During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive...During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive distance)to a moving target as quickly as possible,resulting in the extended minimum-time intercept problem(EMTIP).Existing research has primarily focused on the zero-distance intercept problem,MTIP,establishing the necessary or sufficient conditions for MTIP optimality,and utilizing analytic algorithms,such as root-finding algorithms,to calculate the optimal solutions.However,these approaches depend heavily on the properties of the analytic algorithm,making them inapplicable when problem settings change,such as in the case of a positive effective range or complicated target motions outside uniform rectilinear motion.In this study,an approach employing a high-accuracy and quality-guaranteed mixed-integer piecewise-linear program(QG-PWL)is proposed for the EMTIP.This program can accommodate different effective interception ranges and complicated target motions(variable velocity or complicated trajectories).The high accuracy and quality guarantees of QG-PWL originate from elegant strategies such as piecewise linearization and other developed operation strategies.The approximate error in the intercept path length is proved to be bounded to h^(2)/(4√2),where h is the piecewise length.展开更多
The paper presents a novel quantum method for addressing two fundamental routing problems:the Traveling Salesman Problem(TSP)and theVehicle Routing Problem(VRP),both central to routing challenges.The proposed method,n...The paper presents a novel quantum method for addressing two fundamental routing problems:the Traveling Salesman Problem(TSP)and theVehicle Routing Problem(VRP),both central to routing challenges.The proposed method,named the Indirect Quantum Approximate Optimization Algorithm(IQAOA),leverages an indirect solution representation using ranking.Our contribution focuses on two main areas:1)the indirect representation of solutions,and 2)the integration of this representation into an extended version of QAOA,called IQAOA.This approach offers an alternative to QAOA and includes the following components:1)a quantum parameterized circuit designed to simulate string vectors on a quantum processor,2)a classical meta-optimization method executed on a classical computer,and 3)the computation of the average cost for each string vector,achieved through a well-established algorithm from the operations research community tailored to the specific problem.IQAOA provides an efficient means to address quantum optimization problems by combining quantum and classical computation methods.Its primary advantage lies in deriving a quantum circuit that requires significantly fewer gates,making it suitable for execution on current noisy quantum computing platforms.Through numerical experiments employing IQAOA,we successfully solved instances of the 10-customer Traveling Salesman Problem(TSP)using the IBM simulator.To our knowledge,this is the largest application of a QAOA-based approach to solving the TSP.Additionally,IQAOA enables the resolution of the Vehicle Routing Problem(VRP)by leveraging the Split algorithm,which transforms a TSP permutation into a corresponding VRP solution.展开更多
Let Pr denote an almost-prime with at most r prime factors,counted according to multiplicity.In this paper,it is proved that,for every sufficiently large even integer N,the equation N=x^(2)+p_(2)^(2)+p_(3)^(3)+p_(4)^(...Let Pr denote an almost-prime with at most r prime factors,counted according to multiplicity.In this paper,it is proved that,for every sufficiently large even integer N,the equation N=x^(2)+p_(2)^(2)+p_(3)^(3)+p_(4)^(3)+p_(5)^(5)+_6^(5)is solvable with being an almost-prime P_(6) and the other variables primes.This result constitutes an enhancement upon the previous result of Hooley[Recent Progress in Analytic Number Theory,Vol.1(Durham,1979),London:Academic Press,1981,127-191].展开更多
Let d(n;r_(1),q_(1),r_(2),q_(2))be the number of factorization n=n_(1)n_(2)satisfying n_i≡r_i(mod q_i)(i=1,2)andΔ(x;r_(1),q_(1),r_(2),q_(2))be the error term of the summatory function of d(n;r_(1),q_(1),r_(2),q_(2))...Let d(n;r_(1),q_(1),r_(2),q_(2))be the number of factorization n=n_(1)n_(2)satisfying n_i≡r_i(mod q_i)(i=1,2)andΔ(x;r_(1),q_(1),r_(2),q_(2))be the error term of the summatory function of d(n;r_(1),q_(1),r_(2),q_(2)).Suppose x≥(q_(1)q_(2))^(1+ε),1≤r_i≤q_i,and(r_i,q_i)=1(i=1,2).This paper studies the power moments and sign changes ofΔ(x;r_(1),q_(1),r_(2),q_(2)).We prove that for sufficiently large constant C,Δ(q_(1)q_(2)x:r_(1),q_(1),r_(2),q_(2))changes sign in the interval[T,T+C√T]for any large T.Meanwhile,we show that for small constants c and c,there exist infinitely many subintervals of length c√log^(-7)T in[T,2T]where±Δ(q_(1)q_(2)x:r_(1),q_(1),r_(2),q_(2))>cx^(1/4)always holds.展开更多
