Spinocerebellar ataxias (SCAs) are a group of genetic disorders characterized by slowly progressive incoordina- tion of gait and are often associated with poor coordination of the hands, speech, and eye movements. F...Spinocerebellar ataxias (SCAs) are a group of genetic disorders characterized by slowly progressive incoordina- tion of gait and are often associated with poor coordination of the hands, speech, and eye movements. Frequently, atrophy of the cerebellum occurs. The genetic forms of ataxia are diagnosed by family history, physical examina- tion, neuroimaging, and molecular genetic testing. At present, 36 SCA subtypes including 27 pathogenic genes have been identified [1]. Different subtypes of SCAs have clear distribution differences among ethnic populations, and SCA8 is an infrequent entity worldwide, which has mostly been reported in Japanese, but has never been reported in Chinese [2]. SCAB involves bidirectional expression based on the total number of both the (CTA)n and (CTG)n expansion transcripts in ATXN8OS. The pathogenesis of this disorder is complex and the spectrum of clinical presentations is broad. It is predominantly characterized by drawn-out slowness of speech and gait instability, followed by slowly progressive ataxia, with disease onset typically occurring in adulthood [3]. How- ever, the lowest full-penetrance allele for SCA8 onset remains elusive and the current understanding of the phenotypic and genotypic features of SCA8 is limited. Since SCA8 has not yet been reported in the Chinese population and is scantily reported in a small proportion of pedigrees so far, clinical knowledge is still developing. Moreover, the boundary between the normal and patho- genic alleles of SCA8 is uncertain. Here we report the clinical and molecular genetic characteristics of 3 Chinese SCA8 families and have identified 51 CTA/CTG repeats within ATXN8OS, probably the shortest pathogenic allele for SCA8.展开更多
Dear Ayi,I think my son’s elementary teachers are irresponsible!He always comes home with his water bottle still full,despite my repeated messages to his teachers reminding them to encourage him to drink more water.S...Dear Ayi,I think my son’s elementary teachers are irresponsible!He always comes home with his water bottle still full,despite my repeated messages to his teachers reminding them to encourage him to drink more water.Should I move him to another school next year?展开更多
Dear Ayi,I tried to avoid crowds this Labor Day holiday by visiting a small village in the middle of nowhere.Iended up bored out of my mind.Where can I go that's quiet and fun?
The fuzzy comfortability of a wind-sensitive super-high tower crane is critical to guarantee occupant health and improve construction efficiency.Therefore,the wind-resistant fuzzy comfortability of a super-high tower ...The fuzzy comfortability of a wind-sensitive super-high tower crane is critical to guarantee occupant health and improve construction efficiency.Therefore,the wind-resistant fuzzy comfortability of a super-high tower crane in the Ma’anshan Yangtze River(MYR)Bridge site is analyzed in this paper.First,the membership function model that represents fuzzy comfortability is introduced in the probability density evolution method(PDEM).Second,based on Fechner’s law,the membership function curves are constructed according to three acceleration thresholds in ISO 2631.Then,the fuzzy comfortability for the super-high tower crane under stochastic wind loads is assessed on the basis of different cut-set levelsλ.Results show that the comfortability is over 0.9 under the required maximum operating wind velocity.The low sensitivity toλcan be observed in the reliability curves of ISOⅡandⅢmembership functions.The reliability of the ISOⅠmembership function is not sensitive toλwhenλ<0.7,whereas it becomes sensitive toλwhenλ>0.7.展开更多
In dynamic scenarios,visual simultaneous localization and mapping(SLAM)algorithms often incorrectly incorporate dynamic points during camera pose computation,leading to reduced accuracy and robustness.This paper prese...In dynamic scenarios,visual simultaneous localization and mapping(SLAM)algorithms often incorrectly incorporate dynamic points during camera pose computation,leading to reduced accuracy and robustness.This paper presents a dynamic SLAM algorithm that leverages object detection and regional dynamic probability.Firstly,a parallel thread employs the YOLOX object detectionmodel to gather 2D semantic information and compensate for missed detections.Next,an improved K-means++clustering algorithm clusters bounding box regions,adaptively determining the threshold for extracting dynamic object contours as dynamic points change.This process divides the image into low dynamic,suspicious dynamic,and high dynamic regions.In the tracking thread,the dynamic point removal module assigns dynamic probability weights to the feature points in these regions.Combined with geometric methods,it detects and removes the dynamic points.The final evaluation on the public TUM RGB-D dataset shows that the proposed dynamic SLAM algorithm surpasses most existing SLAM algorithms,providing better pose estimation accuracy and robustness in dynamic environments.展开更多
