期刊文献+
共找到10,677篇文章
< 1 2 250 >
每页显示 20 50 100
A Privacy-Preserving Convolutional Neural Network Inference Framework for AIoT Applications
1
作者 Haoran Wang Shuhong Yang +2 位作者 Kuan Shao Tao Xiao Zhenyong Zhang 《Computers, Materials & Continua》 2026年第1期1354-1371,共18页
With the rapid development of the Artificial Intelligence of Things(AIoT),convolutional neural networks(CNNs)have demonstrated potential and remarkable performance in AIoT applications due to their excellent performan... With the rapid development of the Artificial Intelligence of Things(AIoT),convolutional neural networks(CNNs)have demonstrated potential and remarkable performance in AIoT applications due to their excellent performance in various inference tasks.However,the users have concerns about privacy leakage for the use of AI and the performance and efficiency of computing on resource-constrained IoT edge devices.Therefore,this paper proposes an efficient privacy-preserving CNN framework(i.e.,EPPA)based on the Fully Homomorphic Encryption(FHE)scheme for AIoT application scenarios.In the plaintext domain,we verify schemes with different activation structures to determine the actual activation functions applicable to the corresponding ciphertext domain.Within the encryption domain,we integrate batch normalization(BN)into the convolutional layers to simplify the computation process.For nonlinear activation functions,we use composite polynomials for approximate calculation.Regarding the noise accumulation caused by homomorphic multiplication operations,we realize the refreshment of ciphertext noise through minimal“decryption-encryption”interactions,instead of adopting bootstrapping operations.Additionally,in practical implementation,we convert three-dimensional convolution into two-dimensional convolution to reduce the amount of computation in the encryption domain.Finally,we conduct extensive experiments on four IoT datasets,different CNN architectures,and two platforms with different resource configurations to evaluate the performance of EPPA in detail. 展开更多
关键词 Artificial Intelligence of Things(AIoT) convolutional neural network privacy-preserving fully homomorphic encryption
在线阅读 下载PDF
Privacy-Preserving Gender-Based Customer Behavior Analytics in Retail Spaces Using Computer Vision
2
作者 Ginanjar Suwasono Adi Samsul Huda +4 位作者 Griffani Megiyanto Rahmatullah Dodit Suprianto Dinda Qurrota Aini Al-Sefy Ivon Sandya Sari Putri Lalu Tri Wijaya Nata Kusuma 《Computers, Materials & Continua》 2026年第1期1839-1861,共23页
In the competitive retail industry of the digital era,data-driven insights into gender-specific customer behavior are essential.They support the optimization of store performance,layout design,product placement,and ta... In the competitive retail industry of the digital era,data-driven insights into gender-specific customer behavior are essential.They support the optimization of store performance,layout design,product placement,and targeted marketing.However,existing computer vision solutions often rely on facial recognition to gather such insights,raising significant privacy and ethical concerns.To address these issues,this paper presents a privacypreserving customer analytics system through two key strategies.First,we deploy a deep learning framework using YOLOv9s,trained on the RCA-TVGender dataset.Cameras are positioned perpendicular to observation areas to reduce facial visibility while maintaining accurate gender classification.Second,we apply AES-128 encryption to customer position data,ensuring secure access and regulatory compliance.Our system achieved overall performance,with 81.5%mAP@50,77.7%precision,and 75.7%recall.Moreover,a 90-min observational study confirmed the system’s ability to generate privacy-protected heatmaps revealing distinct behavioral patterns between male and female customers.For instance,women spent more time in certain areas and showed interest in different products.These results confirm the system’s effectiveness in enabling personalized layout and marketing strategies without compromising privacy. 展开更多
关键词 Business intelligence customer behavior privacy-preserving analytics computer vision deep learning smart retail gender recognition heatmap privacy RCA-TVGender dataset
在线阅读 下载PDF
Secure and Privacy-Preserving Cross-Departmental Computation Framework Based on BFV and Blockchain
3
作者 Peng Zhao Yu Du 《Journal of Electronic Research and Application》 2025年第6期207-217,共11页
As the demand for cross-departmental data collaboration continues to grow,traditional encryption methods struggle to balance data privacy with computational efficiency.This paper proposes a cross-departmental privacy-... As the demand for cross-departmental data collaboration continues to grow,traditional encryption methods struggle to balance data privacy with computational efficiency.This paper proposes a cross-departmental privacy-preserving computation framework based on BFV homomorphic encryption,threshold decryption,and blockchain technology.The proposed scheme leverages homomorphic encryption to enable secure computations between sales,finance,and taxation departments,ensuring that sensitive data remains encrypted throughout the entire process.A threshold decryption mechanism is employed to prevent single-point data leakage,while blockchain and IPFS are integrated to ensure verifiability and tamper-proof storage of computation results.Experimental results demonstrate that with 5,000 sample data entries,the framework performs efficiently and is highly scalable in key stages such as sales encryption,cost calculation,and tax assessment,thereby validating its practical feasibility and security. 展开更多