Automatically answer math word problems is a challenging task in artificial intelligence.Previous solvers constructed mathematical expressions in sequence or binary tree.However,these approaches may suffer from the fo...Automatically answer math word problems is a challenging task in artificial intelligence.Previous solvers constructed mathematical expressions in sequence or binary tree.However,these approaches may suffer from the following issues:Models relying on such structures exhibit fixed-order reasoning(e.g.,left-to-right),limiting flexibility and increasing error susceptibility;prior models rely on autoregressive reasoning in a single pass,accumulating minor errors(e.g.,incorrect math symbols)during generation,resulting in reduced accuracy.To address the above issues,we emulate the human“check and modify”process in reasoning and propose a unified M-tree self-correction solver(UTSCSolver)by iterative inference with self-correction mechanism.First,we use an iterative,non-autoregressive process for generating mathematical expressions,free from fixed generation orders to handle complex and diverse problems.Additionally,we design a self-correction mechanism based on alternating execution between a generator and a discriminator.This module iteratively detects and rectifies errors in generated expressions,leveraging previous iteration information for subsequent generation guidance.Experimental results show that our UTSC-Solver outperforms traditional models in accuracy on two popular datasets,while it improves the interpretability of mathematical reasoning.展开更多
BACKGROUND Emotional reactions,such as anxiety,irritability,and aggressive behavior,have attracted clinical attention as behavioral and emotional problems in preschool-age children.AIM To investigate the current statu...BACKGROUND Emotional reactions,such as anxiety,irritability,and aggressive behavior,have attracted clinical attention as behavioral and emotional problems in preschool-age children.AIM To investigate the current status of family rearing,parental stress,and behavioral and emotional problems of preschool children and to analyze the mediating effect of the current status of family rearing on parental stress and behavioral/emo-tional problems.METHODS We use convenience sampling to select 258 preschool children in the physical examination center of our hospital from October 2021 to September 2023.The children and their parents were evaluated using a questionnaire survey.Pearson's correlation was used to analyze the correlation between child behavioral and emotional problems and parental stress and family rearing,and the structural equation model was constructed to test the mediating effect.RESULTS The score for behavioral/emotional problems of 258 preschool children was(27.54±3.63),the score for parental stress was(87.64±11.34),and the score for parental family rearing was(31.54±5.24).There was a positive correlation between the behavioral and emotional problems of the children and the“hostile/mandatory”parenting style;meanwhile,showed a negative correlation with the“support/participation”parenting style(all P<0.05).The intermediary effect value between the family upbringing of parents in parental stress and children's behavior problems was 29.89%.CONCLUSION Parental family upbringing has a mediating effect between parental stress and behavioral and emotional problems of children.Despite paying attention to the behavioral and emotional problems of preschool-age children,clinical medical staff should provide correct and reasonable parenting advice to their parents to promote the mental health of preschool-age children.展开更多
This case study explores the efficacy of school-based intervention to address psychosocial challenges faced by an 11-year-old adolescent. The case study aimed to decrease the agression and acting out behavior as resul...This case study explores the efficacy of school-based intervention to address psychosocial challenges faced by an 11-year-old adolescent. The case study aimed to decrease the agression and acting out behavior as result of being victimized at school by the peers. The aim was to assess and manage the child’s aggressive behavior and academic underperformance which played a significant role in the child’s low self-esteem and emotional regulation. A comprehensive assessment was conducted to rule out the difficulties and a multi-faceted intervention strategy was utilized including anger management and structured activity scheduling that helped that child to improve his academic performance as well as to learn to manage his emotional expression. Throughout 16 sessions, the intervention targeted key behavioural indicators such as emotional expression, and aggression;post-assessment results demonstrated a 22% improvement in the child’s behavioral and academic challenges. The findings suggest that a multi-faceted therapeutic approach can be effective in addressing complex issues of aggression and academic underperformance in children, highlighting the importance of integrated psychological and educational interventions.展开更多
