Estimating the Probability Density Function(PDF) of the performance function is a direct way for structural reliability analysis,and the failure probability can be easily obtained by integration in the failure domai...Estimating the Probability Density Function(PDF) of the performance function is a direct way for structural reliability analysis,and the failure probability can be easily obtained by integration in the failure domain.However,efficiently estimating the PDF is still an urgent problem to be solved.The existing fractional moment based maximum entropy has provided a very advanced method for the PDF estimation,whereas the main shortcoming is that it limits the application of the reliability analysis method only to structures with independent inputs.While in fact,structures with correlated inputs always exist in engineering,thus this paper improves the maximum entropy method,and applies the Unscented Transformation(UT) technique to compute the fractional moments of the performance function for structures with correlations,which is a very efficient moment estimation method for models with any inputs.The proposed method can precisely estimate the probability distributions of performance functions for structures with correlations.Besides,the number of function evaluations of the proposed method in reliability analysis,which is determined by UT,is really small.Several examples are employed to illustrate the accuracy and advantages of the proposed method.展开更多
Traditional Global Sensitivity Analysis(GSA) focuses on ranking inputs according to their contributions to the output uncertainty.However,information about how the specific regions inside an input affect the output ...Traditional Global Sensitivity Analysis(GSA) focuses on ranking inputs according to their contributions to the output uncertainty.However,information about how the specific regions inside an input affect the output is beyond the traditional GSA techniques.To fully address this issue,in this work,two regional moment-independent importance measures,Regional Importance Measure based on Probability Density Function(RIMPDF) and Regional Importance Measure based on Cumulative Distribution Function(RIMCDF),are introduced to find out the contributions of specific regions of an input to the whole output distribution.The two regional importance measures prove to be reasonable supplements of the traditional GSA techniques.The ideas of RIMPDF and RIMCDF are applied in two engineering examples to demonstrate that the regional moment-independent importance analysis can add more information concerning the contributions of model inputs.展开更多
基金supported by the Equipment Development Department ‘‘13th Five-year” Equipment Research Field Foundation of China Central Military Commission(No.6140244010216HT15001)
文摘Estimating the Probability Density Function(PDF) of the performance function is a direct way for structural reliability analysis,and the failure probability can be easily obtained by integration in the failure domain.However,efficiently estimating the PDF is still an urgent problem to be solved.The existing fractional moment based maximum entropy has provided a very advanced method for the PDF estimation,whereas the main shortcoming is that it limits the application of the reliability analysis method only to structures with independent inputs.While in fact,structures with correlated inputs always exist in engineering,thus this paper improves the maximum entropy method,and applies the Unscented Transformation(UT) technique to compute the fractional moments of the performance function for structures with correlations,which is a very efficient moment estimation method for models with any inputs.The proposed method can precisely estimate the probability distributions of performance functions for structures with correlations.Besides,the number of function evaluations of the proposed method in reliability analysis,which is determined by UT,is really small.Several examples are employed to illustrate the accuracy and advantages of the proposed method.
基金supported by the National Natural Science Foundation of China(No.NSFC51608446)the Fundamental Research Fund for Central Universities of China(No.3102016ZY015)
文摘Traditional Global Sensitivity Analysis(GSA) focuses on ranking inputs according to their contributions to the output uncertainty.However,information about how the specific regions inside an input affect the output is beyond the traditional GSA techniques.To fully address this issue,in this work,two regional moment-independent importance measures,Regional Importance Measure based on Probability Density Function(RIMPDF) and Regional Importance Measure based on Cumulative Distribution Function(RIMCDF),are introduced to find out the contributions of specific regions of an input to the whole output distribution.The two regional importance measures prove to be reasonable supplements of the traditional GSA techniques.The ideas of RIMPDF and RIMCDF are applied in two engineering examples to demonstrate that the regional moment-independent importance analysis can add more information concerning the contributions of model inputs.