Probabilistic linear (N, δ)-widths and p-average linear N-widths of Sobolev space W2^r(T), equipped with a Gaussian probability measure #, are studied in the metric of Sq (T) (1 ≤ Q ≤∞), and determined the...Probabilistic linear (N, δ)-widths and p-average linear N-widths of Sobolev space W2^r(T), equipped with a Gaussian probability measure #, are studied in the metric of Sq (T) (1 ≤ Q ≤∞), and determined the asymptotic equalities:λN,δ(W2^r(T),μ,Sq(T))={(N^-1)^r+p/2-1/q√1+1/N·ln1/δ, 1≤q≤2, (N^-1)^r+p/2-1/q(1+N^-1/q√ln1/δ),2〈q〈∞, (N^-1)^r+p/2√lnN/δ, q=∞,and λN^(a)(W2^r(T),μ,Sq(T))p={(N^-1)^r+p/2-1/q, 1≤q〈∞, (N^-1)^r+p/2-1/q√lnN, q=∞,where 0 〈 p 〈 ∞, δ∈ (0, 1/2], ρ 〉 1, and Sq(T) is a subspace of L1(T), in which the Fourier series is absolutely convergent in lq sense.展开更多
In this paper, we introduce a problem of the optimization of approximate solutions of operator equations in the probabilistic case setting, and prove a general result which connects the relation between the optimal ap...In this paper, we introduce a problem of the optimization of approximate solutions of operator equations in the probabilistic case setting, and prove a general result which connects the relation between the optimal approximation order of operator equations with the asymptotic order of the probabilistic width. Moreover, using this result, we determine the exact orders on the optimal approximate solutions of multivariate Freldholm integral equations of the second kind with the kernels belonging to the multivariate Sobolev class with the mixed derivative in the probabilistic case setting.展开更多
基金partially supported by National Nature Science Foundation of China(61372187)Sichuan Key Technology Research and Development Program(2012GZ0019,2013GXZ0155)the Fund of Lab of Security Insurance of Cyberspace,Sichuan Province(szjj2014-079)
文摘Probabilistic linear (N, δ)-widths and p-average linear N-widths of Sobolev space W2^r(T), equipped with a Gaussian probability measure #, are studied in the metric of Sq (T) (1 ≤ Q ≤∞), and determined the asymptotic equalities:λN,δ(W2^r(T),μ,Sq(T))={(N^-1)^r+p/2-1/q√1+1/N·ln1/δ, 1≤q≤2, (N^-1)^r+p/2-1/q(1+N^-1/q√ln1/δ),2〈q〈∞, (N^-1)^r+p/2√lnN/δ, q=∞,and λN^(a)(W2^r(T),μ,Sq(T))p={(N^-1)^r+p/2-1/q, 1≤q〈∞, (N^-1)^r+p/2-1/q√lnN, q=∞,where 0 〈 p 〈 ∞, δ∈ (0, 1/2], ρ 〉 1, and Sq(T) is a subspace of L1(T), in which the Fourier series is absolutely convergent in lq sense.
基金This work was partially supported by the National Natural Science Foundation of China (Grant No. 10371009)Research Fund for the Doctoral Program Higher Education (Grant No. 20050027007).
文摘In this paper, we introduce a problem of the optimization of approximate solutions of operator equations in the probabilistic case setting, and prove a general result which connects the relation between the optimal approximation order of operator equations with the asymptotic order of the probabilistic width. Moreover, using this result, we determine the exact orders on the optimal approximate solutions of multivariate Freldholm integral equations of the second kind with the kernels belonging to the multivariate Sobolev class with the mixed derivative in the probabilistic case setting.