期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Probabilistic Calculation of Tidal Currents forWind Powered Systems Using PSO Improved LHS 被引量:2
1
作者 Hongsheng Su Shilin Song Xingsheng Wang 《Energy Engineering》 EI 2024年第11期3289-3303,共15页
This paper introduces the Particle SwarmOptimization(PSO)algorithmto enhance the LatinHypercube Sampling(LHS)process.The key objective is to mitigate the issues of lengthy computation times and low computational accur... This paper introduces the Particle SwarmOptimization(PSO)algorithmto enhance the LatinHypercube Sampling(LHS)process.The key objective is to mitigate the issues of lengthy computation times and low computational accuracy typically encountered when applying Monte Carlo Simulation(MCS)to LHS for probabilistic trend calculations.The PSOmethod optimizes sample distribution,enhances global search capabilities,and significantly boosts computational efficiency.To validate its effectiveness,the proposed method was applied to IEEE34 and IEEE-118 node systems containing wind power.The performance was then compared with Latin Hypercubic Important Sampling(LHIS),which integrates significant sampling with theMonte Carlomethod.The comparison results indicate that the PSO-enhanced method significantly improves the uniformity and representativeness of the sampling.This enhancement leads to a reduction in data errors and an improvement in both computational accuracy and convergence speed. 展开更多
关键词 Latin hypercube sampling Monte Carlo simulation probabilistic currents particle swarm algorithm significant sampling
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部