The utilization of unmanned aerial vehicle(UAV) relays in cooperative communication has gained considerable attention in recent years.However,the current research is mostly based on fixed base stations and users,lacki...The utilization of unmanned aerial vehicle(UAV) relays in cooperative communication has gained considerable attention in recent years.However,the current research is mostly based on fixed base stations and users,lacking sufficient exploration of scenarios where communication nodes are in motion.This paper presents a multi-destination vehicle communication system based on decode-and-forward(DF)UAV relays,where source and destination vehicles are moving and an internal eavesdropper intercepts messages from UAV.The closed-form expressions for system outage probability and secrecy outage probability are derived to analyze the reliability and security of the system.Furthermore,the impact of the UAV's position,signal transmission power,and system time allocation ratio on the system's performance are also analyzed.The numerical simulation results validate the accuracy of the derived formulas and confirm the correctness of the analysis.The appropriate time allocation ratio significantly enhances the security performance of system under various environmental conditions.展开更多
Critical Height Sampling(CHS)estimates stand volume free from any model and tree form assumptions.Despite its introduction more than four decades ago,CHS has not been widely applied in the field due to perceived chall...Critical Height Sampling(CHS)estimates stand volume free from any model and tree form assumptions.Despite its introduction more than four decades ago,CHS has not been widely applied in the field due to perceived challenges in measurement.The objectives of this study were to compare estimated stand volume between CHS and sampling methods that used volume or taper models,the equivalence of the sampling methods,and their relative efficiency.We established 65 field plots in planted forests of two coniferous tree species.We estimated stand volume for a range of Basal Area Factors(BAFs).Results showed that CHS produced the most similar mean stand volume across BAFs and tree species with maximum differences between BAFs of 5-18m^(3)·ha^(−1).Horizontal Point Sampling(HPS)using volume models produced very large variability in mean stand volume across BAFs with the differences up to 126m^(3)·ha^(−1).However,CHS was less precise and less efficient than HPS.Furthermore,none of the sampling methods were statistically interchangeable with CHS at an allowable tolerance of≤55m^(3)·ha^(−1).About 72%of critical height measurements were below crown base indicating that critical height was more accessible to measurement than expected.Our study suggests that the consistency in the mean estimates of CHS is a major advantage when planning a forest inventory.When checking against CHS,results hint that HPS estimates might contain potential model bias.These strengths of CHS could outweigh its lower precision.Our study also implies serious implications in financial terms when choosing a sampling method.Lastly,CHS could potentially benefit forest management as an alternate option of estimating stand volume when volume or taper models are lacking or are not reliable.展开更多
Persistent flows are defined as network flows that persist over multiple time intervals and continue to exhibit activity over extended periods,which are critical for identifying long-term behaviors and subtle security...Persistent flows are defined as network flows that persist over multiple time intervals and continue to exhibit activity over extended periods,which are critical for identifying long-term behaviors and subtle security threats.Programmable switches provide line-rate packet processing to meet the requirements of high-speed network environments,yet they are fundamentally limited in computational and memory resources.Accurate and memoryefficient persistent flow detection on programmable switches is therefore essential.However,existing approaches often rely on fixed-window sketches or multiple sketches instances,which either suffer from insufficient temporal precision or incur substantial memory overhead,making them ineffective on programmable switches.To address these challenges,we propose SP-Sketch,an innovative sliding-window-based sketch that leverages a probabilistic update mechanism to emulate slot expiration without maintaining multiple sketch instances.This innovative design significantly reduces memory consumption while preserving high detection accuracy across multiple time intervals.We provide rigorous theoretical analyses of the estimation errors,deriving precise error bounds for the proposed method,and validate our approach through comprehensive implementations on both P4 hardware switches(with Intel Tofino ASIC)and software switches(i.e.,BMv2).Experimental evaluations using real-world traffic traces demonstrate that SP-Sketch outperforms traditional methods,improving accuracy by up to 20%over baseline sliding window approaches and enhancing recall by 5%compared to non-sliding alternatives.Furthermore,SP-Sketch achieves a significant reduction in memory utilization,reducing memory consumption by up to 65%compared to traditional methods,while maintaining a robust capability to accurately track persistent flow behavior over extended time periods.展开更多
Assessing forest vulnerability to disturbances at a high spatial resolution and for regional and national scales has become attainable with the combination of remote sensing-derived high-resolution forest maps and mec...Assessing forest vulnerability to disturbances at a high spatial resolution and for regional and national scales has become attainable with the combination of remote sensing-derived high-resolution forest maps and mechanistic risk models. This study demonstrated large-scale and high-resolution modelling of wind damage vulnerability in Norway. The hybrid mechanistic wind damage model, ForestGALES, was adapted to map the critical wind speeds(CWS) of damage across Norway using a national forest attribute map at a 16 m × 16 m spatial resolution. P arametrization of the model for the Norwegian context was done using the literature and the National Forest Inventory data. This new parametrization of the model for Norwegian forests yielded estimates of CWS significantly different from the default parametrization. Both parametrizations fell short of