Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexib...Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexible fiber sensors.Through the preform-tofiber manufacturing technique,a variety of fiber sensors with complex functionalities spanning from the nanoscale to kilometer scale can be automated in a short time.Examples include temperature,acoustic,mechanical,chemical,biological,optoelectronic,and multifunctional sensors,which operate on diverse sensing principles such as resistance,capacitance,piezoelectricity,triboelectricity,photoelectricity,and thermoelectricity.This review outlines the principles of the thermal drawing process and provides a detailed overview of the latest advancements in various thermally drawn fiber sensors.Finally,the future developments of thermally drawn fiber sensors are discussed.展开更多
This paper delves into the theoretical mechanisms of the electronic structure and optical properties of aluminum-based semiconductors(AlX,X=N,P,As,Sb)and indium-based semiconductors(InX,X=N,P,As,Sb)as potential materi...This paper delves into the theoretical mechanisms of the electronic structure and optical properties of aluminum-based semiconductors(AlX,X=N,P,As,Sb)and indium-based semiconductors(InX,X=N,P,As,Sb)as potential materials for optical devices.Band structure calculations reveal that,except for InSb,all other compounds are direct bandgap semiconductors,with AlN exhibiting a bandgap of 3.245 eV.The valence band maximum of these eight compounds primarily stems from the p-orbitals of Al/In and X.In contrast,the conduction band minimum is influenced by all orbitals,with a predominant contribution from the p-orbitals.The static dielectric constant increased with the expansion of the unit cell volume.Compared to AlX and InX with larger X atoms,AlN and InN showed broader absorption spectra in the near-ultraviolet region and higher photoelectric conductance.Regarding mechanical properties,AlN and InN displayed greater shear and bulk modulus than the other compounds.Moreover,among these eight crystal types,a higher modulus was associated with a lower light loss function value,indicating that AlN and InN have superior transmission efficiency and a wider spectral range in optoelectronic material applications.展开更多
The aim of this paper is to prove another variation on the Heisenberg uncertainty principle,we generalize the quantitative uncertainty relations in n different(time-frequency)domains and we will give an algorithm for ...The aim of this paper is to prove another variation on the Heisenberg uncertainty principle,we generalize the quantitative uncertainty relations in n different(time-frequency)domains and we will give an algorithm for the signal recovery related to the canonical Fourier-Bessel transform.展开更多
On 17 October 2024,the American Geophysical Union(AGU)in Washington,DC,USA,released the Ethical Framework Principles for Climate Intervention Research[1],a set of guidelines designed to help scientists,funders,policym...On 17 October 2024,the American Geophysical Union(AGU)in Washington,DC,USA,released the Ethical Framework Principles for Climate Intervention Research[1],a set of guidelines designed to help scientists,funders,policymakers,and private entities research and govern geoengineering technologies as ethically as possible.Commissioned in 2022 by the AGU Board of Directors and produced with internal funding only,the document advocates that geoengineering research projects fully consider all possible risks and benefits-environmental,sociocultural,and geopolitical-and include input from any groups such projects might impact.展开更多
Traditional constitutional theory holds that Article 33,Paragraph 4 of the Chinese Constitution establishes the principle of the consistency of rights and obligations.However,with the evolution of constitutional theor...Traditional constitutional theory holds that Article 33,Paragraph 4 of the Chinese Constitution establishes the principle of the consistency of rights and obligations.However,with the evolution of constitutional theory and practice,its interpretation has shifted.It is increasingly viewed as a concretization of the principle of equality,although this perspective has not been thoroughly substantiated in academic circles.Upon closer analysis,interpreting this provision as the“consistency of rights and obligations”reveals several issues,including counterevidence from the constitutional drafting history,a lack of internal coherence,and a misalignment with the functions of the Constitution.By revisiting the specific context of this provision,it can be understood as an anti-privilege clause,serving as a special annotation of the equality principle.This approach enables a harmonious interpretation of this provision alongside other constitutional provisions.展开更多