基金supported by the National Natural Sci‐ence Foundation of China(Grant No.62306325)。
文摘During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive distance)to a moving target as quickly as possible,resulting in the extended minimum-time intercept problem(EMTIP).Existing research has primarily focused on the zero-distance intercept problem,MTIP,establishing the necessary or sufficient conditions for MTIP optimality,and utilizing analytic algorithms,such as root-finding algorithms,to calculate the optimal solutions.However,these approaches depend heavily on the properties of the analytic algorithm,making them inapplicable when problem settings change,such as in the case of a positive effective range or complicated target motions outside uniform rectilinear motion.In this study,an approach employing a high-accuracy and quality-guaranteed mixed-integer piecewise-linear program(QG-PWL)is proposed for the EMTIP.This program can accommodate different effective interception ranges and complicated target motions(variable velocity or complicated trajectories).The high accuracy and quality guarantees of QG-PWL originate from elegant strategies such as piecewise linearization and other developed operation strategies.The approximate error in the intercept path length is proved to be bounded to h^(2)/(4√2),where h is the piecewise length.
文摘The paper presents a novel quantum method for addressing two fundamental routing problems:the Traveling Salesman Problem(TSP)and theVehicle Routing Problem(VRP),both central to routing challenges.The proposed method,named the Indirect Quantum Approximate Optimization Algorithm(IQAOA),leverages an indirect solution representation using ranking.Our contribution focuses on two main areas:1)the indirect representation of solutions,and 2)the integration of this representation into an extended version of QAOA,called IQAOA.This approach offers an alternative to QAOA and includes the following components:1)a quantum parameterized circuit designed to simulate string vectors on a quantum processor,2)a classical meta-optimization method executed on a classical computer,and 3)the computation of the average cost for each string vector,achieved through a well-established algorithm from the operations research community tailored to the specific problem.IQAOA provides an efficient means to address quantum optimization problems by combining quantum and classical computation methods.Its primary advantage lies in deriving a quantum circuit that requires significantly fewer gates,making it suitable for execution on current noisy quantum computing platforms.Through numerical experiments employing IQAOA,we successfully solved instances of the 10-customer Traveling Salesman Problem(TSP)using the IBM simulator.To our knowledge,this is the largest application of a QAOA-based approach to solving the TSP.Additionally,IQAOA enables the resolution of the Vehicle Routing Problem(VRP)by leveraging the Split algorithm,which transforms a TSP permutation into a corresponding VRP solution.
基金Supported by NSFC (Nos.12471009,12301006,12001047,11901566)Beijing Natural Science Foundation (No.1242003)National Training Program of Innovation and Entrepreneurship for Undergraduates(No.202307011)。
文摘Let Pr denote an almost-prime with at most r prime factors,counted according to multiplicity.In this paper,it is proved that,for every sufficiently large even integer N,the equation N=x^(2)+p_(2)^(2)+p_(3)^(3)+p_(4)^(3)+p_(5)^(5)+_6^(5)is solvable with being an almost-prime P_(6) and the other variables primes.This result constitutes an enhancement upon the previous result of Hooley[Recent Progress in Analytic Number Theory,Vol.1(Durham,1979),London:Academic Press,1981,127-191].
基金supported by the Talent Fund of Beijing Jiaotong University(No.2020RC012)NSFC(No.11871295),supported by NSFC(No.11971476),supported by NSFC(No.12071421)。
文摘Let d(n;r_(1),q_(1),r_(2),q_(2))be the number of factorization n=n_(1)n_(2)satisfying n_i≡r_i(mod q_i)(i=1,2)andΔ(x;r_(1),q_(1),r_(2),q_(2))be the error term of the summatory function of d(n;r_(1),q_(1),r_(2),q_(2)).Suppose x≥(q_(1)q_(2))^(1+ε),1≤r_i≤q_i,and(r_i,q_i)=1(i=1,2).This paper studies the power moments and sign changes ofΔ(x;r_(1),q_(1),r_(2),q_(2)).We prove that for sufficiently large constant C,Δ(q_(1)q_(2)x:r_(1),q_(1),r_(2),q_(2))changes sign in the interval[T,T+C√T]for any large T.Meanwhile,we show that for small constants c and c,there exist infinitely many subintervals of length c√log^(-7)T in[T,2T]where±Δ(q_(1)q_(2)x:r_(1),q_(1),r_(2),q_(2))>cx^(1/4)always holds.
