Snake Optimizer(SO)is a novel Meta-heuristic Algorithm(MA)inspired by the mating behaviour of snakes,which has achieved success in global numerical optimization problems and practical engineering applications.However,...Snake Optimizer(SO)is a novel Meta-heuristic Algorithm(MA)inspired by the mating behaviour of snakes,which has achieved success in global numerical optimization problems and practical engineering applications.However,it also has certain drawbacks for the exploration stage and the egg hatch process,resulting in slow convergence speed and inferior solution quality.To address the above issues,a novel multi-strategy improved SO(MISO)with the assistance of population crowding analysis is proposed in this article.In the algorithm,a novel multi-strategy operator is designed for the exploration stage,which not only focuses on using the information of better performing individuals to improve the quality of solution,but also focuses on maintaining population diversity.To boost the efficiency of the egg hatch process,the multi-strategy egg hatch process is proposed to regenerate individuals according to the results of the population crowding analysis.In addition,a local search method is employed to further enhance the convergence speed and the local search capability.MISO is first compared with three sets of algorithms in the CEC2020 benchmark functions,including SO with its two recently discussed variants,ten advanced MAs,and six powerful CEC competition algorithms.The performance of MISO is then verified on five practical engineering design problems.The experimental results show that MISO provides a promising performance for the above optimization cases in terms of convergence speed and solution quality.展开更多
Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as ...Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as industry,automotive,construction,machinery,and interdisciplinary research.However,there are established optimization techniques that have shown effectiveness in addressing these types of issues.This research paper gives a comparative study of the implementation of seventeen new metaheuristic methods in order to optimize twelve distinct engineering design issues.The algorithms used in the study are listed as:transient search optimization(TSO),equilibrium optimizer(EO),grey wolf optimizer(GWO),moth-flame optimization(MFO),whale optimization algorithm(WOA),slimemould algorithm(SMA),harris hawks optimization(HHO),chimp optimization algorithm(COA),coot optimization algorithm(COOT),multi-verse optimization(MVO),arithmetic optimization algorithm(AOA),aquila optimizer(AO),sine cosine algorithm(SCA),smell agent optimization(SAO),and seagull optimization algorithm(SOA),pelican optimization algorithm(POA),and coati optimization algorithm(CA).As far as we know,there is no comparative analysis of recent and popular methods against the concrete conditions of real-world engineering problems.Hence,a remarkable research guideline is presented in the study for researchersworking in the fields of engineering and artificial intelligence,especiallywhen applying the optimization methods that have emerged recently.Future research can rely on this work for a literature search on comparisons of metaheuristic optimization methods in real-world problems under similar conditions.展开更多
An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programmin...An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraints (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) model. The idea of the proposed DDIA is to reduce the dimensions of the problem. A group of variables (discrete/continuous) are fixed to altemately optimize another group of variables (continuous/discrete). Some continuous network design problems (CNDPs) and discrete network design problems (DNDPs) are solved repeatedly until the optimal solution is obtained. A numerical example is given to demonstrate the efficiency of the proposed algorithm.展开更多
Primary school education is an important part of laying a good foundation for students' growth and development. Therefore, in primary school mathematics teaching, teachers should help students to have good mathema...Primary school education is an important part of laying a good foundation for students' growth and development. Therefore, in primary school mathematics teaching, teachers should help students to have good mathematical thinking so as to realize students' healthy growth and all-round development. For this reason, teachers should pay attention to the effectiveness and pertinence of problem design in the actual primary mathematics teaching. Through the design of inquiry problems, students' learning desire can be stimulated, so as to improve the efficiency of classroom teaching and lay a good foundation for the realization of students' all-round development.展开更多