关键词 Homomorphic encryption Zero-knowledge proof Blockchain Cross-departmental privacy-preserving computation
在线阅读 下载PDF
EPRFL:An Efficient Privacy-Preserving and Robust Federated Learning Scheme for Fog Computing
4
作者 Ke Zhijie Xie Yong +1 位作者 Syed Hamad Shirazi Li Haifeng 《China Communications》 2025年第4期202-222,共21页
Federated learning(FL)is a distributed machine learning paradigm that excels at preserving data privacy when using data from multiple parties.When combined with Fog Computing,FL offers enhanced capabilities for machin... Federated learning(FL)is a distributed machine learning paradigm that excels at preserving data privacy when using data from multiple parties.When combined with Fog Computing,FL offers enhanced capabilities for machine learning applications in the Internet of Things(IoT).However,implementing FL across large-scale distributed fog networks presents significant challenges in maintaining privacy,preventing collusion attacks,and ensuring robust data aggregation.To address these challenges,we propose an Efficient Privacy-preserving and Robust Federated Learning(EPRFL)scheme for fog computing scenarios.Specifically,we first propose an efficient secure aggregation strategy based on the improved threshold homomorphic encryption algorithm,which is not only resistant to model inference and collusion attacks,but also robust to fog node dropping.Then,we design a dynamic gradient filtering method based on cosine similarity to further reduce the communication overhead.To minimize training delays,we develop a dynamic task scheduling strategy based on comprehensive score.Theoretical analysis demonstrates that EPRFL offers robust security and low latency.Extensive experimental results indicate that EPRFL outperforms similar strategies in terms of privacy preserving,model performance,and resource efficiency. 展开更多
关键词 federated learning fog computing internet of things privacy-preserving ROBUSTNESS
在线阅读 下载PDF
Securing Internet of Things Devices with Federated Learning:A Privacy-Preserving Approach for Distributed Intrusion Detection
5
作者 Sulaiman Al Amro 《Computers, Materials & Continua》 2025年第6期4623-4658,共36页
The rapid proliferation of Internet of Things(IoT)devices has heightened security concerns,making intrusion detection a pivotal challenge in safeguarding these networks.Traditional centralized Intrusion Detection Syst... The rapid proliferation of Internet of Things(IoT)devices has heightened security concerns,making intrusion detection a pivotal challenge in safeguarding these networks.Traditional centralized Intrusion Detection Systems(IDS)often fail to meet the privacy requirements and scalability demands of large-scale IoT ecosystems.To address these challenges,we propose an innovative privacy-preserving approach leveraging Federated Learning(FL)for distributed intrusion detection.Our model eliminates the need for aggregating sensitive data on a central server by training locally on IoT devices and sharing only encrypted model updates,ensuring enhanced privacy and scalability without compromising detection accuracy.Key innovations of this research include the integration of advanced deep learning techniques for real-time threat detection with minimal latency and a novel model to fortify the system’s resilience against diverse cyber-attacks such as Distributed Denial of Service(DDoS)and malware injections.Our evaluation on three benchmark IoT datasets demonstrates significant improvements:achieving 92.78%accuracy on NSL-KDD,91.47%on BoT-IoT,and 92.05%on UNSW-NB15.The precision,recall,and F1-scores for all datasets consistently exceed 91%.Furthermore,the communication overhead was reduced to 85 MB for NSL-KDD,105 MB for BoT-IoT,and 95 MB for UNSW-NB15—substantially lower than traditional centralized IDS approaches.This study contributes to the domain by presenting a scalable,secure,and privacy-preserving solution tailored to the unique characteristics of IoT environments.The proposed framework is adaptable to dynamic and heterogeneous settings,with potential applications extending to other privacy-sensitive domains.Future work will focus on enhancing the system’s efficiency and addressing emerging challenges such as model poisoning attacks in federated environments. 展开更多
关键词 Federated learning internet of things intrusion detection privacy-preserving distributed security
在线阅读 下载PDF
Privacy-preserving computation meets quantum computing:A scoping review
6
作者 Aitor Gómez-Goiri Iñaki Seco-Aguirre +1 位作者 Oscar Lage Alejandra Ruiz 《Digital Communications and Networks》 2025年第6期1707-1721,共15页