基金supported by the National Natural Science Foundation of China(62106244)the Fundamental Research Funds for the Central Universities(WK2150110021)the University Synergy Innovation Program of Anhui Province(GXXT-2022-042).
文摘Automatically answer math word problems is a challenging task in artificial intelligence.Previous solvers constructed mathematical expressions in sequence or binary tree.However,these approaches may suffer from the following issues:Models relying on such structures exhibit fixed-order reasoning(e.g.,left-to-right),limiting flexibility and increasing error susceptibility;prior models rely on autoregressive reasoning in a single pass,accumulating minor errors(e.g.,incorrect math symbols)during generation,resulting in reduced accuracy.To address the above issues,we emulate the human“check and modify”process in reasoning and propose a unified M-tree self-correction solver(UTSCSolver)by iterative inference with self-correction mechanism.First,we use an iterative,non-autoregressive process for generating mathematical expressions,free from fixed generation orders to handle complex and diverse problems.Additionally,we design a self-correction mechanism based on alternating execution between a generator and a discriminator.This module iteratively detects and rectifies errors in generated expressions,leveraging previous iteration information for subsequent generation guidance.Experimental results show that our UTSC-Solver outperforms traditional models in accuracy on two popular datasets,while it improves the interpretability of mathematical reasoning.
基金Supported by the Shijiazhuang Science and Technology Research and Development Program,No.221460383.
文摘BACKGROUND Emotional reactions,such as anxiety,irritability,and aggressive behavior,have attracted clinical attention as behavioral and emotional problems in preschool-age children.AIM To investigate the current status of family rearing,parental stress,and behavioral and emotional problems of preschool children and to analyze the mediating effect of the current status of family rearing on parental stress and behavioral/emo-tional problems.METHODS We use convenience sampling to select 258 preschool children in the physical examination center of our hospital from October 2021 to September 2023.The children and their parents were evaluated using a questionnaire survey.Pearson's correlation was used to analyze the correlation between child behavioral and emotional problems and parental stress and family rearing,and the structural equation model was constructed to test the mediating effect.RESULTS The score for behavioral/emotional problems of 258 preschool children was(27.54±3.63),the score for parental stress was(87.64±11.34),and the score for parental family rearing was(31.54±5.24).There was a positive correlation between the behavioral and emotional problems of the children and the“hostile/mandatory”parenting style;meanwhile,showed a negative correlation with the“support/participation”parenting style(all P<0.05).The intermediary effect value between the family upbringing of parents in parental stress and children's behavior problems was 29.89%.CONCLUSION Parental family upbringing has a mediating effect between parental stress and behavioral and emotional problems of children.Despite paying attention to the behavioral and emotional problems of preschool-age children,clinical medical staff should provide correct and reasonable parenting advice to their parents to promote the mental health of preschool-age children.
文摘This case study explores the efficacy of school-based intervention to address psychosocial challenges faced by an 11-year-old adolescent. The case study aimed to decrease the agression and acting out behavior as result of being victimized at school by the peers. The aim was to assess and manage the child’s aggressive behavior and academic underperformance which played a significant role in the child’s low self-esteem and emotional regulation. A comprehensive assessment was conducted to rule out the difficulties and a multi-faceted intervention strategy was utilized including anger management and structured activity scheduling that helped that child to improve his academic performance as well as to learn to manage his emotional expression. Throughout 16 sessions, the intervention targeted key behavioural indicators such as emotional expression, and aggression;post-assessment results demonstrated a 22% improvement in the child’s behavioral and academic challenges. The findings suggest that a multi-faceted therapeutic approach can be effective in addressing complex issues of aggression and academic underperformance in children, highlighting the importance of integrated psychological and educational interventions.