Consider a nonstandard continuous-time bidimensional risk model with constant force of interest,in which the two classes of claims with subexponential distributions satisfy a general dependence structure and each pair...Consider a nonstandard continuous-time bidimensional risk model with constant force of interest,in which the two classes of claims with subexponential distributions satisfy a general dependence structure and each pair of the claim-inter-arrival times is arbitrarily dependent.Under some mild conditions,we achieve a locally uniform approximation of the finite-time ruin probability for all time horizon within a finite interval.If we further assume that each pair of the claim-inter-arrival times is negative quadrant dependent and the two classes of claims are consistently-varying-tailed,it shows that the above obtained approximation is also globally uniform for all time horizon within an infinite interval.展开更多
This paper considers the one-and two-dimensional risk models with a non-stationary claim-number process.Under the assumption that the claim-number process satisfies the large deviations principle,the uniform asymptoti...This paper considers the one-and two-dimensional risk models with a non-stationary claim-number process.Under the assumption that the claim-number process satisfies the large deviations principle,the uniform asymptotics for the finite-time ruin probability of a one-dimensional risk model are obtained for the strongly subexponential claim sizes.Further,as an application of the result of onedimensional risk model,we derive the uniform asymptotics for a kind of finite-time ruin probability in a two dimensional risk model sharing a common claim-number process which satisfies the large deviations principle.展开更多
The assessment of the completeness of earthquake catalogs is a prerequisite for studying the patterns of seismic activity.In traditional approaches,the minimum magnitude of completeness(MC)is employed to evaluate cata...The assessment of the completeness of earthquake catalogs is a prerequisite for studying the patterns of seismic activity.In traditional approaches,the minimum magnitude of completeness(MC)is employed to evaluate catalog completeness,with events below MC being discarded,leading to the underutilization of the data.Detection probability is a more detailed measure of the catalog's completeness than MC;its use results in better model compatibility with data in seismic activity modeling and allows for more comprehensive utilization of seismic observation data across temporal,spatial,and magnitude dimensions.Using the magnitude-rank method and Maximum Curvature(MAXC)methods,we analyzed temporal variations in earthquake catalog completeness,finding that MC stabilized after 2010,which closely coincides with improvements in monitoring capabilities and the densification of seismic networks.Employing the probability-based magnitude of completeness(PMC)and entire magnitude range(EMR)methods,grounded in distinct foundational assumptions and computational principles,we analyzed the 2010-2023 earthquake catalog for the northern margin of the Ordos Block,aiming to assess the detection probability of earthquakes and the completeness of the earthquake catalog.The PMC method yielded the detection probability distribution for 76 stations in the distance-magnitude space.A scoring metric was designed based on station detection capabilities for small earthquakes in the near field.From the detection probabilities of stations,we inferred detection probabilities of the network for diff erent magnitude ranges and mapped the spatial distribution of the probability-based completeness magnitude.In the EMR method,we employed a segmented model fitted to the observed data to determine the detection probability and completeness magnitude for every grid point in the study region.We discussed the sample dependency and low-magnitude failure phenomena of the PMC method,noting the potential overestimation of detection probabilities for lower magnitudes and the underestimation of MC in areas with weaker monitoring capabilities.The results obtained via the two methods support these hypotheses.The assessment results indicate better monitoring capabilities on the eastern side of the study area but worse on the northwest side.The spatial distribution of network monitoring capabilities is uneven,correlating with the distribution of stations and showing significant diff erences in detection capabilities among diff erent stations.The truncation eff ects of data and station selection aff ected the evaluation results at the edges of the study area.Overall,both methods yielded detailed descriptions of the earthquake catalog,but careful selection of calculation parameters or adjustments based on the strengths of diff erent methods is necessary to correct potential biases.展开更多