Privacy-Preserving Computation(PPC)comprises the techniques,schemes and protocols which ensure privacy and confidentiality in the context of secure computation and data analysis.Most of the current PPC techniques rely... Privacy-Preserving Computation(PPC)comprises the techniques,schemes and protocols which ensure privacy and confidentiality in the context of secure computation and data analysis.Most of the current PPC techniques rely on the complexity of cryptographic operations,which are expected to be efficiently solved by quantum computers soon.This review explores how PPC can be built on top of quantum computing itself to alleviate these future threats.We analyze quantum proposals for Secure Multi-party Computation,Oblivious Transfer and Homomorphic Encryption from the last decade focusing on their maturity and the challenges they currently face.Our findings show a strong focus on purely theoretical works,but a rise on the experimental consideration of these techniques in the last 5 years.The applicability of these techniques to actual use cases is an underexplored aspect which could lead to the practical assessment of these techniques. 展开更多
关键词 Quantum computing privacy-preserving computation Oblivious transfer Secure multi-party computation Homomorphic encryption Scoping review
在线阅读 下载PDF
VPAFL: Verifiable Privacy-Preserving Aggregation for Federated Learning Based on Single Server
7
作者 Peizheng Lai Minqing Zhang +2 位作者 Yixin Tang Ya Yue Fuqiang Di 《Computers, Materials & Continua》 2025年第8期2935-2957,共23页
Federated Learning(FL)has emerged as a promising distributed machine learning paradigm that enables multi-party collaborative training while eliminating the need for raw data sharing.However,its reliance on a server i... Federated Learning(FL)has emerged as a promising distributed machine learning paradigm that enables multi-party collaborative training while eliminating the need for raw data sharing.However,its reliance on a server introduces critical security vulnerabilities:malicious servers can infer private information from received local model updates or deliberately manipulate aggregation results.Consequently,achieving verifiable aggregation without compromising client privacy remains a critical challenge.To address these problem,we propose a reversible data hiding in encrypted domains(RDHED)scheme,which designs joint secret message embedding and extraction mechanism.This approach enables clients to embed secret messages into ciphertext redundancy spaces generated during model encryption.During the server aggregation process,the embedded messages from all clients fuse within the ciphertext space to form a joint embedding message.Subsequently,clients can decrypt the aggregated results and extract this joint embedding message for verification purposes.Building upon this foundation,we integrate the proposed RDHED scheme with linear homomorphic hash and digital signatures to design a verifiable privacy-preserving aggregation protocol for single-server architectures(VPAFL).Theoretical proofs and experimental analyses show that VPAFL can effectively protect user privacy,achieve lightweight computational and communication overhead of users for verification,and present significant advantages with increasing model dimension. 展开更多
关键词 Verifiable federated learning privacy-preserving homomorphic encryption reversible data hiding in encrypted domain secret sharing
在线阅读 下载PDF
Joint Flow Splitting,Sorting and Selecting for CQF Scheduling in TSN
8
作者 Ma Tao Zhou Feifei +2 位作者 Guan Ti Jiang Qinru Yu Yang 《China Communications》 2025年第4期268-280,共13页
The progress of modern industry has given rise to great requirements for network transmission latency and reliability in domains such as smart grid and intelligent driving.To address these challenges,the concept of Ti... The progress of modern industry has given rise to great requirements for network transmission latency and reliability in domains such as smart grid and intelligent driving.To address these challenges,the concept of Time-sensitive networking(TSN)is proposed by IEEE 802.1TSN working group.In order to achieve low latency,Cyclic queuing and forwarding(CQF)mechanism is introduced to schedule Timetriggered(TT)flows.In this paper,we construct a TSN model based on CQF and formulate the flow scheduling problem as an optimization problem aimed at maximizing the success rate of flow scheduling.The problem is tackled by a novel algorithm that makes full use of the characteristics and the relationship between the flows.Firstly,by K-means algorithm,the flows are initially partitioned into subsets based on their correlations.Subsequently,the flows within each subset are sorted by a new special criteria extracted from multiple features of flow.Finally,a flow offset selecting method based on load balance is used for resource mapping,so as to complete the process of flow scheduling.Experimental results demonstrate that the proposed algorithm exhibits significant advantages in terms of scheduling success rate and time efficiency. 展开更多
关键词 cyclic queuing and forwarding model joint flow splitting sorting and selecting timesensitive networking
在线阅读 下载PDF
The Paraventricular Hypothalamus: A Sorting Center for Visceral and Somatic Pain
9
作者 Li Sun Shumin Duan 《Neuroscience Bulletin》 2025年第4期731-733,共3页
The somatotopic representation of specific body parts is a well-established spatial organizational principle in the primary somatosensory and motor cortices.
