In this article, we consider the global existence and decay rates of solutions for the transmission problem of Kirchhoff type wave equations consisting of two physi- cally different types of materials, one component i...In this article, we consider the global existence and decay rates of solutions for the transmission problem of Kirchhoff type wave equations consisting of two physi- cally different types of materials, one component is a Kirchhoff type wave equation with nonlinear time dependent localized dissipation which is effective only on a neighborhood of certain part of the boundary, while the other is a Kirchhoff type wave equation with nonlinear memory.展开更多
In this paper,the relaxation algorithm and two Uzawa type algorithms for solving discretized variational inequalities arising from the two-phase Stefan type problem are proposed.An analysis of their convergence is pre...In this paper,the relaxation algorithm and two Uzawa type algorithms for solving discretized variational inequalities arising from the two-phase Stefan type problem are proposed.An analysis of their convergence is presented and the upper bounds of the convergence rates are derived.Some numerical experiments are shown to demonstrate that for the second Uzawa algorithm which is an improved version of the first Uzawa algorithm,the convergence rate is uniformly bounded away from 1 if τh^-2 is kept bounded,where τ is the time step size and h the space mesh size.展开更多
In this paper, the author obtains an existence theorem of minimal and maximal solutions for the periodic boundary value problems of nonlinear impulsive integrodifferential equations of mixed type in Banach space by me...In this paper, the author obtains an existence theorem of minimal and maximal solutions for the periodic boundary value problems of nonlinear impulsive integrodifferential equations of mixed type in Banach space by means of the monotone iterative technique and cone theory based on a comparison result.展开更多
In this paper,on the basis of Ref.[1],the author studies the boundary value problems of the second-order differential equations,the highest order derivatives of which contain the small parameters.The numerical example...In this paper,on the basis of Ref.[1],the author studies the boundary value problems of the second-order differential equations,the highest order derivatives of which contain the small parameters.The numerical examples show that the calculating process of this method is quite simple and its accuracy is even higher than that of the multiple scales method.展开更多
This paper studies two isometric problems between unit spheres of Banach spaces.In the first part,we introduce and study the Figiel type problem of isometric embeddings between unit spheres.However,the classical Figie...This paper studies two isometric problems between unit spheres of Banach spaces.In the first part,we introduce and study the Figiel type problem of isometric embeddings between unit spheres.However,the classical Figiel theorem on the whole space cannot be trivially generalized to this case,and this is pointed out by a counterexample.After establishing this,we find a natural necessary condition required by the existence of the Figiel operator.Furthermore,we prove that when X is a space with the T-property,this condition is also sufficient for an isometric embedding T:S_(X)→S_(Y) to admit the Figiel operator.This answers the Figiel type problem on unit spheres for a large class of spaces.In the second part,we consider the extension of bijectiveε-isometries between unit spheres of two Banach spaces.It is shown that every bijectiveε-isometry between unit spheres of a local GL-space and another Banach space can be extended to be a bijective 5ε-isometry between the corresponding unit balls.In particular,whenε=0,this recovers the MUP for local GL-spaces obtained in[40].展开更多
In this paper,we study the following Kirchhoff type problem:{-M(∫_(R^(N))|▽u|^(2)dx)△u=λa(x)f(u),x∈R^(N),u=0 as|x|→+∞.Unilateral global bifurcation result is established for this problem.As applications of the ...In this paper,we study the following Kirchhoff type problem:{-M(∫_(R^(N))|▽u|^(2)dx)△u=λa(x)f(u),x∈R^(N),u=0 as|x|→+∞.Unilateral global bifurcation result is established for this problem.As applications of the bifurcation result,we determine the intervals ofλfor the existence,nonexistence,and exact multiplicity of one-sign solutions for this problem.展开更多
In this paper, we investigate the influence of boundary dissipation on the de-cay property of solutions for a transmission problem of Kirchhoff type wave equation with boundary memory condition. By introducing suitabl...In this paper, we investigate the influence of boundary dissipation on the de-cay property of solutions for a transmission problem of Kirchhoff type wave equation with boundary memory condition. By introducing suitable energy and Lyapunov functionals, we establish a general decay estimate for the energy, which depends on the behavior of relaxation function.展开更多
In this paper, we discuss some characteristic properties of partial abstract data type (PADT) and show the diffrence between PADT and abstract data type (ADT) in specification of programming language. Finally, we clar...In this paper, we discuss some characteristic properties of partial abstract data type (PADT) and show the diffrence between PADT and abstract data type (ADT) in specification of programming language. Finally, we clarify that PADT is necessary in programming language description.展开更多
In this paper, we consider a class of Kirchhoff type problem with superlinear nonlinearity. A sign-changing solution with exactly two nodal domains will be obtained by combining the Nehari method and an iterative tech...In this paper, we consider a class of Kirchhoff type problem with superlinear nonlinearity. A sign-changing solution with exactly two nodal domains will be obtained by combining the Nehari method and an iterative technique.展开更多
Various kinds of Riemann boundary value problems (BVPs) for analytic functions on closed curves or on open arc, doubly periodic Riemann BVPs, doubly quasi-periodic Riemann BVPs, and BVPs for polyanalytic functions hav...Various kinds of Riemann boundary value problems (BVPs) for analytic functions on closed curves or on open arc, doubly periodic Riemann BVPs, doubly quasi-periodic Riemann BVPs, and BVPs for polyanalytic functions have been widely investigated in [1-8]. The main ap- proach is to use the decomposition of polyanalytic functions and their generalization to transform the boundary value problems to their corresponding boundary value problems for analytic functions. Recently, inverse Riemann BVPs for generalized analytic functions or bianalytic functions have been investigated in [9-12]. In this paper, we consider a kind of Riemann BVP of non-normal type on the infinite straight line and discuss the solvable conditions and the general solution for it.展开更多
Consider the piecewise linear finite element subspace S and parabolic semi discrete Green’s function of gradient type G h(t)∈Sk.The asymptotic optimal estimatedxdt【C|Inh| and two applications are discussed.
