Zhiying Jiang Wei Zhong Wei Fan Bin Xu 《IEEE/CAA Journal of Automatica Sinica》 2025年第3期502-515,共14页
The goal of infrared and visible image fusion(IVIF)is to integrate the unique advantages of both modalities to achieve a more comprehensive understanding of a scene.However,existing methods struggle to effectively han... The goal of infrared and visible image fusion(IVIF)is to integrate the unique advantages of both modalities to achieve a more comprehensive understanding of a scene.However,existing methods struggle to effectively handle modal disparities,resulting in visual degradation of the details and prominent targets of the fused images.To address these challenges,we introduce Prompt Fusion,a prompt-based approach that harmoniously combines multi-modality images under the guidance of semantic prompts.Firstly,to better characterize the features of different modalities,a contourlet autoencoder is designed to separate and extract the high-/low-frequency components of different modalities,thereby improving the extraction of fine details and textures.We also introduce a prompt learning mechanism using positive and negative prompts,leveraging Vision-Language Models to improve the fusion model's understanding and identification of targets in multi-modality images,leading to improved performance in downstream tasks.Furthermore,we employ bi-level asymptotic convergence optimization.This approach simplifies the intricate non-singleton non-convex bi-level problem into a series of convergent and differentiable single optimization problems that can be effectively resolved through gradient descent.Our approach advances the state-of-the-art,delivering superior fusion quality and boosting the performance of related downstream tasks.Project page:https://github.com/hey-it-s-me/PromptFusion. 展开更多
关键词 Bi-level optimization image fusion infrared and visible image prompt learning
在线阅读 下载PDF
Optimization of the prompt fission neutron spectra of ^(239)Pu(n,f)via criticality benchmarking
13
作者 Jia-Hao Chen Bo Yang +5 位作者 Qing-Gang Jia Rui Li Wen-Di Chen Hai-Rui Guo Wei-Li Sun Tao Ye 《Nuclear Science and Techniques》 2025年第9期139-149,共11页
Prompt fission neutron spectra(PFNS)have a significant role in nuclear science and technology.In this study,the PFNS for^(239)Pu are evaluated using both differential and integral experimental data.A method that lever... Prompt fission neutron spectra(PFNS)have a significant role in nuclear science and technology.In this study,the PFNS for^(239)Pu are evaluated using both differential and integral experimental data.A method that leverages integral criticality benchmark experiments to constrain the PFNS data is introduced.The measured central values of the PFNS are perturbed by constructing a covariance matrix.The PFNS are sampled using two types of covariance matrices,either generated with an assumed correlation matrix and incorporating experimental uncertainties or derived directly from experimental reports.The joint Monte Carlo transport code is employed to perform transport simulations on five criticality benchmark assemblies by utilizing perturbed PFNS data.Extensive simulations result in an optimized PFNS that shows improved agreement with the integral criticality benchmark experiments.This study introduces a novel approach for optimizing differential experimental data through integral experiments,particularly when a covariance matrix is not provided. 展开更多