关键词 somatic pain sorting center somatotopic representation somatosensory motor cortices body parts visceral pain spatial organizational principle paraventricular hypothalamus
原文传递
基于Quick Sorting的快速分页排序算法 被引量:1
10
作者 杨建武 刘缙 《计算机工程》 EI CAS CSCD 北大核心 2005年第4期82-84,共3页
提出了分页排序的概念和基于Quick Sorting的快速分页排序算法(Quick Page Sorting) 以及基于Hint缓存机制的算法实现技术。实验表明,在数万至数百万数据总量情况下,Quick Page Soring的速度比Quick Sorting快10倍左右,大大提高了应用... 提出了分页排序的概念和基于Quick Sorting的快速分页排序算法(Quick Page Sorting) 以及基于Hint缓存机制的算法实现技术。实验表明,在数万至数百万数据总量情况下,Quick Page Soring的速度比Quick Sorting快10倍左右,大大提高了应用系统的响应速度。 展开更多
关键词 排序 分页排序 算法 快速分页排序
在线阅读 下载PDF
Sorting radar signal from symmetry clustering perspective 被引量:13
11
作者 Mohaned Giess Shokrallah Ahmed Bin Tang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第4期690-696,共7页
The main function of electronic support measure system is to detect threating signals in order to take countermeasures against them. To accomplish this objective, a process of associating each interleaved pulse with i... The main function of electronic support measure system is to detect threating signals in order to take countermeasures against them. To accomplish this objective, a process of associating each interleaved pulse with its emitter must be done. This process is termed sorting or de-interleaving. A novel point symmetry based radar sorting (PSBRS) algorithm is addressed. In order to deal with all kinds of radar signals, the symmetry measure distance is used to cluster pulses instead of the conventional Euclidean distance. The reference points of the symmetrical clusters are initialized by the alternative fuzzy c-means (AFCM) algorithm to ameliorate the effects of noise and the false sorting. Besides, the density filtering (DF) algorithm is proposed to discard the noise pulses or clutter. The performance of the algorithm is evaluated under the effects of noise and missing pulses. It has been observed that the PSBRS algorithm can cope with a large number of noise pulses and it is completely independent of missing pulses. Finally, PSBRS is compared with some benchmark algorithms, and the simulation results reveal the feasibility and efficiency of the algorithm. 展开更多
关键词 sorting radar pulse SYMMETRY alternative fuzzy c-means noise missing pulse
在线阅读 下载PDF
Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades 被引量:30
12
作者 王珑 王同光 罗源 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第6期739-748,共10页
The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an exa... The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an example, a 5 MW wind turbine blade design is presented by taking the maximum power coefficient and the minimum blade mass as the optimization objectives. The optimal results show that this algorithm has good performance in handling the multi-objective optimization of wind turbines, and it gives a Pareto-optimal solution set rather than the optimum solutions to the conventional multi objective optimization problems. The wind turbine blade optimization method presented in this paper provides a new and general algorithm for the multi-objective optimization of wind turbines. 展开更多
关键词 wind turbine multi-objective optimization Pareto-optimal solution non-dominated sorting genetic algorithm (NSGA)-II
在线阅读 下载PDF
基于轻量化YOLO v8和BoT-SORT的石斑鱼跟踪方法
13
作者 段青玲 乔雅琪 +3 位作者 刘怡然 冯晓晓 冉逊 刘春红 《农业机械学报》 北大核心 2025年第9期667-676,共10页
水产养殖中,鱼类跟踪是实现鱼类行为监测、水质异常报警、鱼类生长状况评估的基础,但现有方法存在计算耗时长、模型占用空间大、在边缘端设备部署困难等问题。针对上述问题,本文以石斑鱼为研究对象,提出一种基于轻量化YOLO v8与BoT-SOR... 水产养殖中,鱼类跟踪是实现鱼类行为监测、水质异常报警、鱼类生长状况评估的基础,但现有方法存在计算耗时长、模型占用空间大、在边缘端设备部署困难等问题。针对上述问题,本文以石斑鱼为研究对象,提出一种基于轻量化YOLO v8与BoT-SORT的石斑鱼跟踪方法,该方法包括目标检测和目标跟踪两个阶段。在目标检测中,采用YOLO v8m作为基线网络,引入卷积模块FasterConv以减少参数量;加入EMA(Excitation and modulation attention)机制以保持模型精度;使用多尺度特征融合模块Fusion并调整Neck网络结构以提高模型的特征融合能力。在目标跟踪部分,BoT-SORT算法简化了鱼体的运动状态变量,加入相机运动补偿(Camera motion compensation,CMC)以应对鱼体外观剧烈变化,最后利用ResNeST50网络提取较高置信度检测框内鱼体的外观特征,实现了鱼体跟踪。在自建的石斑鱼数据集上进行了训练和验证,目标检测模型mAP@0.5为95.80%;其模型内存占用量为23.7 MB,相较原始YOLO v8m模型降低54.42%;将本文的轻量化目标检测模型应用到BoT-SORT算法,MOTA为78.774%,FPS达到28.20 f/s,在对比实验中综合性能大幅超过SORT、DeepMoT等算法。本方法可以实现石斑鱼的检测与跟踪,为石斑鱼的养殖提供技术支撑。 展开更多