Mehrotra-type predictor-corrector algorithm, as one of most efficient interior point methods, has become the backbones of most optimization packages. Salahi et al. proposed a cut strategy based algorithm for linear op...Mehrotra-type predictor-corrector algorithm, as one of most efficient interior point methods, has become the backbones of most optimization packages. Salahi et al. proposed a cut strategy based algorithm for linear optimization that enjoyed polynomial complexity and maintained its efficiency in practice. We extend their algorithm to P. (~) linear complementar- ity problems. The way of choosing corrector direction for our algorithm is different from theirs: The new algorithm has been proved to have an O((1 + 4k)(17 + 19k)√1+2kn 3/2 log(x0)Ts0/ε) worst case iteration complexity bound. An numerical experiment verifies the feasibility of the new algorithm.展开更多
In this paper, combining with the L_p-dual geominimal surface area and the general L_p-centroid bodies, we research the Shephard type problems for general L_p-centroid bodies.
This research paper deals with the boundary and initial value problems for the Bratu-type model by using the New Improved Variational Homotopy Perturbation Method. The New Method does not require discritization, linea...This research paper deals with the boundary and initial value problems for the Bratu-type model by using the New Improved Variational Homotopy Perturbation Method. The New Method does not require discritization, linearization or any restrictive assumption of any form in providing analytical or approximate solutions to linear and nonlinear equation without the integral related with nonlinear term. Theses virtues make it to be reliable and its efficiency is demonstrated with numerical examples.展开更多
In this paper, we present and study a kind of Riemann boundary value problem of non-normal type for analytic functions on two parallel curves. Making use of the method of complex functions, we give the method for solv...In this paper, we present and study a kind of Riemann boundary value problem of non-normal type for analytic functions on two parallel curves. Making use of the method of complex functions, we give the method for solving this kind of doubly periodic Riemann boundary value problem of non-normal type and obtain the explicit expressions of solutions and the solvable conditions for it.展开更多
In this paper, we establish the existence of at least four distinct solutions to an Kirchhoff type problems involving the critical Caffareli-Kohn-Niremberg exponent, concave term and sign-changing weights, by using th...In this paper, we establish the existence of at least four distinct solutions to an Kirchhoff type problems involving the critical Caffareli-Kohn-Niremberg exponent, concave term and sign-changing weights, by using the Nehari manifold and mountain pass theorem.展开更多
This paper deals with the existence of triple positive solutions for the 1-dimensional equation of Laplace-type (φ(x′(t)))′+q(t)f(t,x(t),x′(t))=0,t∈(0,1),subject to the following boundary condit...This paper deals with the existence of triple positive solutions for the 1-dimensional equation of Laplace-type (φ(x′(t)))′+q(t)f(t,x(t),x′(t))=0,t∈(0,1),subject to the following boundary condition:a1φ(x(0))-a2φ(x'(0))=0,a3φ(x(1))+a4φ(x'(1))=0,where φ is an odd increasing homogeneous homeomorphism. By using a new fixed point theorem, sufficient conditions are obtained that guarantee the existence of at least three positive solu- tions. The emphasis here is that the nonlinear term f is involved with the first order derivative explicitly.展开更多
In this paper, a class of nonsmooth multiobjective programming problems is considered. We introduce the new concept of invex of order??type II for nondifferentiable locally Lipschitz functions using the tools of Clark...In this paper, a class of nonsmooth multiobjective programming problems is considered. We introduce the new concept of invex of order??type II for nondifferentiable locally Lipschitz functions using the tools of Clarke subdifferential. The new functions are used to derive the sufficient optimality condition for a class of nonsmooth multiobjective programming problems. Utilizing the sufficient optimality conditions, weak and strong duality theorems are established for Wolfe type duality model.展开更多
In this paper.the following ined boundary value problem for second-order system of differential equations of the elliptic type will be discussed to find the function u and v such that they satisfy:The solution of this...In this paper.the following ined boundary value problem for second-order system of differential equations of the elliptic type will be discussed to find the function u and v such that they satisfy:The solution of this problem is found by means of the theory of generalized analutic function and the integral equation method for solving boundary value problems.展开更多