providing acceptable discrimination of the damaged area following the storm of November 19, 2021 in the central southern region of Norway when using unadjusted CWS. After adjusting the CWS and the storm wind speeds by a constant factor, the Norwegian parametrization provided acceptable discrimination and was thus defined as suitable to use in future studies, despite the lack of field-and laboratory experiments to directly derive parameters for Norwegian forests. The windstorm event used for model validation in this study highlighted the challenges of predicting wind damage to forests in landscapes with complex topography. Future studies should focus on further developing ForestGALES and new datasets describing extreme wind climates to better represent the wind and tree interactions in complex topography, and predict the level of risk in order to develop local climate-smart forest management strategies.展开更多
Climate change is an essential topic in climate science,and the accessibility of accurate,high-resolution datasets in recent years has facilitated the extraction of more insights from big-data resources.Nonetheless,cu...Climate change is an essential topic in climate science,and the accessibility of accurate,high-resolution datasets in recent years has facilitated the extraction of more insights from big-data resources.Nonetheless,current research predominantly focuses on mean-value changes and largely overlooks changes in the probability distribution.In this study,a novel method called Wasserstein Stability Analysis(WSA)is developed to identify probability density function(PDF)changes,especially the extreme event shift and nonlinear physical value constraint variation in climate change.WSA is applied to the early 21st century and compared with traditional mean-value trend analysis.The results indicate that despite no significant trend,the equatorial eastern Pacific experienced a decline in hot extremes and an increase in cold extremes,indicating a La Nina-like temperature shift.Further analysis at two Arctic locations suggests sea ice severely restricts the hot extremes of surface air temperature.This impact is diminishing as the sea ice melts.By revealing PDF shifts,WSA emerges as a powerful tool to re-examine climate change dynamics,providing enhanced data-driven insights for understanding climate evolution.展开更多
In this study,we explore the impact of state-of-the-art laser fields on theαdecay half-life of deformed ground-state odd-A nuclei within the proton number range of 52–107.The calculations show that the presence of a...In this study,we explore the impact of state-of-the-art laser fields on theαdecay half-life of deformed ground-state odd-A nuclei within the proton number range of 52–107.The calculations show that the presence of a laser field modulates theαdecay half-life by altering theαdecay penetration probability within a limited range.Moreover,the variance in the penetration probability rate of change between even–odd and odd–even nuclei is investigated.Furthermore,we investigate the rate of change of the penetration probability for the same parent nucleus with different neutron numbers,based on the characteristics of the odd-A nucleus.We found that the influence of the laser field on the penetration probability is determined by both the shell effect and odd–even staggering.This research contributes to the understanding of nuanced interactions between laser fields and nuclear decay processes.Therefore,valuable insights for future experiments in laser–nuclear physics are attainable using this study.展开更多
Tracking multiple space objects using multiple surveillance sensors is a critical approach in many Space Situation Awareness(SSA) applications. In this process, the uncertainties of targets,dynamics, and observations ...Tracking multiple space objects using multiple surveillance sensors is a critical approach in many Space Situation Awareness(SSA) applications. In this process, the uncertainties of targets,dynamics, and observations are usually represented by the probability distributions. However, precise characterization of uncertainty becomes challenging due to imperfect knowledge about some key aspects, such as birth targets and sensor detection profiles. To overcome this challenge, this paper proposes a multi-sensor possibility PHD filter based on the theory of outer probability measures. An effective compensation method is introduced to tackle variations in the fields of view of SSA sensors or instances of missed detections, aiming to mitigate the inconsistency in localized information. The proposed method is adapted to centralized and distributed sensor networks, offering effective solutions for multi-sensor multi-target tracking. The major innovation of the proposed method compared with typical methods is the proper description of epistemic uncertainty, which yields more robust performance in the scenarios of lacking some information about the system.The effectiveness of the multi-sensor possibility PHD filter is demonstrated by a comparison with conventional methods in two simulated scenarios.展开更多
Dear Editor,This letter presents a joint probabilistic scheduling and resource allocation method(PSRA) for 5G-based wireless networked control systems(WNCSs). As a control-aware optimization method, PSRA minimizes the...Dear Editor,This letter presents a joint probabilistic scheduling and resource allocation method(PSRA) for 5G-based wireless networked control systems(WNCSs). As a control-aware optimization method, PSRA minimizes the linear quadratic Gaussian(LQG) control cost of WNCSs by optimizing the activation probability of subsystems, the number of uplink repetitions, and the durations of uplink and downlink phases. Simulation results show that PSRA achieves smaller LQG control costs than existing works.展开更多