Because of their superior problem-solving ability,nature-inspired optimization algorithms are being regularly used in solving complex real-world optimization problems.Engineering academics have recently focused on met...Because of their superior problem-solving ability,nature-inspired optimization algorithms are being regularly used in solving complex real-world optimization problems.Engineering academics have recently focused on meta-heuristic algorithms to solve various optimization challenges.Among the state-of-the-art algorithms,Differential Evolution(DE)is one of the most successful algorithms and is frequently used to solve various industrial problems.Over the previous 2 decades,DE has been heavily modified to improve its capabilities.Several DE variations secured positions in IEEE CEC competitions,establishing their efficacy.However,to our knowledge,there has never been a comparison of performance across various CEC-winning DE versions,which could aid in determining which is the most successful.In this study,the performance of DE and its eight other IEEE CEC competition-winning variants are compared.First,the algorithms have evaluated IEEE CEC 2019 and 2020 bound-constrained functions,and the performances have been compared.One unconstrained problem from IEEE CEC 2011 problem suite and five other constrained mechanical engineering design problems,out of which four issues have been taken from IEEE CEC 2020 non-convex constrained optimization suite,have been solved to compare the performances.Statistical analyses like Friedman's test and Wilcoxon's test are executed to verify the algorithm’s ability statistically.Performance analysis exposes that none of the DE variants can solve all the problems efficiently.Performance of SHADE and ELSHADE-SPACMA are considerable among the methods used for comparison to solve such mechanical design problems.展开更多
A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO c...A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO combined the exploration of ABC algorithm with the exploitation of BBO algorithm effectively, and hence it can generate the promising candidate individuals. The proposed hybrid algorithm speeds up the convergence and improves the algorithm's performance. Several benchmark test functions and mechanical design problems are applied to verifying the effects of these improvements and it is demonstrated that the performance of this proposed ABC-BBO is superior to or at least highly competitive with other population-based optimization approaches.展开更多
This paper proposes a modified version of the Dwarf Mongoose Optimization Algorithm (IDMO) for constrained engineering design problems. This optimization technique modifies the base algorithm (DMO) in three simple but...This paper proposes a modified version of the Dwarf Mongoose Optimization Algorithm (IDMO) for constrained engineering design problems. This optimization technique modifies the base algorithm (DMO) in three simple but effective ways. First, the alpha selection in IDMO differs from the DMO, where evaluating the probability value of each fitness is just a computational overhead and contributes nothing to the quality of the alpha or other group members. The fittest dwarf mongoose is selected as the alpha, and a new operator ω is introduced, which controls the alpha movement, thereby enhancing the exploration ability and exploitability of the IDMO. Second, the scout group movements are modified by randomization to introduce diversity in the search process and explore unvisited areas. Finally, the babysitter's exchange criterium is modified such that once the criterium is met, the babysitters that are exchanged interact with the dwarf mongoose exchanging them to gain information about food sources and sleeping mounds, which could result in better-fitted mongooses instead of initializing them afresh as done in DMO, then the counter is reset to zero. The proposed IDMO was used to solve the classical and CEC 2020 benchmark functions and 12 continuous/discrete engineering optimization problems. The performance of the IDMO, using different performance metrics and statistical analysis, is compared with the DMO and eight other existing algorithms. In most cases, the results show that solutions achieved by the IDMO are better than those obtained by the existing algorithms.展开更多
Till now,several novel metaheuristic algorithms are proposed for global search.But only specific algorithms have become popular or attracted researchers,who are efficient in solving global optimization problems as wel...Till now,several novel metaheuristic algorithms are proposed for global search.But only specific algorithms have become popular or attracted researchers,who are efficient in solving global optimization problems as well as real-world application problems.The Social Group Optimization(SGO)algorithm is a new metaheuristic bioinspired algorithm inspired by human social behavior that attracted researchers due to its simplicity and problem-solving capability.In this study,to deal with the problems of low accuracy and local convergence in SGO,the chaos theory is introduced into the evolutionary process of SGO.Since chaotic mapping has certainty,ergodicity,and stochastic property,by replacing the constant value of the self-introspection parameter with chaotic maps,the proposed chaotic social group optimization algorithm increases its convergence rate and resulting precision.The proposal chaotic SGO is validated through 13 benchmark functions and after that 9 structural engineering design problems have been solved.The simulated results have been noticed as competent with that of state-of-art algorithms regarding convergence quality and accuracy,which certifies that improved SGO with chaos is valid and feasible.展开更多