为更好地描述光伏出力不确定性,该文提出了一种基于时序卷积网络(temporal convolutional network,简称TCN)和双向长短期记忆(bidirectional long short term memory,简称BiLSTM)的光伏功率概率预测模型.首先,基于数值天气预报中的云量...为更好地描述光伏出力不确定性,该文提出了一种基于时序卷积网络(temporal convolutional network,简称TCN)和双向长短期记忆(bidirectional long short term memory,简称BiLSTM)的光伏功率概率预测模型.首先,基于数值天气预报中的云量和降雨量将历史数据集划分为晴天、多云天和阴雨天3种场景,生成具有相似天气类型的测试集和训练样本集:然后,应用TCN进行集成特征维度提取,利用BiLSTM神经网络建模进行输出功率和天气数据时间序列的双向拟合.针对传统区间预测分位数损失函数不可微的缺陷,引入Huber范数近似替代原损失函数,并应用梯度下降进行优化,构建改进的可微分位数回归(quantile regression,简称QR)模型,生成置信区间.最后,采用核密度估计(kerneldensity estimation,简称KDE)给出概率密度预测结果。以我国华东某地区分布式光伏电站作为研究对象,与现有概率预测方法相比,该文所提出的短期预测算法的功率区间各评价指标都有所改进,验证了所提方法的可靠性。展开更多
为解决风电机组故障诊断中故障样本不足而导致模型准确率不高的问题,将当下备受关注的数据增强方法-去噪扩散概率模型(denoising diffusion probability model,DDPM)引入到故障诊断领域以生成大量高质量的故障样本数据集。因此,结合Tran...为解决风电机组故障诊断中故障样本不足而导致模型准确率不高的问题,将当下备受关注的数据增强方法-去噪扩散概率模型(denoising diffusion probability model,DDPM)引入到故障诊断领域以生成大量高质量的故障样本数据集。因此,结合Transformer网络,提出了一种DDPM-Transformer风电机组故障样本生成方法。首先,将用于计算机视觉图像生成领域的DDPM模型应用于风电机组故障诊断领域中,通过前向加噪过程将数据逐渐转化为噪声,再通过逆向去噪过程将噪声逐步恢复为原始数据,实现从噪声中生成故障数据,解决数据不平衡问题;其次,通过对原始DDPM中使用的U-net模块进行改进,使用Transformer模型替换U-net网络,利用扩散后的数据和添加的噪声训练Transformer模型,实现噪声预测,以提高故障数据的生成质量;最后,使用多种生成模型评价指标对生成的故障数据进行评价,在监督控制和数据采集系统(supervisory control and data acquisition,SCADA)故障数据生成中论证改进DDPM-Transformer模型的性能。通过试验证明,所提DDPM-Transformer模型与现有的生成模型相比,最大均值异(maximum mean discrepancy,MMD)最大提升0.13,峰值信噪比(peak signal to noise ratio,PSNR)最大提升7.8。所提模型可以有效地生成质量更高的风电机组故障样本,从而基于该样本集辅助训练基于深度学习的故障诊断模型,可以使诊断模型具有更高精度和良好的稳定性。展开更多
多智能体信息融合(multi-agent information fusion,MAIF)系统主要面向多个智能体之间的信息融合、调节、交流和矛盾处理。研究针对数据高度冲突条件下的D-S证据理论失效问题,提出一种将重构的基本概率分配和信念熵相结合的多智能体系...多智能体信息融合(multi-agent information fusion,MAIF)系统主要面向多个智能体之间的信息融合、调节、交流和矛盾处理。研究针对数据高度冲突条件下的D-S证据理论失效问题,提出一种将重构的基本概率分配和信念熵相结合的多智能体系统冲突数据融合方法。该方法使用重构的基本概率分配和信念熵修正证据的可靠性,获得更合理的证据,使用Dempster组合规则将证据进行融合得到结果,在2个实验中均得到了超过90%的置信度。实验表明了该方法的有效性,提高了MAIF系统辨识过程的精度。展开更多
基金Supported by the Natural Science Foundation of China(12071487,11671404)the Natural Science Foundation of Anhui Province(2208085MA06)+1 种基金the Provincial Natural Science Research Project of Anhui Colleges(KJ2021A0049,KJ2021A0060)Hunan Provincial Innovation Foundation for Postgraduate(CX20200146)。
文摘Consider a nonstandard continuous-time bidimensional risk model with constant force of interest,in which the two classes of claims with subexponential distributions satisfy a general dependence structure and each pair of the claim-inter-arrival times is arbitrarily dependent.Under some mild conditions,we achieve a locally uniform approximation of the finite-time ruin probability for all time horizon within a finite interval.If we further assume that each pair of the claim-inter-arrival times is negative quadrant dependent and the two classes of claims are consistently-varying-tailed,it shows that the above obtained approximation is also globally uniform for all time horizon within an infinite interval.
基金Supported by the 333 High Level Talent Training Project of Jiangsu Provincethe National Natural Science Foundation of China(71871046)Science and Technology Projects of Sichuan Province(2021YFQ0007)。
文摘This paper considers the one-and two-dimensional risk models with a non-stationary claim-number process.Under the assumption that the claim-number process satisfies the large deviations principle,the uniform asymptotics for the finite-time ruin probability of a one-dimensional risk model are obtained for the strongly subexponential claim sizes.Further,as an application of the result of onedimensional risk model,we derive the uniform asymptotics for a kind of finite-time ruin probability in a two dimensional risk model sharing a common claim-number process which satisfies the large deviations principle.