Based on the analysis and research of the airworthiness objective of integrated modular avionics system(IMA),and the characteristics of IMA system’s comprehensive and complex cross-linking with other airborne systems...Based on the analysis and research of the airworthiness objective of integrated modular avionics system(IMA),and the characteristics of IMA system’s comprehensive and complex cross-linking with other airborne systems,the extraction strategy of IMA system’s compliance flight test subjects and the selection method of IMA system’s compliance flight test parameters are proposed.The data analysis method based on the abnormal probability matrix of the IMA system is proposed for the first time,and the abnormal state information of the IMA system can be quickly identified.The compliance flight test of the IMA system is completed with limited flight test resources,which achieves the purpose of saving flight test sorties and improving flight test efficiency.This research has been successfully applied to the airworthiness certification flight test of a certain civil transport aircraft in China,and can provide technical support for the subsequent type flight test.展开更多
We apply methods of algebraic integral geometry to prove a special case of the Gaussian kinematic formula of Adler-Taylor.The idea,suggested already by Adler and Taylor,is to view the GKF as the limit of spherical kin...We apply methods of algebraic integral geometry to prove a special case of the Gaussian kinematic formula of Adler-Taylor.The idea,suggested already by Adler and Taylor,is to view the GKF as the limit of spherical kinematic formulas for spheres of large dimension N and curvature1/N.展开更多
Backscatter communication(BC)is con-sidered a key technology in self-sustainable commu-nications,and the unmanned aerial vehicle(UAV)as a data collector can improve the efficiency of data col-lection.We consider a UAV...Backscatter communication(BC)is con-sidered a key technology in self-sustainable commu-nications,and the unmanned aerial vehicle(UAV)as a data collector can improve the efficiency of data col-lection.We consider a UAV-aided BC system,where the power beacons(PBs)are deployed as dedicated radio frequency(RF)sources to supply power for backscatter devices(BDs).After harvesting enough energy,the BDs transmit data to the UAV.We use stochastic geometry to model the large-scale BC sys-tem.Specifically,the PBs are modeled as a type II Mat´ern hard-core point process(MHCPP II)and the BDs are modeled as a homogeneous Poisson point process(HPPP).Firstly,the BDs’activation proba-bility and average coverage probability are derived.Then,to maximize the energy efficiency(EE),we opti-mize the RF power of the PBs under different PB den-sities.Furthermore,we compare the coverage proba-bility and EE performance of our system with a bench-mark scheme,in which the distribution of PBs is mod-eled as a HPPP.Simulation results show that the PBs modeled as MHCPP II has better performance,and we found that the higher the density of PBs,the smaller the RF power required,and the EE is also higher.展开更多
Models that predict a forest stand’s evolution are essential for developing plans for sustainable management.A simple mathematical framework was developed that con-siders the individual tree and stand basal area unde...Models that predict a forest stand’s evolution are essential for developing plans for sustainable management.A simple mathematical framework was developed that con-siders the individual tree and stand basal area under random resource competition and is based on two assumptions:(1)a sigmoid-type stochastic process governs tree and stand basal area dynamics of living and dying trees,and(2)the total area that a tree may potentially occupy determines the number of trees per hectare.The most effective method to satisfy these requirements is formalizing each tree diameter and potentially occupied area using Gompertz-type stochastic differential equations governed by fixed and mixed-effect parameters.Data from permanent experimental plots from long-term Lithuania experiments were used to construct the tree and stand basal area models.The new models were relatively unbiased for live trees of all species,including silver birch(Betula pen-dula Roth)and downy birch(Betula pubescens Ehrh.),[spruce(Picea abies),and pine(Pinus sylvestris)].Less reliable predic-tions were made for the basal area of dying trees.Pines gave the highest accuracy prediction of mean basal area among all live trees.The mean basal area prediction for all dying trees was lower than that for live trees.Among all species,pine also had the best average basal area prediction accuracy for live trees.Newly developed basal area growth and yield models can be recommended despite their complex formulation and implementation challenges,particularly in situations when data is scarce.This is because the newly observed plot provides sufficient information to calibrate random effects.展开更多
In order to solve the problems of high experimental cost of ammunition,lack of field test data,and the difficulty in applying the ammunition hit probability estimation method in classical statistics,this paper assumes...In order to solve the problems of high experimental cost of ammunition,lack of field test data,and the difficulty in applying the ammunition hit probability estimation method in classical statistics,this paper assumes that the projectile dispersion of ammunition is a two-dimensional joint normal distribution,and proposes a new Bayesian inference method of ammunition hit probability based on normal-inverse Wishart distribution.Firstly,the conjugate joint prior distribution of the projectile dispersion characteristic parameters is determined to be a normal inverse Wishart distribution,and the hyperparameters in the prior distribution are estimated by simulation experimental data and historical measured data.Secondly,the field test data is integrated with the Bayesian formula to obtain the joint posterior distribution of the projectile dispersion characteristic parameters,and then the hit probability of the ammunition is estimated.Finally,compared with the binomial distribution method,the method in this paper can consider the dispersion information of ammunition projectiles,and the hit probability information is more fully utilized.The hit probability results are closer to the field shooting test samples.This method has strong applicability and is conducive to obtaining more accurate hit probability estimation results.展开更多
