Additive manufacturing(AM),particularly fused deposition modeling(FDM),has emerged as a transformative technology in modern manufacturing processes.The dimensional accuracy of FDM-printed parts is crucial for ensuring...Additive manufacturing(AM),particularly fused deposition modeling(FDM),has emerged as a transformative technology in modern manufacturing processes.The dimensional accuracy of FDM-printed parts is crucial for ensuring their functional integrity and performance.To achieve sustainable manufacturing in FDM,it is necessary to optimize the print quality and time efficiency concurrently.However,owing to the complex interactions of printing parameters,achieving a balanced optimization of both remains challenging.This study examines four key factors affecting dimensional accuracy and print time:printing speed,layer thickness,nozzle temperature,and bed temperature.Fifty parameter sets were generated using enhanced Latin hypercube sampling.A whale optimization algorithm(WOA)-enhanced support vector regression(SVR)model was developed to predict dimen-sional errors and print time effectively,with non-dominated sorting genetic algorithm Ⅲ(NSGA-Ⅲ)utilized for multi-objective optimization.The technique for Order Preference by Similarity to Ideal Solution(TOPSIS)was applied to select a balanced solution from the Pareto front.In experimental validation,the parts printed using the optimized parameters exhibited excellent dimensional accuracy and printing efficiency.This study comprehensively considered optimizing the printing time and size to meet quality requirements while achieving higher printing efficiency and aiding in the realization of sustainable manufacturing in the field of AM.In addition,the printing of a specific prosthetic component was used as a case study,highlighting the high demands on both dimensional precision and printing efficiency.The optimized process parameters required significantly less printing time,while satisfying the dimensional accuracy requirements.This study provides valuable insights for achieving sustainable AM using FDM.展开更多
Sand mold 3D printing technology based on the principle of droplet ejection has undergone rapid development in recent years and has elicited increasing attention from engineers and technicians.However,current sand mol...Sand mold 3D printing technology based on the principle of droplet ejection has undergone rapid development in recent years and has elicited increasing attention from engineers and technicians.However,current sand mold 3D printing technology exhibits several problems,such as single-material printing molds,low manufacturing efficiency,and necessary post-process drying and heating for the manufacture of sand molds.This study proposes a novel high-efficiency print forming method and device for multi-material casting molds.The proposed method is specifically related to the integrated forming of two-way coating and printing and the shortflow manufacture of roller compaction and layered heating.These processes can realize the high-efficiency print forming of high-performance sand molds.Experimental results demonstrate that the efficiency of sand mold fabrication can be increased by 200%using the proposed two-way coating and printing method.The integrated forming method for layered heating and roller compaction presented in this study effectively shortens the manufacturing process for 3D-printed sand molds,increases sand mold strength by 63.8%,and reduces resin usage by approximately 30%.The manufacture of multi-material casting molds is demonstrated on typical wheeled cast-iron parts.This research provides theoretical guidance for the engineering application of sand mold 3D printing.展开更多
基金supporteded by Natural Science Foundation of Shanghai(Grant No.22ZR1463900)State Key Laboratory of Mechanical System and Vibration(Grant No.MSV202318)the Fundamental Research Funds for the Central Universities(Grant No.22120220649).
文摘Additive manufacturing(AM),particularly fused deposition modeling(FDM),has emerged as a transformative technology in modern manufacturing processes.The dimensional accuracy of FDM-printed parts is crucial for ensuring their functional integrity and performance.To achieve sustainable manufacturing in FDM,it is necessary to optimize the print quality and time efficiency concurrently.However,owing to the complex interactions of printing parameters,achieving a balanced optimization of both remains challenging.This study examines four key factors affecting dimensional accuracy and print time:printing speed,layer thickness,nozzle temperature,and bed temperature.Fifty parameter sets were generated using enhanced Latin hypercube sampling.A whale optimization algorithm(WOA)-enhanced support vector regression(SVR)model was developed to predict dimen-sional errors and print time effectively,with non-dominated sorting genetic algorithm Ⅲ(NSGA-Ⅲ)utilized for multi-objective optimization.The technique for Order Preference by Similarity to Ideal Solution(TOPSIS)was applied to select a balanced solution from the Pareto front.In experimental validation,the parts printed using the optimized parameters exhibited excellent dimensional accuracy and printing efficiency.This study comprehensively considered optimizing the printing time and size to meet quality requirements while achieving higher printing efficiency and aiding in the realization of sustainable manufacturing in the field of AM.In addition,the printing of a specific prosthetic component was used as a case study,highlighting the high demands on both dimensional precision and printing efficiency.The optimized process parameters required significantly less printing time,while satisfying the dimensional accuracy requirements.This study provides valuable insights for achieving sustainable AM using FDM.
基金This research was supported by the National Excellent Young Scientists Fund(Grant No.51525503).
文摘Sand mold 3D printing technology based on the principle of droplet ejection has undergone rapid development in recent years and has elicited increasing attention from engineers and technicians.However,current sand mold 3D printing technology exhibits several problems,such as single-material printing molds,low manufacturing efficiency,and necessary post-process drying and heating for the manufacture of sand molds.This study proposes a novel high-efficiency print forming method and device for multi-material casting molds.The proposed method is specifically related to the integrated forming of two-way coating and printing and the shortflow manufacture of roller compaction and layered heating.These processes can realize the high-efficiency print forming of high-performance sand molds.Experimental results demonstrate that the efficiency of sand mold fabrication can be increased by 200%using the proposed two-way coating and printing method.The integrated forming method for layered heating and roller compaction presented in this study effectively shortens the manufacturing process for 3D-printed sand molds,increases sand mold strength by 63.8%,and reduces resin usage by approximately 30%.The manufacture of multi-material casting molds is demonstrated on typical wheeled cast-iron parts.This research provides theoretical guidance for the engineering application of sand mold 3D printing.