The effect of heavy metals on the properties and hydration of blast furnace slag-cement composites(BFS-CC)remain unclear.In this study,two BFS-CC(denoted as DBFS-CC and WBFS-CC)were prepared by dry and wet grinding of...The effect of heavy metals on the properties and hydration of blast furnace slag-cement composites(BFS-CC)remain unclear.In this study,two BFS-CC(denoted as DBFS-CC and WBFS-CC)were prepared by dry and wet grinding of BFS,respectively.The effect of Cu(II)on BFS-CC’s properties and hydration was investigated by adding representative copper contaminants(CuO,CuCl_(2),and CuS)to the composites.Adding 1.0wt%CuO and 0.5wt%CuS increased the 3-d compressive strength of DBFS-CC by 14.9%and 5.7%,respectively,but suppressed the 3-d strength of WBFS-CC.This trend reversed at 28-d curing,where adding 1.5wt%CuO,2.0wt%CuCl_(2),and 1.5wt%CuS enhanced the compressive strength of WBFS-CC by 23.4%,6.2%,and 13.6%,respectively,but adversely affected the strength of DBFS-CC.For 28-d hydration,adding CuCl_(2)decreased the hydration degree of DBFS-CC but enhanced that of WBFS-CC.Adding CuO promoted the hydration degree of both composites,while adding CuS exhibited inhibitory effects.DBFS-CC immobilized CuCl_(2)better due to a higher hydration degree,while WBFS-CC immobilized CuO and CuS better due to having finer unhydrated BFS particles and a denser matrix.This study not only focuses on the Cu(II)immobilization effect but also reveals the differ-ential effects of Cu(II)species on the hydration process,providing novel insights into heavy metal interactions in BFS-CC systems and their safe disposal.展开更多
基金financially sponsored by the Key R&D Program of Xinjiang Uygur Autonomous Region,China(No.2023B03007-2)the Tianshan Innovation Team,China(No.2023D14013)+9 种基金the Tianchi Hundred-Talent Program,China(No.RSSQ00066865)the Fundamental Research Funds for the Central Universities,China(No.FRF-BD-25-037)the Ganpo Talent Plan,the Taishan Industrial Experts Program,the National Natural Science Foundation of China(Nos.52204414,52204413,and 52204412)the Beijing Natural Science Foundation,China(No.2242046)the National Key R&D Program of China(No.2024YFC3907701)the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(No.GZC20230243)the China Postdoctoral Science Foundation(No.2024M750178)the Guangdong Basic and Applied Basic Research Foundation,China(No.2023A1515011609 and 2023A1515110094)the Key Technology Innovation and Advanced Development Program of Chongqing,China(No.CSTB2022TIADKPX0112)the Open Project of State Key Laboratory of Green Building Materials.
文摘The effect of heavy metals on the properties and hydration of blast furnace slag-cement composites(BFS-CC)remain unclear.In this study,two BFS-CC(denoted as DBFS-CC and WBFS-CC)were prepared by dry and wet grinding of BFS,respectively.The effect of Cu(II)on BFS-CC’s properties and hydration was investigated by adding representative copper contaminants(CuO,CuCl_(2),and CuS)to the composites.Adding 1.0wt%CuO and 0.5wt%CuS increased the 3-d compressive strength of DBFS-CC by 14.9%and 5.7%,respectively,but suppressed the 3-d strength of WBFS-CC.This trend reversed at 28-d curing,where adding 1.5wt%CuO,2.0wt%CuCl_(2),and 1.5wt%CuS enhanced the compressive strength of WBFS-CC by 23.4%,6.2%,and 13.6%,respectively,but adversely affected the strength of DBFS-CC.For 28-d hydration,adding CuCl_(2)decreased the hydration degree of DBFS-CC but enhanced that of WBFS-CC.Adding CuO promoted the hydration degree of both composites,while adding CuS exhibited inhibitory effects.DBFS-CC immobilized CuCl_(2)better due to a higher hydration degree,while WBFS-CC immobilized CuO and CuS better due to having finer unhydrated BFS particles and a denser matrix.This study not only focuses on the Cu(II)immobilization effect but also reveals the differ-ential effects of Cu(II)species on the hydration process,providing novel insights into heavy metal interactions in BFS-CC systems and their safe disposal.