关键词 石斑鱼 目标检测 目标跟踪 YOLO v8 BoT-sort 轻量化
在线阅读 下载PDF
A review of intelligent ore sorting technology and equipment development 被引量:12
14
作者 Xianping Luo Kunzhong He +2 位作者 Yan Zhang Pengyu He Yongbing Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第9期1647-1655,共9页
Under the background of increasingly scarce ore worldwide and increasingly fierce market competition,developing the mining industry could be strongly restricted.Intelligent ore sorting equipment not only improves ore ... Under the background of increasingly scarce ore worldwide and increasingly fierce market competition,developing the mining industry could be strongly restricted.Intelligent ore sorting equipment not only improves ore use and enhances the economic benefits of enterprises but also increases the ore grade and lessens the grinding cost and tailings production.However,long-term research on intelligent ore sorting equipment found that the factors affecting sorting efficiency mainly include ore information identification technology,equipment sorting actuator,and information processing algorithm.The high precision,strong anti-interference capability,and high speed of these factors guarantee the separation efficiency of intelligent ore sorting equipment.Color ore sorter,X-ray ore transmission sorter,dual-energy X-ray transmission ore sorter,X-ray fluorescence ore sorter,and near-infrared ore sorter have been successfully developed in accordance with the different characteristics of minerals while ensuring the accuracy of equipment sorting and improving the equipment sorting efficiency.With the continuous improvement of mine automation level,the application of online element rapid analysis technology with high speed,high precision,and strong anti-interference capability in intelligent ore sorting equipment will become an inevitable trend of equipment development in the future.Laser-induced breakdown spectroscopy,transientγneutron activation analysis,online Fourier transform infrared spectroscopy,and nuclear magnetic resonance techniques will promote the development of ore sorting equipment.In addition,the improvement and joint application of additional high-speed and high-precision operation algorithms(such as peak area,principal component analysis,artificial neural network,partial least squares,and Monte Carlo library least squares methods)are an essential part of the development of intelligent ore sorting equipment in the future. 展开更多
关键词 intelligent ore sorting technology sorting equipment separation efficiency online element rapid analysis technology
在线阅读 下载PDF
Pulse-to-pulse periodic signal sorting features and feature extraction in radar emitter pulse sequences 被引量:5
15
作者 Qiang Guo Zhenshen Qu Changhong Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期382-389,共8页
A novel class of periodically changing features hidden in radar pulse sequence environment,named G features,is proposed.Combining fractal theory and Hilbert-Huang transform,the features are extracted using changing ch... A novel class of periodically changing features hidden in radar pulse sequence environment,named G features,is proposed.Combining fractal theory and Hilbert-Huang transform,the features are extracted using changing characteristics of pulse parameters in radar emitter signals.The features can be applied in modern complex electronic warfare environment to address the issue of signal sorting when radar emitter pulse signal parameters severely or even completely overlap.Experiment results show that the proposed feature class and feature extraction method can discriminate periodically changing pulse sequence signal sorting features from radar pulse signal flow with complex variant features,therefore provide a new methodology for signal sorting. 展开更多
关键词 signal sorting fractal geometry Hilbert-Huang transform(HHT) G feature extraction.