基金supported by grants from the National Natural Science Foundation of China(81301486 and81672095)
文摘Spinocerebellar ataxias (SCAs) are a group of genetic disorders characterized by slowly progressive incoordina- tion of gait and are often associated with poor coordination of the hands, speech, and eye movements. Frequently, atrophy of the cerebellum occurs. The genetic forms of ataxia are diagnosed by family history, physical examina- tion, neuroimaging, and molecular genetic testing. At present, 36 SCA subtypes including 27 pathogenic genes have been identified [1]. Different subtypes of SCAs have clear distribution differences among ethnic populations, and SCA8 is an infrequent entity worldwide, which has mostly been reported in Japanese, but has never been reported in Chinese [2]. SCAB involves bidirectional expression based on the total number of both the (CTA)n and (CTG)n expansion transcripts in ATXN8OS. The pathogenesis of this disorder is complex and the spectrum of clinical presentations is broad. It is predominantly characterized by drawn-out slowness of speech and gait instability, followed by slowly progressive ataxia, with disease onset typically occurring in adulthood [3]. How- ever, the lowest full-penetrance allele for SCA8 onset remains elusive and the current understanding of the phenotypic and genotypic features of SCA8 is limited. Since SCA8 has not yet been reported in the Chinese population and is scantily reported in a small proportion of pedigrees so far, clinical knowledge is still developing. Moreover, the boundary between the normal and patho- genic alleles of SCA8 is uncertain. Here we report the clinical and molecular genetic characteristics of 3 Chinese SCA8 families and have identified 51 CTA/CTG repeats within ATXN8OS, probably the shortest pathogenic allele for SCA8.
文摘Dear Ayi,I think my son’s elementary teachers are irresponsible!He always comes home with his water bottle still full,despite my repeated messages to his teachers reminding them to encourage him to drink more water.Should I move him to another school next year?
文摘Dear Ayi,I tried to avoid crowds this Labor Day holiday by visiting a small village in the middle of nowhere.Iended up bored out of my mind.Where can I go that's quiet and fun?
基金The National Natural Science Foundation of China(No.52108274,52208481,52338011)State Scholarship Fund of China Scholarship Council(No.202306090285).
文摘The fuzzy comfortability of a wind-sensitive super-high tower crane is critical to guarantee occupant health and improve construction efficiency.Therefore,the wind-resistant fuzzy comfortability of a super-high tower crane in the Ma’anshan Yangtze River(MYR)Bridge site is analyzed in this paper.First,the membership function model that represents fuzzy comfortability is introduced in the probability density evolution method(PDEM).Second,based on Fechner’s law,the membership function curves are constructed according to three acceleration thresholds in ISO 2631.Then,the fuzzy comfortability for the super-high tower crane under stochastic wind loads is assessed on the basis of different cut-set levelsλ.Results show that the comfortability is over 0.9 under the required maximum operating wind velocity.The low sensitivity toλcan be observed in the reliability curves of ISOⅡandⅢmembership functions.The reliability of the ISOⅠmembership function is not sensitive toλwhenλ<0.7,whereas it becomes sensitive toλwhenλ>0.7.
基金the National Natural Science Foundation of China(No.62063006)to the Guangxi Natural Science Foundation under Grant(Nos.2023GXNSFAA026025,AA24010001)+3 种基金to the Innovation Fund of Chinese Universities Industry-University-Research(ID:2023RY018)to the Special Guangxi Industry and Information Technology Department,Textile and Pharmaceutical Division(ID:2021 No.231)to the Special Research Project of Hechi University(ID:2021GCC028)to the Key Laboratory of AI and Information Processing,Education Department of Guangxi Zhuang Autonomous Region(Hechi University),No.2024GXZDSY009。
文摘In dynamic scenarios,visual simultaneous localization and mapping(SLAM)algorithms often incorrectly incorporate dynamic points during camera pose computation,leading to reduced accuracy and robustness.This paper presents a dynamic SLAM algorithm that leverages object detection and regional dynamic probability.Firstly,a parallel thread employs the YOLOX object detectionmodel to gather 2D semantic information and compensate for missed detections.Next,an improved K-means++clustering algorithm clusters bounding box regions,adaptively determining the threshold for extracting dynamic object contours as dynamic points change.This process divides the image into low dynamic,suspicious dynamic,and high dynamic regions.In the tracking thread,the dynamic point removal module assigns dynamic probability weights to the feature points in these regions.Combined with geometric methods,it detects and removes the dynamic points.The final evaluation on the public TUM RGB-D dataset shows that the proposed dynamic SLAM algorithm surpasses most existing SLAM algorithms,providing better pose estimation accuracy and robustness in dynamic environments.