This paper proposes a new hybrid variant of extragradient methods for finding a common solution of an equilibrium problem and a family of strict pseudo-contraction mappings. We present an algorithmic scheme that combi...This paper proposes a new hybrid variant of extragradient methods for finding a common solution of an equilibrium problem and a family of strict pseudo-contraction mappings. We present an algorithmic scheme that combine the idea of an extragradient method and a successive iteration method as a hybrid variant. Then, this algorithm is modified by projecting on a suitable convex set to get a better convergence property. The convergence of two these algorithms are investigated under certain assumptions.展开更多
文摘In this article, we consider the global existence and decay rates of solutions for the transmission problem of Kirchhoff type wave equations consisting of two physi- cally different types of materials, one component is a Kirchhoff type wave equation with nonlinear time dependent localized dissipation which is effective only on a neighborhood of certain part of the boundary, while the other is a Kirchhoff type wave equation with nonlinear memory.
基金supported by the National Natural Science Foundation (10871179) of China
文摘In this paper,the relaxation algorithm and two Uzawa type algorithms for solving discretized variational inequalities arising from the two-phase Stefan type problem are proposed.An analysis of their convergence is presented and the upper bounds of the convergence rates are derived.Some numerical experiments are shown to demonstrate that for the second Uzawa algorithm which is an improved version of the first Uzawa algorithm,the convergence rate is uniformly bounded away from 1 if τh^-2 is kept bounded,where τ is the time step size and h the space mesh size.
文摘In this paper, the author obtains an existence theorem of minimal and maximal solutions for the periodic boundary value problems of nonlinear impulsive integrodifferential equations of mixed type in Banach space by means of the monotone iterative technique and cone theory based on a comparison result.
文摘In this paper,on the basis of Ref.[1],the author studies the boundary value problems of the second-order differential equations,the highest order derivatives of which contain the small parameters.The numerical examples show that the calculating process of this method is quite simple and its accuracy is even higher than that of the multiple scales method.
基金the National Nature Science Foundation of China(11671214,11971348,12071230)the Hundred Young Academia Leaders Program of Nankai University(63223027,ZB22000105)+1 种基金the Undergraduate Education and Teaching Project of Nankai University(NKJG2022053)the National College Students’Innovation and Entrepreneurship Training Program of Nankai University(202210055048)。
文摘This paper studies two isometric problems between unit spheres of Banach spaces.In the first part,we introduce and study the Figiel type problem of isometric embeddings between unit spheres.However,the classical Figiel theorem on the whole space cannot be trivially generalized to this case,and this is pointed out by a counterexample.After establishing this,we find a natural necessary condition required by the existence of the Figiel operator.Furthermore,we prove that when X is a space with the T-property,this condition is also sufficient for an isometric embedding T:S_(X)→S_(Y) to admit the Figiel operator.This answers the Figiel type problem on unit spheres for a large class of spaces.In the second part,we consider the extension of bijectiveε-isometries between unit spheres of two Banach spaces.It is shown that every bijectiveε-isometry between unit spheres of a local GL-space and another Banach space can be extended to be a bijective 5ε-isometry between the corresponding unit balls.In particular,whenε=0,this recovers the MUP for local GL-spaces obtained in[40].
基金Supported by the National Natural Science Foundation of China(11561038)。
文摘In this paper,we study the following Kirchhoff type problem:{-M(∫_(R^(N))|▽u|^(2)dx)△u=λa(x)f(u),x∈R^(N),u=0 as|x|→+∞.Unilateral global bifurcation result is established for this problem.As applications of the bifurcation result,we determine the intervals ofλfor the existence,nonexistence,and exact multiplicity of one-sign solutions for this problem.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology(20110007870)
文摘In this paper, we investigate the influence of boundary dissipation on the de-cay property of solutions for a transmission problem of Kirchhoff type wave equation with boundary memory condition. By introducing suitable energy and Lyapunov functionals, we establish a general decay estimate for the energy, which depends on the behavior of relaxation function.