在线阅读 下载PDF
An IB-LBM study of continuous cell sorting in deterministic lateral displacement arrays 被引量:3
16
作者 Qiang Wei Yuan-Qing Xu +1 位作者 Xiao-Ying Tang Fang-Bao Tian 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第6期1023-1030,共8页
The deterministic lateral displacement (DLD) is an important method used to sort particles and cells of different sizes. In this paper, the flexible cell sorting with the DLD method is studied by using a numerical mod... The deterministic lateral displacement (DLD) is an important method used to sort particles and cells of different sizes. In this paper, the flexible cell sorting with the DLD method is studied by using a numerical model based on the immersed boundary-lattice Boltzmann method (IB-LBM). In this model, the fluid motion is solved by the LBM, and the cell membrane-fluid interaction is modeled with the LBM. The proposed model is validated by simulating the rigid particle sorted with the DLD method, and the results are found in good agreement with those measured in experiments. We first study the effect of flexibility on a single cell and multiple cells continuously going through a DLD device. It is found that the cell flexibility can significantly affect the cell path, which means the flexibility could have significant effects on the continuous cell sorting by the DLD method. The sorting characteristics of white blood cells and red blood cells are further studied by varying the spatial distribution of cylinder arrays and the initial cell-cell distance. The numerical results indicate that a well concentrated cell sorting can be obtained under a proper arrangement of cylinder arrays and a large enough initial cell-cell distance. 展开更多
关键词 IB-LBM Cell sorting Deterministic lateral displacement
暂未订购
SORTING RADAR SIGNAL BASED ON WAVELET CHARACTERISTICS OF WIGNER-VILLE DISTRIBUTION 被引量:4
17
作者 Liang Huadong Han Jianghong 《Journal of Electronics(China)》 2013年第5期454-462,共9页
Common sorting method have low sorting rates and is sensitive to the Signal-to-Noise Ratio(SNR),wavelet characteristics of Wigner-Ville distribution are applied to sort unknown complicated radar signal,high sorting ac... Common sorting method have low sorting rates and is sensitive to the Signal-to-Noise Ratio(SNR),wavelet characteristics of Wigner-Ville distribution are applied to sort unknown complicated radar signal,high sorting accuracy can be got.The Wigner-Ville distribution of received signal is calculated,then it is predigested to two-dimensional characteristics.Using wavelet transformation to extract characteristics from two-dimensional of Wigner-Ville distribution,the best characteristics are selected to be used as sorting parameters.Experiment results demonstrated that the characteristics of eight typical radar emitter signals extracted by this method showed good performance of noise-resistance and clustering at large-scale SNR. 展开更多
关键词 sorting Wigner-Ville distribution WAVELET Wavelet packet Normative correlation coefficient
在线阅读 下载PDF
A blockchain based privacy-preserving federated learning scheme for Internet of Vehicles 被引量:6
18
作者 Naiyu Wang Wenti Yang +4 位作者 Xiaodong Wang Longfei Wu Zhitao Guan Xiaojiang Du Mohsen Guizani 《Digital Communications and Networks》 SCIE CSCD 2024年第1期126-134,共9页
The application of artificial intelligence technology in Internet of Vehicles(lov)has attracted great research interests with the goal of enabling smart transportation and traffic management.Meanwhile,concerns have be... The application of artificial intelligence technology in Internet of Vehicles(lov)has attracted great research interests with the goal of enabling smart transportation and traffic management.Meanwhile,concerns have been raised over the security and privacy of the tons of traffic and vehicle data.In this regard,Federated Learning(FL)with privacy protection features is considered a highly promising solution.However,in the FL process,the server side may take advantage of its dominant role in model aggregation to steal sensitive information of users,while the client side may also upload malicious data to compromise the training of the global model.Most existing privacy-preserving FL schemes in IoV fail to deal with threats from both of these two sides at the same time.In this paper,we propose a Blockchain based Privacy-preserving Federated Learning scheme named BPFL,which uses blockchain as the underlying distributed framework of FL.We improve the Multi-Krum technology and combine it with the homomorphic encryption to achieve ciphertext-level model aggregation and model filtering,which can enable the verifiability of the local models while achieving privacy-preservation.Additionally,we develop a reputation-based incentive mechanism to encourage users in IoV to actively participate in the federated learning and to practice honesty.The security analysis and performance evaluations are conducted to show that the proposed scheme can meet the security requirements and improve the performance of the FL model. 展开更多