Collaborative design is recommended to solve multiphysics problems (MPPS). Firstly, mathematical model of MPPS is constructed and solved by a proposed partitioned method, analysis of which suggests that collaborativ...Collaborative design is recommended to solve multiphysics problems (MPPS). Firstly, mathematical model of MPPS is constructed and solved by a proposed partitioned method, analysis of which suggests that collaborative design be feasible to solve MPPS. As the key technology of col-laborative design of MPPS, a task collaboration algorithm is then proposed. To develop the applica-tion framework of collaborative design, applied unified process(AUP) is proposed based on rational unified process(RUP). Then AUP is used to develop the collaborative design platform, whose function framework is constructed according to the process of project management. Finally three MPPS are solved on this platform and the results suggest that the proposed model, algorithm and framework be feasible.展开更多
In this work,a hybrid meta-model based design space differentiation(HMDSD)method is proposed for practical problems.In the proposed method,an iteratively reduced promising region is constructed using the expensive p...In this work,a hybrid meta-model based design space differentiation(HMDSD)method is proposed for practical problems.In the proposed method,an iteratively reduced promising region is constructed using the expensive points,with two different search strategies respectively applied inside and outside the promising region.Besides,the hybrid meta-model strategy applied in the search process makes it possible to solve the complex practical problems.Tested upon a serial of benchmark math functions,the HMDSD method shows great efficiency and search accuracy.On top of that,a practical lightweight design demonstrates its superior performance.展开更多
We envision utilizing the versatility of a Computer Algebra System, specifically Mathematica to explore designing physics problems. As a focused project, we consider for instance a thermo-mechanical-physics problem sh...We envision utilizing the versatility of a Computer Algebra System, specifically Mathematica to explore designing physics problems. As a focused project, we consider for instance a thermo-mechanical-physics problem showing its development from the ground up. Following the objectives of this investigation first by applying the fundamentals of physics principles we solve the problem symbolically. Applying the solution we investigate the sensitivities of the quantities of interest for various scenarios generating feasible numeric parameters. Although a physics problem is investigated, the proposed methodology may as well be applied to other scientific fields. The codes needed for this particular project are included enabling the interested reader to duplicate the results, extend and modify them as needed to explore various extended scenarios.展开更多
Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems...Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms.展开更多
This study investigated a water supply recovery problem involving municipal water service piping. The problem consisted in recovering full service after network failure, in order to rapidly satisfy all urgent citywide...This study investigated a water supply recovery problem involving municipal water service piping. The problem consisted in recovering full service after network failure, in order to rapidly satisfy all urgent citywide demands. The optimal recovery solution was achieved through the application of so-called network design problems (NDPs), which are a form of combinatorial optimization problem. However, a conventional NDP is not suitable for addressing urgent situations because (1) it does not utilize the non-failure arcs in the network, and (2) it is solely concerned with stable costs such as flow costs. Therefore, to adapt the technique to such urgent situations, the conventional NDP is here modified to deal with the specified water supply problem. In addition, a numerical illustration using the Sendai water network is presented.展开更多
We study a Dirichlet optimal design problem for a quasi-linear monotone p-biharmonic equation with control and state constraints. We take the coefficient of the p-biharmonic operator as a design variable in . In this ...We study a Dirichlet optimal design problem for a quasi-linear monotone p-biharmonic equation with control and state constraints. We take the coefficient of the p-biharmonic operator as a design variable in . In this article, we discuss the relaxation of such problem.展开更多
With the continuous improvement of social and economic construction level, people put forward higher requirements for the internal environment of buildings. Usually, industrial buildings pay more attention to technolo...With the continuous improvement of social and economic construction level, people put forward higher requirements for the internal environment of buildings. Usually, industrial buildings pay more attention to technological requirements, while civil buildings pay more attention to comfort. On the premise of ensuring a healthy and comfortable working and living environment, they should also meet the requirements of energy conservation and fire protection. The current national standard "Code for Design of Heating, Ventilation and Air Conditioning of Civil Buildings" (GB50736) and other relevant codes have made relevant provisions on indoor and outdoor design parameters and fresh air volume. Based on this, the problems of heating system design, fresh air system and ventilation design are discussed.展开更多