Over 70 years ago,China proposed the Five Principles of Peaceful Coexistence,which were first embraced by countries such as Myanmar and gradually gained traction across Asia.The Five Principles eventually became widel...Over 70 years ago,China proposed the Five Principles of Peaceful Coexistence,which were first embraced by countries such as Myanmar and gradually gained traction across Asia.The Five Principles eventually became widely recognized norms in international relations and foundational principles of international law,contributing significantly to the post-World War II international order.Decades on,the Five Principles have not faded into history.Rather,they have demonstrated renewed relevance in today’s complex global landscape.展开更多
We use the Schrödinger–Newton equation to calculate the regularized self-energy of a particle using a regular self-gravitational and electrostatic potential derived in string T-duality.The particle mass M is no ...We use the Schrödinger–Newton equation to calculate the regularized self-energy of a particle using a regular self-gravitational and electrostatic potential derived in string T-duality.The particle mass M is no longer concentrated into a point but is diluted and described by a quantum-corrected smeared energy density resulting in corrections to the energy of the particle,which is interpreted as a regularized self-energy.We extend our results and find corrections to the relativistic particles using the Klein–Gordon,Proca and Dirac equations.An important finding is that we extract a form of the generalized uncertainty principle(GUP)from the corrected energy.This form of the GUP is shown to depend on the nature of particles;namely,for bosons(spin 0 and spin 1)we obtain a quadratic form of the GUP,while for fermions(spin 1/2)we obtain a linear form.The correlation we find between spin and GUP may offer insights for investigating quantum gravity.展开更多
TiO_(2)is a well-known photocatalyst with a band gap of 3.2 eV,yet its ability to absorb light is limited to the short wavelengths of ultraviolet light.To achieve a more effective photocatalytic material,we have desig...TiO_(2)is a well-known photocatalyst with a band gap of 3.2 eV,yet its ability to absorb light is limited to the short wavelengths of ultraviolet light.To achieve a more effective photocatalytic material,we have designed two-dimensional semiconductor TiOS materials using swarm intelligence algorithms combined with first-principles calculations.Three stable low-energy structures with space groups of P2_(1)/m,P3m1 and P2_(1)/c are identified.Among these structures,the Janus P3m1 phase is a direct bandgap semiconductor,while the P2_(1)/m and P2_(1)/c phases are indirect bandgap semiconductors.Utilizing the accurate hybrid density functional HSE06 method,the band gaps of the three structures are calculated to be 2.34 eV(P2_(1)/m),2.24 eV(P3m1)and 3.22 eV(P2_(1)/c).Optical calculations reveal that TiOS materials exhibit a good light-harvesting capability in both visible and ultraviolet spectral ranges.Moreover,the photocatalytic calculations also indicate that both P2_(1)/m and P3m1 TiOS can provide a strong driving force for converting H_(2)O to H_(2)and O_(2)in an acidic environment with pH=0.The structural stabilities,mechanical properties,electronic structures and hydrogen evolution reaction activities are also discussed in detail.Our research suggests that two-dimensional TiOS materials have potential applications in both semiconductor devices and photocatalysis.展开更多
The structural,relative stability,and electronic properties of two-dimensional AsP_(2)X_(6)(X=S,Se)were predicted and studied using the particle-swarm optimization method and first principles calculations.We proposed ...The structural,relative stability,and electronic properties of two-dimensional AsP_(2)X_(6)(X=S,Se)were predicted and studied using the particle-swarm optimization method and first principles calculations.We proposed two low energy structures with P312 and P-31m phases,both of which the structures are hexagonal in shape and show non-centrosymmetry for the P312 phase and centrosymmetry for the P-31m phase.According to our results,two structural phases are found to be stable thermally and dynamically.The P312 phase of AsP_(2)X_(6)(X=S,Se)are indirect semiconductors with band gaps of 2.44 eV(AsP2S6)and 2.18 eV(AsP2Se6)at the HSE06 level,and their absorption coefficients are predicted to reach the order of 10^(5)cm^(-1)from visible light to ultraviolet region,but the main absorption is manly in the ultraviolet region.The P-31m phase of AsP_(2)X_(6)(X=S,Se)exhibits metal character with the Fermi surface mainly occupied by the p orbital of S/Se.Remarkably,estimated by first principles calculations,the P-31m AsP2S6 is found to be an intrinsic phonon-mediated superconductor with a relatively high critical superconducting temperature of about 13.4 K,and the P-31m AsP2Se6 only has a superconducting temperature of 1.4 K,which suggest that the P-31m AsP2S6 may be a good candidate for a nanoscale superconductor.展开更多