关键词 Federated learning Blockchain privacy-preservation Homomorphic encryption Internetof vehicles
在线阅读 下载PDF
On the Privacy-Preserving Outsourcing Scheme of Reversible Data Hiding over Encrypted Image Data in Cloud Computing 被引量:11
19
作者 Lizhi Xiong Yunqing Shi 《Computers, Materials & Continua》 SCIE EI 2018年第6期523-539,共17页
Advanced cloud computing technology provides cost saving and flexibility of services for users.With the explosion of multimedia data,more and more data owners would outsource their personal multimedia data on the clou... Advanced cloud computing technology provides cost saving and flexibility of services for users.With the explosion of multimedia data,more and more data owners would outsource their personal multimedia data on the cloud.In the meantime,some computationally expensive tasks are also undertaken by cloud servers.However,the outsourced multimedia data and its applications may reveal the data owner’s private information because the data owners lose the control of their data.Recently,this thought has aroused new research interest on privacy-preserving reversible data hiding over outsourced multimedia data.In this paper,two reversible data hiding schemes are proposed for encrypted image data in cloud computing:reversible data hiding by homomorphic encryption and reversible data hiding in encrypted domain.The former is that additional bits are extracted after decryption and the latter is that extracted before decryption.Meanwhile,a combined scheme is also designed.This paper proposes the privacy-preserving outsourcing scheme of reversible data hiding over encrypted image data in cloud computing,which not only ensures multimedia data security without relying on the trustworthiness of cloud servers,but also guarantees that reversible data hiding can be operated over encrypted images at the different stages.Theoretical analysis confirms the correctness of the proposed encryption model and justifies the security of the proposed scheme.The computation cost of the proposed scheme is acceptable and adjusts to different security levels. 展开更多
关键词 Cloud data security re-encryption reversible data hiding cloud computing privacy-preserving.
在线阅读 下载PDF
A Privacy-Preserving Mechanism Based on Local Differential Privacy in Edge Computing 被引量:11
20
作者 Mengnan Bi Yingjie Wang +1 位作者 Zhipeng Cai Xiangrong Tong 《China Communications》 SCIE CSCD 2020年第9期50-65,共16页
With the development of Internet of Things(IoT),the delay caused by network transmission has led to low data processing efficiency.At the same time,the limited computing power and available energy consumption of IoT t... With the development of Internet of Things(IoT),the delay caused by network transmission has led to low data processing efficiency.At the same time,the limited computing power and available energy consumption of IoT terminal devices are also the important bottlenecks that would restrict the application of blockchain,but edge computing could solve this problem.The emergence of edge computing can effectively reduce the delay of data transmission and improve data processing capacity.However,user data in edge computing is usually stored and processed in some honest-but-curious authorized entities,which leads to the leakage of users’privacy information.In order to solve these problems,this paper proposes a location data collection method that satisfies the local differential privacy to protect users’privacy.In this paper,a Voronoi diagram constructed by the Delaunay method is used to divide the road network space and determine the Voronoi grid region where the edge nodes are located.A random disturbance mechanism that satisfies the local differential privacy is utilized to disturb the original location data in each Voronoi grid.In addition,the effectiveness of the proposed privacy-preserving mechanism is verified through comparison experiments.Compared with the existing privacy-preserving methods,the proposed privacy-preserving mechanism can not only better meet users’privacy needs,but also have higher data availability. 展开更多
关键词 Io T edge computing local differential privacy Voronoi diagram privacy-preserving
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部