The design quality of construction drawing of building structure is an important basis of engineering construction quality, which can fully reflect the design concept. Any problems existing in the design of constructi...The design quality of construction drawing of building structure is an important basis of engineering construction quality, which can fully reflect the design concept. Any problems existing in the design of construction drawing will affect the safety of building. At the same time, the design of construction drawing has certain technical content, which reflects the architects grasp of the scheme and the ability to apply technology. Therefore, in order to conscientiously implement the relevant regulations of national architectural design and improve the design quality of structural construction drawings, this paper analyzes the problems existing in the design of structural construction drawings of architectural engineering, and puts forward some improvement suggestions for reference by structural construction drawing designers.展开更多
A kind of inverse eigenvalue problem in structural dynamics design is considered. The problem is formulated as an optimization problem. The properties of this problem are analyzed, and the existence of the optimum sol...A kind of inverse eigenvalue problem in structural dynamics design is considered. The problem is formulated as an optimization problem. The properties of this problem are analyzed, and the existence of the optimum solution is proved. The directional derivative of the objective function is obtained and a necessary condition for a point to be a local minimum point is given. Then a numerical algorithm for solving the problem is presented and a plane-truss problem is discussed to show the applications of the theories and the algorithm.展开更多
This paper presents the design of a computational software system that enables solutions of multi-phase and multi-scale problems in mechanics. It demonstrated how mechanicians can design “process-driven” software sy...This paper presents the design of a computational software system that enables solutions of multi-phase and multi-scale problems in mechanics. It demonstrated how mechanicians can design “process-driven” software systems directly, and that such efforts are more suitable in solving multi-phase or multi-scale problems, rather than utilizing the “data-driven” approaches of legacy network systems. Specifically, this paper demonstrates how this approach can be used to solve problems in flexible dynamics. Then it suggests a view of mechanics algorithms as ‘state equilibrium’ enforcers residing as servers, rather than as computer programs that solve field equations. It puts forth the need for identical input/output files to ensure widespread deployment on laptops. Then it presents an assessment of the laptop platform. A software system such as the one presented here can also be used to supply virtual environments, animations and entertainment/education software with physics.展开更多
基金supported by Grant(42271391 and 62006214)from National Natural Science Foundation of Chinaby Grant(8091B022148)from Joint Funds of Equipment Pre-Research and Ministry of Education of China+1 种基金by Grant(2023BIB015)from Special Project of Hubei Key Research and Development Programby Grant(KLIGIP-2021B03)from Open Research Project of the Hubei Key Laboratory of Intelligent Geo-Information Processing.
文摘Snake Optimizer(SO)is a novel Meta-heuristic Algorithm(MA)inspired by the mating behaviour of snakes,which has achieved success in global numerical optimization problems and practical engineering applications.However,it also has certain drawbacks for the exploration stage and the egg hatch process,resulting in slow convergence speed and inferior solution quality.To address the above issues,a novel multi-strategy improved SO(MISO)with the assistance of population crowding analysis is proposed in this article.In the algorithm,a novel multi-strategy operator is designed for the exploration stage,which not only focuses on using the information of better performing individuals to improve the quality of solution,but also focuses on maintaining population diversity.To boost the efficiency of the egg hatch process,the multi-strategy egg hatch process is proposed to regenerate individuals according to the results of the population crowding analysis.In addition,a local search method is employed to further enhance the convergence speed and the local search capability.MISO is first compared with three sets of algorithms in the CEC2020 benchmark functions,including SO with its two recently discussed variants,ten advanced MAs,and six powerful CEC competition algorithms.The performance of MISO is then verified on five practical engineering design problems.The experimental results show that MISO provides a promising performance for the above optimization cases in terms of convergence speed and solution quality.