关键词 prompt fission neutron spectra Differential nuclear data Criticality benchmark Random sample Transport simulation
在线阅读 下载PDF
Prompt-Guided Dialogue State Tracking with GPT-2 and Graph Attention
14
作者 Muhammad Asif Khan Dildar Hussain +5 位作者 Bhuyan Kaibalya Prasad Irfan Ullah Inayat Khan Jawad Khan Yeong Hyeon Gu Pavlos Kefalas 《Computers, Materials & Continua》 2025年第12期5451-5468,共18页
Dialogue State Tracking(DST)is a critical component of task-oriented spoken dialogue systems(SDS),tasked with maintaining an accurate representation of the conversational state by predicting slots and their correspond... Dialogue State Tracking(DST)is a critical component of task-oriented spoken dialogue systems(SDS),tasked with maintaining an accurate representation of the conversational state by predicting slots and their corresponding values.Recent advances leverage Large Language Models(LLMs)with prompt-based tuning to improve tracking accuracy and efficiency.However,these approaches often incur substantial computational and memory overheads and typically address slot extraction implicitly within prompts,without explicitly modeling the complex dependencies between slots and values.In this work,we propose PUGG,a novel DST framework that constructs schema-driven prompts to fine-tune GPT-2 and utilizes its tokenizer to implement a memory encoder.PUGG explicitly extracts slot values via GPT-2 and employs Graph Attention Networks(GATs)to model and reason over the intricate relationships between slots and their associated values.We evaluate PUGG on four publicly available datasets,where it achieves stateof-the-art performance across multiple evaluation metrics,highlighting its robustness and generalizability in diverse conversational scenarios.Our results indicate that the integration of GPT-2 substantially reduces model complexity and memory consumption by streamlining key processes.Moreover,prompt tuning enhances the model’s flexibility and precision in extracting relevant slot-value pairs,while the incorporation of GATs facilitates effective relational reasoning,leading to improved dialogue state representations. 展开更多
关键词 Spoken dialogue systems dialogue state tracking prompt tuning GPT-2 graph attention networks
在线阅读 下载PDF
Select-and-Answer Prompting:Facilitating LLMs for Improving Zero-Shot Reasoning
15
作者 WANG Yufang TANG Xuesong HAO Kuangrong 《Journal of Donghua University(English Edition)》 2025年第5期513-522,共10页
Large language models(LLMs)have demonstrated remarkable generalization abilities across multiple tasks in natural language processing(NLP).For multi-step reasoning tasks,chain-of-thought(CoT)prompting facilitates step... Large language models(LLMs)have demonstrated remarkable generalization abilities across multiple tasks in natural language processing(NLP).For multi-step reasoning tasks,chain-of-thought(CoT)prompting facilitates step-by-step thinking,leading to improved performance.However,despite significant advancements in LLMs,current CoT prompting performs suboptimally on smaller-scale models that have fewer parameters.Additionally,the common paradigm of few-shot CoT prompting relies on a set of manual demonstrations,with performance contingent on the quality of these annotations and varying with task-specific requirements.To