We investigated the adsorption mechanisms including physical and chemical adsorption for heavy metals(Cd,Pb,Zn,Co,Cu)on C-lignin using density functional theory(DFT)simulations.Physical adsorption,involving metal atom...We investigated the adsorption mechanisms including physical and chemical adsorption for heavy metals(Cd,Pb,Zn,Co,Cu)on C-lignin using density functional theory(DFT)simulations.Physical adsorption,involving metal atoms near carbon atoms,is found to be endothermic;meanwhile,chemical adsorption,where hydroxyl groups replace metal ions,is exothermic and spontaneous.Pb exhibits the highest physical adsorption potential,while Cu and Co demonstrate the strongest chemical adsorption due to their highly negative adsorption energies.These findings provide valuable insights into the design of eco-friendly nano lignocellulosic composite films for effective heavy metal removal from contaminated water sources.Key words:C-lignin;adsorption;We investigated the adsorption mechanisms including physical and chemical adsorption for heavy metals(Cd,Pb,Zn,Co,Cu)on C-lignin using density functional theory(DFT)simulations.Physical adsorption,involving metal atoms near carbon atoms,is found to be endothermic;meanwhile,chemical adsorption,where hydroxyl groups replace metal ions,is exothermic and spontaneous.Pb exhibits the highest physical adsorption potential,while Cu and Co demonstrate the strongest chemical adsorption due to their highly negative adsorption energies.These findings provide valuable insights into the design of eco-friendly nano lignocellulosic composite films for effective heavy metal removal from contaminated water sources.展开更多
Reducing the resistance of vehicles,ships,aircraft and other means of transport during movement can significantly improve the speed,save energy and reduce emissions.After billions of years of continuous evolution,orga...Reducing the resistance of vehicles,ships,aircraft and other means of transport during movement can significantly improve the speed,save energy and reduce emissions.After billions of years of continuous evolution,organisms in nature have gradually developed the ability to move at high speed to achieve better survival.These evolved organisms provide a perfect template for the human development of drag reduction materials.Revealing the unique physiological structural characteristics of organisms and their relationship with resistance during movement can provide a feasible approach tosolving the problem of reducing friction resistance.Whether flying in the sky,running on the ground,swimming in the water,or even living in the soil,many creatures in various environments have the ability to reduce resistance.Driven by these inspirations,researchers have done a lot of work to explore and imitate these biological epidermis structures to achieve drag reduction.In this paper,the biomimetic drag reduction materials is introduced in detail in the order of drag reduction mechanism,structural characteristics of biological epidermis(including marine animals,flying animals,soil animals and plants),biomimetic preparation methods,performance testing methods and application fields.Finally,the potential of various biomimetic drag reduction materials in engineering application and the problems to be overcome are summarized and prospected.This paper can help readers comprehensively understand the research progress of biomimetic drag reduction materials,and provide reference for further designing the next generation of drag reduction materials.展开更多
This article provides a review and summary of the principles of English teaching to achieve breakthroughs in teaching principles.The review of theories such as input-output theory,self-efficacy,and learned helplessnes...This article provides a review and summary of the principles of English teaching to achieve breakthroughs in teaching principles.The review of theories such as input-output theory,self-efficacy,and learned helplessness is not new,but it is useful.These principles are essential theories for guiding educational work,and we must learn them if we want to improve the quality of education.The quality of education in China will improve under the guidance of these theories and principles.Both the qualitative research and quantitative research methodologies must be employed if the desired purposes are to be reached.展开更多