文摘Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as industry,automotive,construction,machinery,and interdisciplinary research.However,there are established optimization techniques that have shown effectiveness in addressing these types of issues.This research paper gives a comparative study of the implementation of seventeen new metaheuristic methods in order to optimize twelve distinct engineering design issues.The algorithms used in the study are listed as:transient search optimization(TSO),equilibrium optimizer(EO),grey wolf optimizer(GWO),moth-flame optimization(MFO),whale optimization algorithm(WOA),slimemould algorithm(SMA),harris hawks optimization(HHO),chimp optimization algorithm(COA),coot optimization algorithm(COOT),multi-verse optimization(MVO),arithmetic optimization algorithm(AOA),aquila optimizer(AO),sine cosine algorithm(SCA),smell agent optimization(SAO),and seagull optimization algorithm(SOA),pelican optimization algorithm(POA),and coati optimization algorithm(CA).As far as we know,there is no comparative analysis of recent and popular methods against the concrete conditions of real-world engineering problems.Hence,a remarkable research guideline is presented in the study for researchersworking in the fields of engineering and artificial intelligence,especiallywhen applying the optimization methods that have emerged recently.Future research can rely on this work for a literature search on comparisons of metaheuristic optimization methods in real-world problems under similar conditions.
基金The National Natural Science Foundation of China(No. 50908235 )China Postdoctoral Science Foundation (No.201003520)
文摘An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraints (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) model. The idea of the proposed DDIA is to reduce the dimensions of the problem. A group of variables (discrete/continuous) are fixed to altemately optimize another group of variables (continuous/discrete). Some continuous network design problems (CNDPs) and discrete network design problems (DNDPs) are solved repeatedly until the optimal solution is obtained. A numerical example is given to demonstrate the efficiency of the proposed algorithm.
文摘Primary school education is an important part of laying a good foundation for students' growth and development. Therefore, in primary school mathematics teaching, teachers should help students to have good mathematical thinking so as to realize students' healthy growth and all-round development. For this reason, teachers should pay attention to the effectiveness and pertinence of problem design in the actual primary mathematics teaching. Through the design of inquiry problems, students' learning desire can be stimulated, so as to improve the efficiency of classroom teaching and lay a good foundation for the realization of students' all-round development.
文摘Because of their superior problem-solving ability,nature-inspired optimization algorithms are being regularly used in solving complex real-world optimization problems.Engineering academics have recently focused on meta-heuristic algorithms to solve various optimization challenges.Among the state-of-the-art algorithms,Differential Evolution(DE)is one of the most successful algorithms and is frequently used to solve various industrial problems.Over the previous 2 decades,DE has been heavily modified to improve its capabilities.Several DE variations secured positions in IEEE CEC competitions,establishing their efficacy.However,to our knowledge,there has never been a comparison of performance across various CEC-winning DE versions,which could aid in determining which is the most successful.In this study,the performance of DE and its eight other IEEE CEC competition-winning variants are compared.First,the algorithms have evaluated IEEE CEC 2019 and 2020 bound-constrained functions,and the performances have been compared.One unconstrained problem from IEEE CEC 2011 problem suite and five other constrained mechanical engineering design problems,out of which four issues have been taken from IEEE CEC 2020 non-convex constrained optimization suite,have been solved to compare the performances.Statistical analyses like Friedman's test and Wilcoxon's test are executed to verify the algorithm’s ability statistically.Performance analysis exposes that none of the DE variants can solve all the problems efficiently.Performance of SHADE and ELSHADE-SPACMA are considerable among the methods used for comparison to solve such mechanical design problems.