基金funded by Director Fund of the Inner Mongolia Autonomous Region Seismological Bureau(No.2023GG02,2023MS05)the Inner Mongolia Natural Science Foundation(No.2024MS04021)。
文摘The assessment of the completeness of earthquake catalogs is a prerequisite for studying the patterns of seismic activity.In traditional approaches,the minimum magnitude of completeness(MC)is employed to evaluate catalog completeness,with events below MC being discarded,leading to the underutilization of the data.Detection probability is a more detailed measure of the catalog's completeness than MC;its use results in better model compatibility with data in seismic activity modeling and allows for more comprehensive utilization of seismic observation data across temporal,spatial,and magnitude dimensions.Using the magnitude-rank method and Maximum Curvature(MAXC)methods,we analyzed temporal variations in earthquake catalog completeness,finding that MC stabilized after 2010,which closely coincides with improvements in monitoring capabilities and the densification of seismic networks.Employing the probability-based magnitude of completeness(PMC)and entire magnitude range(EMR)methods,grounded in distinct foundational assumptions and computational principles,we analyzed the 2010-2023 earthquake catalog for the northern margin of the Ordos Block,aiming to assess the detection probability of earthquakes and the completeness of the earthquake catalog.The PMC method yielded the detection probability distribution for 76 stations in the distance-magnitude space.A scoring metric was designed based on station detection capabilities for small earthquakes in the near field.From the detection probabilities of stations,we inferred detection probabilities of the network for diff erent magnitude ranges and mapped the spatial distribution of the probability-based completeness magnitude.In the EMR method,we employed a segmented model fitted to the observed data to determine the detection probability and completeness magnitude for every grid point in the study region.We discussed the sample dependency and low-magnitude failure phenomena of the PMC method,noting the potential overestimation of detection probabilities for lower magnitudes and the underestimation of MC in areas with weaker monitoring capabilities.The results obtained via the two methods support these hypotheses.The assessment results indicate better monitoring capabilities on the eastern side of the study area but worse on the northwest side.The spatial distribution of network monitoring capabilities is uneven,correlating with the distribution of stations and showing significant diff erences in detection capabilities among diff erent stations.The truncation eff ects of data and station selection aff ected the evaluation results at the edges of the study area.Overall,both methods yielded detailed descriptions of the earthquake catalog,but careful selection of calculation parameters or adjustments based on the strengths of diff erent methods is necessary to correct potential biases.
文摘为更好地描述光伏出力不确定性,该文提出了一种基于时序卷积网络(temporal convolutional network,简称TCN)和双向长短期记忆(bidirectional long short term memory,简称BiLSTM)的光伏功率概率预测模型.首先,基于数值天气预报中的云量和降雨量将历史数据集划分为晴天、多云天和阴雨天3种场景,生成具有相似天气类型的测试集和训练样本集:然后,应用TCN进行集成特征维度提取,利用BiLSTM神经网络建模进行输出功率和天气数据时间序列的双向拟合.针对传统区间预测分位数损失函数不可微的缺陷,引入Huber范数近似替代原损失函数,并应用梯度下降进行优化,构建改进的可微分位数回归(quantile regression,简称QR)模型,生成置信区间.最后,采用核密度估计(kerneldensity estimation,简称KDE)给出概率密度预测结果。以我国华东某地区分布式光伏电站作为研究对象,与现有概率预测方法相比,该文所提出的短期预测算法的功率区间各评价指标都有所改进,验证了所提方法的可靠性。
文摘为解决风电机组故障诊断中故障样本不足而导致模型准确率不高的问题,将当下备受关注的数据增强方法-去噪扩散概率模型(denoising diffusion probability model,DDPM)引入到故障诊断领域以生成大量高质量的故障样本数据集。因此,结合Transformer网络,提出了一种DDPM-Transformer风电机组故障样本生成方法。首先,将用于计算机视觉图像生成领域的DDPM模型应用于风电机组故障诊断领域中,通过前向加噪过程将数据逐渐转化为噪声,再通过逆向去噪过程将噪声逐步恢复为原始数据,实现从噪声中生成故障数据,解决数据不平衡问题;其次,通过对原始DDPM中使用的U-net模块进行改进,使用Transformer模型替换U-net网络,利用扩散后的数据和添加的噪声训练Transformer模型,实现噪声预测,以提高故障数据的生成质量;最后,使用多种生成模型评价指标对生成的故障数据进行评价,在监督控制和数据采集系统(supervisory control and data acquisition,SCADA)故障数据生成中论证改进DDPM-Transformer模型的性能。通过试验证明,所提DDPM-Transformer模型与现有的生成模型相比,最大均值异(maximum mean discrepancy,MMD)最大提升0.13,峰值信噪比(peak signal to noise ratio,PSNR)最大提升7.8。所提模型可以有效地生成质量更高的风电机组故障样本,从而基于该样本集辅助训练基于深度学习的故障诊断模型,可以使诊断模型具有更高精度和良好的稳定性。
文摘多智能体信息融合(multi-agent information fusion,MAIF)系统主要面向多个智能体之间的信息融合、调节、交流和矛盾处理。研究针对数据高度冲突条件下的D-S证据理论失效问题,提出一种将重构的基本概率分配和信念熵相结合的多智能体系统冲突数据融合方法。该方法使用重构的基本概率分配和信念熵修正证据的可靠性,获得更合理的证据,使用Dempster组合规则将证据进行融合得到结果,在2个实验中均得到了超过90%的置信度。实验表明了该方法的有效性,提高了MAIF系统辨识过程的精度。