In this paper,inspired by the running motion gait of a cheetah,an H-shaped bionic piezoelectric robot(H-BPR)based on the standing wave principle is proposed and designed.The piezoelectric robot realizes linear motion,...In this paper,inspired by the running motion gait of a cheetah,an H-shaped bionic piezoelectric robot(H-BPR)based on the standing wave principle is proposed and designed.The piezoelectric robot realizes linear motion,turning motion,and turning motion with different radi by the voltage differential driving method.A prototype with a weight of 38 g and dimensions of 150×80×31 mm^(3) was fabricated.Firstly,the dynamics and kinematics of the piezoelectric robot were analyzed to obtain the trajectory of a point at the end of the piezoelectric robot leg.The motion principle of the piezo-electric robot was analyzed,and then the piezoelectric robot's modal analysis and harmonic response analysis were carried out using finite element analysis software.Finally,an experimental setup was built to verify the effectiveness and high efficiency of the robot's motion,and the effects of frequency,voltage,load,and height of the driving leg on the robot's motion performance were discussed.The performance test results show that the piezoelectric robot has a maximum veloc-ity of 66.79 mm/s at an excitation voltage of 320 V and a load capacity of 55 g.In addition,the H-BPR with unequal drive legs has better climbing performance,and the obtained conclusions are informative for selecting leg heights for piezoelectric robots.展开更多
In interpersonal communication,the principle of politeness is an important communicative principle that is widely applied in people’s daily life.However,the communication patterns of the principle of politeness and f...In interpersonal communication,the principle of politeness is an important communicative principle that is widely applied in people’s daily life.However,the communication patterns of the principle of politeness and face theory in the travel planning process among friends still need further exploration.This study aims to analyze the specific manifestations of these principles in the communication patterns of travel planning among friends through a pragmatic interpretation of the principle of politeness and face theory,providing a new perspective for understanding linguistic behavior in interpersonal relationships.展开更多
基金supported by the National Key Research and Development Program of China(2023YFB3809800)the National Natural Science Foundation of China(52172249,52525601)+2 种基金the Chinese Academy of Sciences Talents Program(E2290701)the Jiangsu Province Talents Program(JSSCRC2023545)the Special Fund Project of Carbon Peaking Carbon Neutrality Science and Technology Innovation of Jiangsu Province(BE2022011).
文摘Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexible fiber sensors.Through the preform-tofiber manufacturing technique,a variety of fiber sensors with complex functionalities spanning from the nanoscale to kilometer scale can be automated in a short time.Examples include temperature,acoustic,mechanical,chemical,biological,optoelectronic,and multifunctional sensors,which operate on diverse sensing principles such as resistance,capacitance,piezoelectricity,triboelectricity,photoelectricity,and thermoelectricity.This review outlines the principles of the thermal drawing process and provides a detailed overview of the latest advancements in various thermally drawn fiber sensors.Finally,the future developments of thermally drawn fiber sensors are discussed.
文摘This paper delves into the theoretical mechanisms of the electronic structure and optical properties of aluminum-based semiconductors(AlX,X=N,P,As,Sb)and indium-based semiconductors(InX,X=N,P,As,Sb)as potential materials for optical devices.Band structure calculations reveal that,except for InSb,all other compounds are direct bandgap semiconductors,with AlN exhibiting a bandgap of 3.245 eV.The valence band maximum of these eight compounds primarily stems from the p-orbitals of Al/In and X.In contrast,the conduction band minimum is influenced by all orbitals,with a predominant contribution from the p-orbitals.The static dielectric constant increased with the expansion of the unit cell volume.Compared to AlX and InX with larger X atoms,AlN and InN showed broader absorption spectra in the near-ultraviolet region and higher photoelectric conductance.Regarding mechanical properties,AlN and InN displayed greater shear and bulk modulus than the other compounds.Moreover,among these eight crystal types,a higher modulus was associated with a lower light loss function value,indicating that AlN and InN have superior transmission efficiency and a wider spectral range in optoelectronic material applications.
文摘The aim of this paper is to prove another variation on the Heisenberg uncertainty principle,we generalize the quantitative uncertainty relations in n different(time-frequency)domains and we will give an algorithm for the signal recovery related to the canonical Fourier-Bessel transform.