address these limitations,we propose a select-and-answer prompting method(SAP)to enhance language model performance on reasoning tasks without the need for manual demonstrations.This method comprises two primary steps:guiding the model to conduct preliminary analysis and generate several candidate answers based on the prompting;allowing the model to provide final answers derived from these candidate answers.The proposed prompting strategy is evaluated across two language models of varying sizes and six datasets.On ChatGLM-6B,SAP consistently outperforms few-shot CoT across all datasets.For GPT-3.5,SAP achieves comparable performance to few-shot CoT and outperforms zero-shot CoT in most cases.These experimental results indicate that SAP can significantly improve the accuracy of language models in reasoning tasks. 展开更多
关键词 zero-shot learning large language model(LLM) reasoning problem chain-of-thought(CoT)prompting
在线阅读 下载PDF
基于RoBERTa-Prompt-R-Drop新闻主题分类
16
作者 郭伟翰 《计算机时代》 2025年第12期44-49,共6页
针对新闻主题文本分类面临的上下文缺失与数据稀疏挑战,本文提出一种融合RoBERTa、提示学习与R-Drop的联合优化框架。该框架利用提示学习将分类转化为掩码语言模型任务,激活RoBERTa的预训练语义知识以弥补上下文信息缺失;同时,采用R-Dro... 针对新闻主题文本分类面临的上下文缺失与数据稀疏挑战,本文提出一种融合RoBERTa、提示学习与R-Drop的联合优化框架。该框架利用提示学习将分类转化为掩码语言模型任务,激活RoBERTa的预训练语义知识以弥补上下文信息缺失;同时,采用R-Drop对同一输入的两次Dropout随机失活输出施加KL散度约束,实现无负样本的对比正则化,迫使模型学习对噪声不敏感的鲁棒表征,从而规避低质量负样本构造带来的问题。THUCNews数据集上的实验结果表明,本方法取得了96.61%的准确率,显著优于各基线模型,充分验证了该策略在提升分类精度与模型鲁棒性方面的有效性。 展开更多
关键词 文本分类 新闻主题 RoBERTa 提示学习 R-Drop
在线阅读 下载PDF
基于PROMPT的本体映射实例分析 被引量:8
17
作者 米杨 曹锦丹 《情报学报》 CSSCI 北大核心 2010年第6期987-991,共5页
本体语义互操作可以有效促进相关本体基于语义的互联互通。目前,异构本体的语义互操作主要是通过本体映射来实现。本文以医学领域中的公共卫生领域疫情监测本体与医学领域顶层本体(BioCaster和UMLS Semantic Network)为研究案例,通过... 本体语义互操作可以有效促进相关本体基于语义的互联互通。目前,异构本体的语义互操作主要是通过本体映射来实现。本文以医学领域中的公共卫生领域疫情监测本体与医学领域顶层本体(BioCaster和UMLS Semantic Network)为研究案例,通过基于字符串匹配与锚遍历相结合的PROMPT系统,探讨两个本体的语义相似性,旨在从中发现两个医学本体间的相似性特点,为医药卫生领域本体语义互操作解决方案的优化提供一定的实践基础,从而促进语义网环境下医药卫生信息资源乃至其他领域中信息资源一体化。 展开更多
关键词 本体 本体映射 prompt 语义互操作
在线阅读 下载PDF
图书馆网站易用性研究--基于A-Prompt软件的分析 被引量:2
18
作者 晏尔伽 《新世纪图书馆》 CSSCI 2008年第2期65-68,20,共5页
论文分析了现阶段网站设计的研究方向,阐述了网站易用性研究的重要性及必要性;并以南京图书馆主页为研究对象,利用A-Prompt软件分析了该网页在网站易用性上存在的问题,同时提供了修改建议与方法。
关键词 图书馆网站 用户研究 易用性 A—prompt
在线阅读 下载PDF
我国基本医疗保险基金“三结算”改革的实施现状与优化策略
19
作者 赵浩凯 朱雨霏 +2 位作者 王莹 冉明东 蒋俊男 《中国卫生经济》 北大核心 2026年第1期26-30,共5页
目的:分析我国基本医疗保险基金“三结算”改革的实施现状,为后续改革的扩面和深化提出政策建议。方法:以基本医疗保险基金“三结算”为切入点,汇总各统筹地区的改革现状,从结算路径、结算范围和结算时限等不同维度归纳了各地区的实施情... 目的:分析我国基本医疗保险基金“三结算”改革的实施现状,为后续改革的扩面和深化提出政策建议。方法:以基本医疗保险基金“三结算”为切入点,汇总各统筹地区的改革现状,从结算路径、结算范围和结算时限等不同维度归纳了各地区的实施情况,探讨各地区在推进基本医疗保险基金“三结算”时可能遇到的现实问题。结果:目前,部分地区已经开启基本医疗保险基金“三结算”的改革,其在提升基金使用效率、优化资金周转和减轻多方主体负担方面成效显著。然而,改革面临技术壁垒、基金可持续性与支付风险、利益协调与政策协同困境等挑战。结论:通过夯实信息化基础、完善多维支付路径、建立多元主体共治机制,进一步推进医疗保险基金结算体系可持续发展。 展开更多
关键词 医疗保险 基本医疗保险基金 三结算 即时结算 垫付负担
原文传递
基于prompt和知识增强的方面级情感分析 被引量:4
20
作者 李阳 唐积强 +2 位作者 朱俊武 梁明轩 高翔 《计算机科学》 CSCD 北大核心 2023年第S01期67-73,共7页
方面级情感分析是一种新兴的细粒度情感分析任务,旨在根据给定句子和方面词判断情感极性。目前广泛使用的预训练语言模型由于训练目标和方面级情感分析的目标有差异,分析结果不好。为了缓解预训练语言模型和情感分析目标的差异,prompt... 方面级情感分析是一种新兴的细粒度情感分析任务,旨在根据给定句子和方面词判断情感极性。目前广泛使用的预训练语言模型由于训练目标和方面级情感分析的目标有差异,分析结果不好。为了缓解预训练语言模型和情感分析目标的差异,prompt被引入到方面级情感分析中,采用伪标签加方面词和意见词的方式创建prompt连续模板,并使用prompt-encoder训练伪标签使其拥有语义信息;然后,使用主题图注意力机制融合关于方面词和意见词的外部知识,根据融合外部知识的隐藏向量预测由情感词典组成的候选标签词;最后,采用求和置信度分数的方式将候选标签词的概率映射到情感极性分布空间上。实验表明,该模型在SemEval 2014任务的笔记本电脑数据集和餐厅数据集上将正确率分别提高了1.53%和3.5%。 展开更多
关键词 方面级情感分析 预训练语言模型 prompt 情感词典 知识增强 深度学习
在线阅读 下载PDF
上一页 1 2 95 下一页 到第
使用帮助 返回顶部