It is desired to obtain the joint probability distribution(JPD) over a set of random variables with local data, so as to avoid the hard work to collect statistical data in the scale of all variables. A lot of work has...It is desired to obtain the joint probability distribution(JPD) over a set of random variables with local data, so as to avoid the hard work to collect statistical data in the scale of all variables. A lot of work has been done when all variables are in a known directed acyclic graph(DAG). However, steady directed cyclic graphs(DCGs) may be involved when we simply combine modules containing local data together, where a module is composed of a child variable and its parent variables. So far, the physical and statistical meaning of steady DCGs remain unclear and unsolved. This paper illustrates the physical and statistical meaning of steady DCGs, and presents a method to calculate the JPD with local data, given that all variables are in a known single-valued Dynamic Uncertain Causality Graph(S-DUCG), and thus defines a new Bayesian Network with steady DCGs. The so-called single-valued means that only the causes of the true state of a variable are specified, while the false state is the complement of the true state.展开更多
Program synthesis is an exciting topic that desires to generate programs satisfying user intent automatically. But in most cases, only small programs for simple or domain-specific tasks can be synthesized. The major o...Program synthesis is an exciting topic that desires to generate programs satisfying user intent automatically. But in most cases, only small programs for simple or domain-specific tasks can be synthesized. The major obstacle of synthesis lies in the huge search space. A common practice in addressing this problem is using a domain-specific language, while many approaches still wish to synthesize programs in general programming languages. With the rapid growth of reusable libraries, component-based synthesis provides a promising way, such as synthesizing Java programs which are only composed of APIs (application programming interfaces). However, the efficiency of searching for proper solutions for complex tasks is still a challenge. Given an unfamiliar programming task, programmers would search for API usage knowledge from various coding resources to reduce the search space. Considering this, we propose a novel approach named ProSy to synthesize API-based programs in Java. The key novelty is to retrieve related knowledge from Javadoc and Stack Overflow and then construct a probabilistic reachability graph. It assigns higher probabilities to APIs that are more likely to be used in implementing the given task. In the synthesis process, the program sketch with a higher probability will be considered first;thus, the number of explored reachable paths would be decreased. Some extension and optimization strategies are further studied in the paper. We implement our approach and conduct several experiments on it. We compare ProSy with SyPet and other state-of-the-art API-based synthesis approaches. The experimental results show that ProSy reduces the synthesis time of SyPet by up to 80%.展开更多
基金supported by the National Natural Science Foundation of China under Grant 71671103
文摘It is desired to obtain the joint probability distribution(JPD) over a set of random variables with local data, so as to avoid the hard work to collect statistical data in the scale of all variables. A lot of work has been done when all variables are in a known directed acyclic graph(DAG). However, steady directed cyclic graphs(DCGs) may be involved when we simply combine modules containing local data together, where a module is composed of a child variable and its parent variables. So far, the physical and statistical meaning of steady DCGs remain unclear and unsolved. This paper illustrates the physical and statistical meaning of steady DCGs, and presents a method to calculate the JPD with local data, given that all variables are in a known single-valued Dynamic Uncertain Causality Graph(S-DUCG), and thus defines a new Bayesian Network with steady DCGs. The so-called single-valued means that only the causes of the true state of a variable are specified, while the false state is the complement of the true state.
基金This paper was supported by the National Natural Science Foundation of China under Grant No.61690203the National Key Research and Development Program of China under Grant No.2018YFB0204301.
文摘Program synthesis is an exciting topic that desires to generate programs satisfying user intent automatically. But in most cases, only small programs for simple or domain-specific tasks can be synthesized. The major obstacle of synthesis lies in the huge search space. A common practice in addressing this problem is using a domain-specific language, while many approaches still wish to synthesize programs in general programming languages. With the rapid growth of reusable libraries, component-based synthesis provides a promising way, such as synthesizing Java programs which are only composed of APIs (application programming interfaces). However, the efficiency of searching for proper solutions for complex tasks is still a challenge. Given an unfamiliar programming task, programmers would search for API usage knowledge from various coding resources to reduce the search space. Considering this, we propose a novel approach named ProSy to synthesize API-based programs in Java. The key novelty is to retrieve related knowledge from Javadoc and Stack Overflow and then construct a probabilistic reachability graph. It assigns higher probabilities to APIs that are more likely to be used in implementing the given task. In the synthesis process, the program sketch with a higher probability will be considered first;thus, the number of explored reachable paths would be decreased. Some extension and optimization strategies are further studied in the paper. We implement our approach and conduct several experiments on it. We compare ProSy with SyPet and other state-of-the-art API-based synthesis approaches. The experimental results show that ProSy reduces the synthesis time of SyPet by up to 80%.