文摘On 17 October 2024,the American Geophysical Union(AGU)in Washington,DC,USA,released the Ethical Framework Principles for Climate Intervention Research[1],a set of guidelines designed to help scientists,funders,policymakers,and private entities research and govern geoengineering technologies as ethically as possible.Commissioned in 2022 by the AGU Board of Directors and produced with internal funding only,the document advocates that geoengineering research projects fully consider all possible risks and benefits-environmental,sociocultural,and geopolitical-and include input from any groups such projects might impact.
基金This paper is an phased result of the“Research on Constitutional Review Methods of fundamental rights Restrictions”(Project Number 21BFX040),a general project of 2021 supported by National Social Science Fund of China.
文摘Traditional constitutional theory holds that Article 33,Paragraph 4 of the Chinese Constitution establishes the principle of the consistency of rights and obligations.However,with the evolution of constitutional theory and practice,its interpretation has shifted.It is increasingly viewed as a concretization of the principle of equality,although this perspective has not been thoroughly substantiated in academic circles.Upon closer analysis,interpreting this provision as the“consistency of rights and obligations”reveals several issues,including counterevidence from the constitutional drafting history,a lack of internal coherence,and a misalignment with the functions of the Constitution.By revisiting the specific context of this provision,it can be understood as an anti-privilege clause,serving as a special annotation of the equality principle.This approach enables a harmonious interpretation of this provision alongside other constitutional provisions.
基金phased achievement of the Yunnan Provincial Philosophy and Social Sciences Innovation Team project titled Research on Ethnic Issues and Their Impact in Northern Myanmar(No.2025CX09).
文摘Over 70 years ago,China proposed the Five Principles of Peaceful Coexistence,which were first embraced by countries such as Myanmar and gradually gained traction across Asia.The Five Principles eventually became widely recognized norms in international relations and foundational principles of international law,contributing significantly to the post-World War II international order.Decades on,the Five Principles have not faded into history.Rather,they have demonstrated renewed relevance in today’s complex global landscape.
文摘We use the Schrödinger–Newton equation to calculate the regularized self-energy of a particle using a regular self-gravitational and electrostatic potential derived in string T-duality.The particle mass M is no longer concentrated into a point but is diluted and described by a quantum-corrected smeared energy density resulting in corrections to the energy of the particle,which is interpreted as a regularized self-energy.We extend our results and find corrections to the relativistic particles using the Klein–Gordon,Proca and Dirac equations.An important finding is that we extract a form of the generalized uncertainty principle(GUP)from the corrected energy.This form of the GUP is shown to depend on the nature of particles;namely,for bosons(spin 0 and spin 1)we obtain a quadratic form of the GUP,while for fermions(spin 1/2)we obtain a linear form.The correlation we find between spin and GUP may offer insights for investigating quantum gravity.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272219 and U1904612)the Natural Science Foundation of Henan Province(Grant No.242300421191).
文摘TiO_(2)is a well-known photocatalyst with a band gap of 3.2 eV,yet its ability to absorb light is limited to the short wavelengths of ultraviolet light.To achieve a more effective photocatalytic material,we have designed two-dimensional semiconductor TiOS materials using swarm intelligence algorithms combined with first-principles calculations.Three stable low-energy structures with space groups of P2_(1)/m,P3m1 and P2_(1)/c are identified.Among these structures,the Janus P3m1 phase is a direct bandgap semiconductor,while the P2_(1)/m and P2_(1)/c phases are indirect bandgap semiconductors.Utilizing the accurate hybrid density functional HSE06 method,the band gaps of the three structures are calculated to be 2.34 eV(P2_(1)/m),2.24 eV(P3m1)and 3.22 eV(P2_(1)/c).Optical calculations reveal that TiOS materials exhibit a good light-harvesting capability in both visible and ultraviolet spectral ranges.Moreover,the photocatalytic calculations also indicate that both P2_(1)/m and P3m1 TiOS can provide a strong driving force for converting H_(2)O to H_(2)and O_(2)in an acidic environment with pH=0.The structural stabilities,mechanical properties,electronic structures and hydrogen evolution reaction activities are also discussed in detail.Our research suggests that two-dimensional TiOS materials have potential applications in both semiconductor devices and photocatalysis.