基金Projects(61463009,11264005,11361014)supported by the National Natural Science Foundation of ChinaProject([2013]2082)supported by the Science Technology Foundation of Guizhou Province,China
文摘A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO combined the exploration of ABC algorithm with the exploitation of BBO algorithm effectively, and hence it can generate the promising candidate individuals. The proposed hybrid algorithm speeds up the convergence and improves the algorithm's performance. Several benchmark test functions and mechanical design problems are applied to verifying the effects of these improvements and it is demonstrated that the performance of this proposed ABC-BBO is superior to or at least highly competitive with other population-based optimization approaches.
文摘This paper proposes a modified version of the Dwarf Mongoose Optimization Algorithm (IDMO) for constrained engineering design problems. This optimization technique modifies the base algorithm (DMO) in three simple but effective ways. First, the alpha selection in IDMO differs from the DMO, where evaluating the probability value of each fitness is just a computational overhead and contributes nothing to the quality of the alpha or other group members. The fittest dwarf mongoose is selected as the alpha, and a new operator ω is introduced, which controls the alpha movement, thereby enhancing the exploration ability and exploitability of the IDMO. Second, the scout group movements are modified by randomization to introduce diversity in the search process and explore unvisited areas. Finally, the babysitter's exchange criterium is modified such that once the criterium is met, the babysitters that are exchanged interact with the dwarf mongoose exchanging them to gain information about food sources and sleeping mounds, which could result in better-fitted mongooses instead of initializing them afresh as done in DMO, then the counter is reset to zero. The proposed IDMO was used to solve the classical and CEC 2020 benchmark functions and 12 continuous/discrete engineering optimization problems. The performance of the IDMO, using different performance metrics and statistical analysis, is compared with the DMO and eight other existing algorithms. In most cases, the results show that solutions achieved by the IDMO are better than those obtained by the existing algorithms.
文摘Till now,several novel metaheuristic algorithms are proposed for global search.But only specific algorithms have become popular or attracted researchers,who are efficient in solving global optimization problems as well as real-world application problems.The Social Group Optimization(SGO)algorithm is a new metaheuristic bioinspired algorithm inspired by human social behavior that attracted researchers due to its simplicity and problem-solving capability.In this study,to deal with the problems of low accuracy and local convergence in SGO,the chaos theory is introduced into the evolutionary process of SGO.Since chaotic mapping has certainty,ergodicity,and stochastic property,by replacing the constant value of the self-introspection parameter with chaotic maps,the proposed chaotic social group optimization algorithm increases its convergence rate and resulting precision.The proposal chaotic SGO is validated through 13 benchmark functions and after that 9 structural engineering design problems have been solved.The simulated results have been noticed as competent with that of state-of-art algorithms regarding convergence quality and accuracy,which certifies that improved SGO with chaos is valid and feasible.
文摘Collaborative design is recommended to solve multiphysics problems (MPPS). Firstly, mathematical model of MPPS is constructed and solved by a proposed partitioned method, analysis of which suggests that collaborative design be feasible to solve MPPS. As the key technology of col-laborative design of MPPS, a task collaboration algorithm is then proposed. To develop the applica-tion framework of collaborative design, applied unified process(AUP) is proposed based on rational unified process(RUP). Then AUP is used to develop the collaborative design platform, whose function framework is constructed according to the process of project management. Finally three MPPS are solved on this platform and the results suggest that the proposed model, algorithm and framework be feasible.
基金Project supported by the Plan for the growth of young teachers,the National Natural Science Foundation of China(No.51505138)the National 973 Program of China(No.2010CB328005)+1 种基金Outstanding Youth Foundation of NSFC(No.50625519)Program for Changjiang Scholars
文摘In this work,a hybrid meta-model based design space differentiation(HMDSD)method is proposed for practical problems.In the proposed method,an iteratively reduced promising region is constructed using the expensive points,with two different search strategies respectively applied inside and outside the promising region.Besides,the hybrid meta-model strategy applied in the search process makes it possible to solve the complex practical problems.Tested upon a serial of benchmark math functions,the HMDSD method shows great efficiency and search accuracy.On top of that,a practical lightweight design demonstrates its superior performance.