基金supported by the National Natural Science Foundation of China under Grants 62001359 and 61901201by the Key Science and Technology Research Project of Henan Province under Grants 232102211059the Natural Science Basic Research Program of Shaanxi under Grants 2022JQ-658 and 2022JQ-621。
文摘The utilization of unmanned aerial vehicle(UAV) relays in cooperative communication has gained considerable attention in recent years.However,the current research is mostly based on fixed base stations and users,lacking sufficient exploration of scenarios where communication nodes are in motion.This paper presents a multi-destination vehicle communication system based on decode-and-forward(DF)UAV relays,where source and destination vehicles are moving and an internal eavesdropper intercepts messages from UAV.The closed-form expressions for system outage probability and secrecy outage probability are derived to analyze the reliability and security of the system.Furthermore,the impact of the UAV's position,signal transmission power,and system time allocation ratio on the system's performance are also analyzed.The numerical simulation results validate the accuracy of the derived formulas and confirm the correctness of the analysis.The appropriate time allocation ratio significantly enhances the security performance of system under various environmental conditions.
文摘Critical Height Sampling(CHS)estimates stand volume free from any model and tree form assumptions.Despite its introduction more than four decades ago,CHS has not been widely applied in the field due to perceived challenges in measurement.The objectives of this study were to compare estimated stand volume between CHS and sampling methods that used volume or taper models,the equivalence of the sampling methods,and their relative efficiency.We established 65 field plots in planted forests of two coniferous tree species.We estimated stand volume for a range of Basal Area Factors(BAFs).Results showed that CHS produced the most similar mean stand volume across BAFs and tree species with maximum differences between BAFs of 5-18m^(3)·ha^(−1).Horizontal Point Sampling(HPS)using volume models produced very large variability in mean stand volume across BAFs with the differences up to 126m^(3)·ha^(−1).However,CHS was less precise and less efficient than HPS.Furthermore,none of the sampling methods were statistically interchangeable with CHS at an allowable tolerance of≤55m^(3)·ha^(−1).About 72%of critical height measurements were below crown base indicating that critical height was more accessible to measurement than expected.Our study suggests that the consistency in the mean estimates of CHS is a major advantage when planning a forest inventory.When checking against CHS,results hint that HPS estimates might contain potential model bias.These strengths of CHS could outweigh its lower precision.Our study also implies serious implications in financial terms when choosing a sampling method.Lastly,CHS could potentially benefit forest management as an alternate option of estimating stand volume when volume or taper models are lacking or are not reliable.
基金supported by the National Undergraduate Innovation and Entrepreneurship Training Program of China(Project No.202510559076)at Jinan University,a nationwide initiative administered by the Ministry of Educationthe National Natural Science Foundation of China(NSFC)under Grant No.62172189.
文摘Persistent flows are defined as network flows that persist over multiple time intervals and continue to exhibit activity over extended periods,which are critical for identifying long-term behaviors and subtle security threats.Programmable switches provide line-rate packet processing to meet the requirements of high-speed network environments,yet they are fundamentally limited in computational and memory resources.Accurate and memoryefficient persistent flow detection on programmable switches is therefore essential.However,existing approaches often rely on fixed-window sketches or multiple sketches instances,which either suffer from insufficient temporal precision or incur substantial memory overhead,making them ineffective on programmable switches.To address these challenges,we propose SP-Sketch,an innovative sliding-window-based sketch that leverages a probabilistic update mechanism to emulate slot expiration without maintaining multiple sketch instances.This innovative design significantly reduces memory consumption while preserving high detection accuracy across multiple time intervals.We provide rigorous theoretical analyses of the estimation errors,deriving precise error bounds for the proposed method,and validate our approach through comprehensive implementations on both P4 hardware switches(with Intel Tofino ASIC)and software switches(i.e.,BMv2).Experimental evaluations using real-world traffic traces demonstrate that SP-Sketch outperforms traditional methods,improving accuracy by up to 20%over baseline sliding window approaches and enhancing recall by 5%compared to non-sliding alternatives.Furthermore,SP-Sketch achieves a significant reduction in memory utilization,reducing memory consumption by up to 65%compared to traditional methods,while maintaining a robust capability to accurately track persistent flow behavior over extended time periods.
基金funded by the Norwegian Research Council(NFR project 302701 Climate Smart Forestry Norway).
