We study the zero-dissipation problem for a one-dimensional model system for the isentropic flow of a compressible viscous gas, the so-called p-system with viscosity. When the solution of the inviscid problem is a rar...We study the zero-dissipation problem for a one-dimensional model system for the isentropic flow of a compressible viscous gas, the so-called p-system with viscosity. When the solution of the inviscid problem is a rarefaction wave with finite strength, there exists unique solution to the viscous problem with the same initial data which converges to the given inviscid solution as c goes to zero. The proof consists of a scaling argument and elementary energy analysis, based on the underlying wave structure.展开更多
Davenport's Problem asks:What can we expect of two polynomials,over Z,with the same ranges on almost all residue class fields? This stood out among many separated variable problems posed by Davenport,Lewis and Sch...Davenport's Problem asks:What can we expect of two polynomials,over Z,with the same ranges on almost all residue class fields? This stood out among many separated variable problems posed by Davenport,Lewis and Schinzel.By bounding the degrees,but expanding the maps and variables in Davenport's Problem,Galois stratification enhanced the separated variable theme,solving an Ax and Kochen problem from their Artin Conjecture work.Denef and Loeser applied this to add Chow motive coefficients to previously introduced zeta functions on a diophantine statement.By restricting the variables,but leaving the degrees unbounded,we found the striking distinction between Davenport's problem over Q,solved by applying the Branch Cycle Lemma,and its generalization over any number field,solved by using the simple group classification.This encouraged Thompson to formulate the genus 0 problem on rational function monodromy groups.Guralnick and Thompson led its solution in stages.We look at two developments since the solution of Davenport's problem.Stemming from MacCluer's 1967 thesis,identifying a general class of problems,including Davenport's,as monodromy precise.R(iemann)E(xistence)T(heorem)'s role as a converse to problems generalizing Davenport's,and Schinzel's (on reducibility).We use these to consider:Going beyond the simple group classification to handle imprimitive groups,and what is the role of covers and correspondences in going from algebraic equations to zeta functions with Chow motive coefficients.展开更多
文摘We study the zero-dissipation problem for a one-dimensional model system for the isentropic flow of a compressible viscous gas, the so-called p-system with viscosity. When the solution of the inviscid problem is a rarefaction wave with finite strength, there exists unique solution to the viscous problem with the same initial data which converges to the given inviscid solution as c goes to zero. The proof consists of a scaling argument and elementary energy analysis, based on the underlying wave structure.
文摘Davenport's Problem asks:What can we expect of two polynomials,over Z,with the same ranges on almost all residue class fields? This stood out among many separated variable problems posed by Davenport,Lewis and Schinzel.By bounding the degrees,but expanding the maps and variables in Davenport's Problem,Galois stratification enhanced the separated variable theme,solving an Ax and Kochen problem from their Artin Conjecture work.Denef and Loeser applied this to add Chow motive coefficients to previously introduced zeta functions on a diophantine statement.By restricting the variables,but leaving the degrees unbounded,we found the striking distinction between Davenport's problem over Q,solved by applying the Branch Cycle Lemma,and its generalization over any number field,solved by using the simple group classification.This encouraged Thompson to formulate the genus 0 problem on rational function monodromy groups.Guralnick and Thompson led its solution in stages.We look at two developments since the solution of Davenport's problem.Stemming from MacCluer's 1967 thesis,identifying a general class of problems,including Davenport's,as monodromy precise.R(iemann)E(xistence)T(heorem)'s role as a converse to problems generalizing Davenport's,and Schinzel's (on reducibility).We use these to consider:Going beyond the simple group classification to handle imprimitive groups,and what is the role of covers and correspondences in going from algebraic equations to zeta functions with Chow motive coefficients.