基金The Project Supported by National Natural Science Foundation of China
文摘In this paper, we discuss some characteristic properties of partial abstract data type (PADT) and show the diffrence between PADT and abstract data type (ADT) in specification of programming language. Finally, we clarify that PADT is necessary in programming language description.
文摘In this paper, we consider a class of Kirchhoff type problem with superlinear nonlinearity. A sign-changing solution with exactly two nodal domains will be obtained by combining the Nehari method and an iterative technique.
文摘Various kinds of Riemann boundary value problems (BVPs) for analytic functions on closed curves or on open arc, doubly periodic Riemann BVPs, doubly quasi-periodic Riemann BVPs, and BVPs for polyanalytic functions have been widely investigated in [1-8]. The main ap- proach is to use the decomposition of polyanalytic functions and their generalization to transform the boundary value problems to their corresponding boundary value problems for analytic functions. Recently, inverse Riemann BVPs for generalized analytic functions or bianalytic functions have been investigated in [9-12]. In this paper, we consider a kind of Riemann BVP of non-normal type on the infinite straight line and discuss the solvable conditions and the general solution for it.
基金The project is supported by the National Natural Science Foundation of China.
文摘Consider the piecewise linear finite element subspace S and parabolic semi discrete Green’s function of gradient type G h(t)∈Sk.The asymptotic optimal estimatedxdt【C|Inh| and two applications are discussed.
基金Supported by the Natural Science Foundation of Hubei Province(Grant No.2008CDZ047)
文摘Mehrotra-type predictor-corrector algorithm, as one of most efficient interior point methods, has become the backbones of most optimization packages. Salahi et al. proposed a cut strategy based algorithm for linear optimization that enjoyed polynomial complexity and maintained its efficiency in practice. We extend their algorithm to P. (~) linear complementar- ity problems. The way of choosing corrector direction for our algorithm is different from theirs: The new algorithm has been proved to have an O((1 + 4k)(17 + 19k)√1+2kn 3/2 log(x0)Ts0/ε) worst case iteration complexity bound. An numerical experiment verifies the feasibility of the new algorithm.
文摘In this paper, combining with the L_p-dual geominimal surface area and the general L_p-centroid bodies, we research the Shephard type problems for general L_p-centroid bodies.
文摘This research paper deals with the boundary and initial value problems for the Bratu-type model by using the New Improved Variational Homotopy Perturbation Method. The New Method does not require discritization, linearization or any restrictive assumption of any form in providing analytical or approximate solutions to linear and nonlinear equation without the integral related with nonlinear term. Theses virtues make it to be reliable and its efficiency is demonstrated with numerical examples.
文摘In this paper, we present and study a kind of Riemann boundary value problem of non-normal type for analytic functions on two parallel curves. Making use of the method of complex functions, we give the method for solving this kind of doubly periodic Riemann boundary value problem of non-normal type and obtain the explicit expressions of solutions and the solvable conditions for it.
文摘In this paper, we establish the existence of at least four distinct solutions to an Kirchhoff type problems involving the critical Caffareli-Kohn-Niremberg exponent, concave term and sign-changing weights, by using the Nehari manifold and mountain pass theorem.
基金Supported by the NNSF of China(10371006) Tianyuan Youth Grant of China(10626033).
文摘This paper deals with the existence of triple positive solutions for the 1-dimensional equation of Laplace-type (φ(x′(t)))′+q(t)f(t,x(t),x′(t))=0,t∈(0,1),subject to the following boundary condition:a1φ(x(0))-a2φ(x'(0))=0,a3φ(x(1))+a4φ(x'(1))=0,where φ is an odd increasing homogeneous homeomorphism. By using a new fixed point theorem, sufficient conditions are obtained that guarantee the existence of at least three positive solu- tions. The emphasis here is that the nonlinear term f is involved with the first order derivative explicitly.
文摘In this paper, a class of nonsmooth multiobjective programming problems is considered. We introduce the new concept of invex of order??type II for nondifferentiable locally Lipschitz functions using the tools of Clarke subdifferential. The new functions are used to derive the sufficient optimality condition for a class of nonsmooth multiobjective programming problems. Utilizing the sufficient optimality conditions, weak and strong duality theorems are established for Wolfe type duality model.
文摘In this paper.the following ined boundary value problem for second-order system of differential equations of the elliptic type will be discussed to find the function u and v such that they satisfy:The solution of this problem is found by means of the theory of generalized analutic function and the integral equation method for solving boundary value problems.
文摘This paper proposes a new hybrid variant of extragradient methods for finding a common solution of an equilibrium problem and a family of strict pseudo-contraction mappings. We present an algorithmic scheme that combine the idea of an extragradient method and a successive iteration method as a hybrid variant. Then, this algorithm is modified by projecting on a suitable convex set to get a better convergence property. The convergence of two these algorithms are investigated under certain assumptions.