文摘Assessing forest vulnerability to disturbances at a high spatial resolution and for regional and national scales has become attainable with the combination of remote sensing-derived high-resolution forest maps and mechanistic risk models. This study demonstrated large-scale and high-resolution modelling of wind damage vulnerability in Norway. The hybrid mechanistic wind damage model, ForestGALES, was adapted to map the critical wind speeds(CWS) of damage across Norway using a national forest attribute map at a 16 m × 16 m spatial resolution. P arametrization of the model for the Norwegian context was done using the literature and the National Forest Inventory data. This new parametrization of the model for Norwegian forests yielded estimates of CWS significantly different from the default parametrization. Both parametrizations fell short of providing acceptable discrimination of the damaged area following the storm of November 19, 2021 in the central southern region of Norway when using unadjusted CWS. After adjusting the CWS and the storm wind speeds by a constant factor, the Norwegian parametrization provided acceptable discrimination and was thus defined as suitable to use in future studies, despite the lack of field-and laboratory experiments to directly derive parameters for Norwegian forests. The windstorm event used for model validation in this study highlighted the challenges of predicting wind damage to forests in landscapes with complex topography. Future studies should focus on further developing ForestGALES and new datasets describing extreme wind climates to better represent the wind and tree interactions in complex topography, and predict the level of risk in order to develop local climate-smart forest management strategies.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFC3000904)the National Natural Science Foundation of China(42005039)the Science and Technology Development Fund of CAMS(Grant No.2024KJ013)。
文摘Climate change is an essential topic in climate science,and the accessibility of accurate,high-resolution datasets in recent years has facilitated the extraction of more insights from big-data resources.Nonetheless,current research predominantly focuses on mean-value changes and largely overlooks changes in the probability distribution.In this study,a novel method called Wasserstein Stability Analysis(WSA)is developed to identify probability density function(PDF)changes,especially the extreme event shift and nonlinear physical value constraint variation in climate change.WSA is applied to the early 21st century and compared with traditional mean-value trend analysis.The results indicate that despite no significant trend,the equatorial eastern Pacific experienced a decline in hot extremes and an increase in cold extremes,indicating a La Nina-like temperature shift.Further analysis at two Arctic locations suggests sea ice severely restricts the hot extremes of surface air temperature.This impact is diminishing as the sea ice melts.By revealing PDF shifts,WSA emerges as a powerful tool to re-examine climate change dynamics,providing enhanced data-driven insights for understanding climate evolution.
基金supported by the National Natural Science Foundation of China(Nos.12375244 and 12135009)the Hunan Provincial Innovation Foundation for Postgraduate(Nos.CX20210007 and CX20230008)。
文摘In this study,we explore the impact of state-of-the-art laser fields on theαdecay half-life of deformed ground-state odd-A nuclei within the proton number range of 52–107.The calculations show that the presence of a laser field modulates theαdecay half-life by altering theαdecay penetration probability within a limited range.Moreover,the variance in the penetration probability rate of change between even–odd and odd–even nuclei is investigated.Furthermore,we investigate the rate of change of the penetration probability for the same parent nucleus with different neutron numbers,based on the characteristics of the odd-A nucleus.We found that the influence of the laser field on the penetration probability is determined by both the shell effect and odd–even staggering.This research contributes to the understanding of nuanced interactions between laser fields and nuclear decay processes.Therefore,valuable insights for future experiments in laser–nuclear physics are attainable using this study.
基金funded by the National Natural Science Foundation of China(No.12202049)the Beijing Institute of Technology Research Fund Program for Young Scholars,China.
文摘Tracking multiple space objects using multiple surveillance sensors is a critical approach in many Space Situation Awareness(SSA) applications. In this process, the uncertainties of targets,dynamics, and observations are usually represented by the probability distributions. However, precise characterization of uncertainty becomes challenging due to imperfect knowledge about some key aspects, such as birth targets and sensor detection profiles. To overcome this challenge, this paper proposes a multi-sensor possibility PHD filter based on the theory of outer probability measures. An effective compensation method is introduced to tackle variations in the fields of view of SSA sensors or instances of missed detections, aiming to mitigate the inconsistency in localized information. The proposed method is adapted to centralized and distributed sensor networks, offering effective solutions for multi-sensor multi-target tracking. The major innovation of the proposed method compared with typical methods is the proper description of epistemic uncertainty, which yields more robust performance in the scenarios of lacking some information about the system.The effectiveness of the multi-sensor possibility PHD filter is demonstrated by a comparison with conventional methods in two simulated scenarios.
基金supported by the Liaoning Revitalization Talents Program(XLYC2203148)
文摘Dear Editor,This letter presents a joint probabilistic scheduling and resource allocation method(PSRA) for 5G-based wireless networked control systems(WNCSs). As a control-aware optimization method, PSRA minimizes the linear quadratic Gaussian(LQG) control cost of WNCSs by optimizing the activation probability of subsystems, the number of uplink repetitions, and the durations of uplink and downlink phases. Simulation results show that PSRA achieves smaller LQG control costs than existing works.