文摘We envision utilizing the versatility of a Computer Algebra System, specifically Mathematica to explore designing physics problems. As a focused project, we consider for instance a thermo-mechanical-physics problem showing its development from the ground up. Following the objectives of this investigation first by applying the fundamentals of physics principles we solve the problem symbolically. Applying the solution we investigate the sensitivities of the quantities of interest for various scenarios generating feasible numeric parameters. Although a physics problem is investigated, the proposed methodology may as well be applied to other scientific fields. The codes needed for this particular project are included enabling the interested reader to duplicate the results, extend and modify them as needed to explore various extended scenarios.
基金funded by Firat University Scientific Research Projects Management Unit for the scientific research project of Feyza AltunbeyÖzbay,numbered MF.23.49.
文摘Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms.
文摘This study investigated a water supply recovery problem involving municipal water service piping. The problem consisted in recovering full service after network failure, in order to rapidly satisfy all urgent citywide demands. The optimal recovery solution was achieved through the application of so-called network design problems (NDPs), which are a form of combinatorial optimization problem. However, a conventional NDP is not suitable for addressing urgent situations because (1) it does not utilize the non-failure arcs in the network, and (2) it is solely concerned with stable costs such as flow costs. Therefore, to adapt the technique to such urgent situations, the conventional NDP is here modified to deal with the specified water supply problem. In addition, a numerical illustration using the Sendai water network is presented.
文摘We study a Dirichlet optimal design problem for a quasi-linear monotone p-biharmonic equation with control and state constraints. We take the coefficient of the p-biharmonic operator as a design variable in . In this article, we discuss the relaxation of such problem.
文摘With the continuous improvement of social and economic construction level, people put forward higher requirements for the internal environment of buildings. Usually, industrial buildings pay more attention to technological requirements, while civil buildings pay more attention to comfort. On the premise of ensuring a healthy and comfortable working and living environment, they should also meet the requirements of energy conservation and fire protection. The current national standard "Code for Design of Heating, Ventilation and Air Conditioning of Civil Buildings" (GB50736) and other relevant codes have made relevant provisions on indoor and outdoor design parameters and fresh air volume. Based on this, the problems of heating system design, fresh air system and ventilation design are discussed.
文摘The design quality of construction drawing of building structure is an important basis of engineering construction quality, which can fully reflect the design concept. Any problems existing in the design of construction drawing will affect the safety of building. At the same time, the design of construction drawing has certain technical content, which reflects the architects grasp of the scheme and the ability to apply technology. Therefore, in order to conscientiously implement the relevant regulations of national architectural design and improve the design quality of structural construction drawings, this paper analyzes the problems existing in the design of structural construction drawings of architectural engineering, and puts forward some improvement suggestions for reference by structural construction drawing designers.
基金This research is partially supported by the National Natural Science Foundation of China (No. 10271055).
文摘A kind of inverse eigenvalue problem in structural dynamics design is considered. The problem is formulated as an optimization problem. The properties of this problem are analyzed, and the existence of the optimum solution is proved. The directional derivative of the objective function is obtained and a necessary condition for a point to be a local minimum point is given. Then a numerical algorithm for solving the problem is presented and a plane-truss problem is discussed to show the applications of the theories and the algorithm.
文摘This paper presents the design of a computational software system that enables solutions of multi-phase and multi-scale problems in mechanics. It demonstrated how mechanicians can design “process-driven” software systems directly, and that such efforts are more suitable in solving multi-phase or multi-scale problems, rather than utilizing the “data-driven” approaches of legacy network systems. Specifically, this paper demonstrates how this approach can be used to solve problems in flexible dynamics. Then it suggests a view of mechanics algorithms as ‘state equilibrium’ enforcers residing as servers, rather than as computer programs that solve field equations. It puts forth the need for identical input/output files to ensure widespread deployment on laptops. Then it presents an assessment of the laptop platform. A software system such as the one presented here can also be used to supply virtual environments, animations and entertainment/education software with physics.