文摘Based on the analysis and research of the airworthiness objective of integrated modular avionics system(IMA),and the characteristics of IMA system’s comprehensive and complex cross-linking with other airborne systems,the extraction strategy of IMA system’s compliance flight test subjects and the selection method of IMA system’s compliance flight test parameters are proposed.The data analysis method based on the abnormal probability matrix of the IMA system is proposed for the first time,and the abnormal state information of the IMA system can be quickly identified.The compliance flight test of the IMA system is completed with limited flight test resources,which achieves the purpose of saving flight test sorties and improving flight test efficiency.This research has been successfully applied to the airworthiness certification flight test of a certain civil transport aircraft in China,and can provide technical support for the subsequent type flight test.
文摘We apply methods of algebraic integral geometry to prove a special case of the Gaussian kinematic formula of Adler-Taylor.The idea,suggested already by Adler and Taylor,is to view the GKF as the limit of spherical kinematic formulas for spheres of large dimension N and curvature1/N.
文摘Backscatter communication(BC)is con-sidered a key technology in self-sustainable commu-nications,and the unmanned aerial vehicle(UAV)as a data collector can improve the efficiency of data col-lection.We consider a UAV-aided BC system,where the power beacons(PBs)are deployed as dedicated radio frequency(RF)sources to supply power for backscatter devices(BDs).After harvesting enough energy,the BDs transmit data to the UAV.We use stochastic geometry to model the large-scale BC sys-tem.Specifically,the PBs are modeled as a type II Mat´ern hard-core point process(MHCPP II)and the BDs are modeled as a homogeneous Poisson point process(HPPP).Firstly,the BDs’activation proba-bility and average coverage probability are derived.Then,to maximize the energy efficiency(EE),we opti-mize the RF power of the PBs under different PB den-sities.Furthermore,we compare the coverage proba-bility and EE performance of our system with a bench-mark scheme,in which the distribution of PBs is mod-eled as a HPPP.Simulation results show that the PBs modeled as MHCPP II has better performance,and we found that the higher the density of PBs,the smaller the RF power required,and the EE is also higher.
基金supported by the Horizon Europe Framework Programme(HORIZON),call Teaming for Excellence(HORIZONWIDERA-2022-ACCESS-01-two-stage)-Creation of the Centre of Excellence in Smart Forestry“Forest 4.0”No.101059985″This research was cofunded by FOREST 4.0-“Ekscelencijos centras tvariai miško bioekonomikai vystyti”(Nr.10-042-P-0002).
文摘Models that predict a forest stand’s evolution are essential for developing plans for sustainable management.A simple mathematical framework was developed that con-siders the individual tree and stand basal area under random resource competition and is based on two assumptions:(1)a sigmoid-type stochastic process governs tree and stand basal area dynamics of living and dying trees,and(2)the total area that a tree may potentially occupy determines the number of trees per hectare.The most effective method to satisfy these requirements is formalizing each tree diameter and potentially occupied area using Gompertz-type stochastic differential equations governed by fixed and mixed-effect parameters.Data from permanent experimental plots from long-term Lithuania experiments were used to construct the tree and stand basal area models.The new models were relatively unbiased for live trees of all species,including silver birch(Betula pen-dula Roth)and downy birch(Betula pubescens Ehrh.),[spruce(Picea abies),and pine(Pinus sylvestris)].Less reliable predic-tions were made for the basal area of dying trees.Pines gave the highest accuracy prediction of mean basal area among all live trees.The mean basal area prediction for all dying trees was lower than that for live trees.Among all species,pine also had the best average basal area prediction accuracy for live trees.Newly developed basal area growth and yield models can be recommended despite their complex formulation and implementation challenges,particularly in situations when data is scarce.This is because the newly observed plot provides sufficient information to calibrate random effects.
基金supported by the National Natural Science Foundation of China(No.71501183).
文摘In order to solve the problems of high experimental cost of ammunition,lack of field test data,and the difficulty in applying the ammunition hit probability estimation method in classical statistics,this paper assumes that the projectile dispersion of ammunition is a two-dimensional joint normal distribution,and proposes a new Bayesian inference method of ammunition hit probability based on normal-inverse Wishart distribution.Firstly,the conjugate joint prior distribution of the projectile dispersion characteristic parameters is determined to be a normal inverse Wishart distribution,and the hyperparameters in the prior distribution are estimated by simulation experimental data and historical measured data.Secondly,the field test data is integrated with the Bayesian formula to obtain the joint posterior distribution of the projectile dispersion characteristic parameters,and then the hit probability of the ammunition is estimated.Finally,compared with the binomial distribution method,the method in this paper can consider the dispersion information of ammunition projectiles,and the hit probability information is more fully utilized.The hit probability results are closer to the field shooting test samples.This method has strong applicability and is conducive to obtaining more accurate hit probability estimation results.