基金Funded by the National Natural Science Foundation of China(No.U1904612)the Natural Science Foundation of Henan Province(No.222300420506)。
文摘The structural,relative stability,and electronic properties of two-dimensional AsP_(2)X_(6)(X=S,Se)were predicted and studied using the particle-swarm optimization method and first principles calculations.We proposed two low energy structures with P312 and P-31m phases,both of which the structures are hexagonal in shape and show non-centrosymmetry for the P312 phase and centrosymmetry for the P-31m phase.According to our results,two structural phases are found to be stable thermally and dynamically.The P312 phase of AsP_(2)X_(6)(X=S,Se)are indirect semiconductors with band gaps of 2.44 eV(AsP2S6)and 2.18 eV(AsP2Se6)at the HSE06 level,and their absorption coefficients are predicted to reach the order of 10^(5)cm^(-1)from visible light to ultraviolet region,but the main absorption is manly in the ultraviolet region.The P-31m phase of AsP_(2)X_(6)(X=S,Se)exhibits metal character with the Fermi surface mainly occupied by the p orbital of S/Se.Remarkably,estimated by first principles calculations,the P-31m AsP2S6 is found to be an intrinsic phonon-mediated superconductor with a relatively high critical superconducting temperature of about 13.4 K,and the P-31m AsP2Se6 only has a superconducting temperature of 1.4 K,which suggest that the P-31m AsP2S6 may be a good candidate for a nanoscale superconductor.
基金Funded by the Hubei Province Key Research Foundation for Water Resources,China(No.HBSLKY2023035)the National College Students’Innovation and Entrepreneurship Training Program,China(No.202310500012)the Wuhan Talents Outstanding Young Talents Program。
文摘We investigated the adsorption mechanisms including physical and chemical adsorption for heavy metals(Cd,Pb,Zn,Co,Cu)on C-lignin using density functional theory(DFT)simulations.Physical adsorption,involving metal atoms near carbon atoms,is found to be endothermic;meanwhile,chemical adsorption,where hydroxyl groups replace metal ions,is exothermic and spontaneous.Pb exhibits the highest physical adsorption potential,while Cu and Co demonstrate the strongest chemical adsorption due to their highly negative adsorption energies.These findings provide valuable insights into the design of eco-friendly nano lignocellulosic composite films for effective heavy metal removal from contaminated water sources.Key words:C-lignin;adsorption;We investigated the adsorption mechanisms including physical and chemical adsorption for heavy metals(Cd,Pb,Zn,Co,Cu)on C-lignin using density functional theory(DFT)simulations.Physical adsorption,involving metal atoms near carbon atoms,is found to be endothermic;meanwhile,chemical adsorption,where hydroxyl groups replace metal ions,is exothermic and spontaneous.Pb exhibits the highest physical adsorption potential,while Cu and Co demonstrate the strongest chemical adsorption due to their highly negative adsorption energies.These findings provide valuable insights into the design of eco-friendly nano lignocellulosic composite films for effective heavy metal removal from contaminated water sources.
基金the National Natural Science Foundation of China(No.52305236)supported by National Natural Science Foundation of China.
文摘Reducing the resistance of vehicles,ships,aircraft and other means of transport during movement can significantly improve the speed,save energy and reduce emissions.After billions of years of continuous evolution,organisms in nature have gradually developed the ability to move at high speed to achieve better survival.These evolved organisms provide a perfect template for the human development of drag reduction materials.Revealing the unique physiological structural characteristics of organisms and their relationship with resistance during movement can provide a feasible approach tosolving the problem of reducing friction resistance.Whether flying in the sky,running on the ground,swimming in the water,or even living in the soil,many creatures in various environments have the ability to reduce resistance.Driven by these inspirations,researchers have done a lot of work to explore and imitate these biological epidermis structures to achieve drag reduction.In this paper,the biomimetic drag reduction materials is introduced in detail in the order of drag reduction mechanism,structural characteristics of biological epidermis(including marine animals,flying animals,soil animals and plants),biomimetic preparation methods,performance testing methods and application fields.Finally,the potential of various biomimetic drag reduction materials in engineering application and the problems to be overcome are summarized and prospected.This paper can help readers comprehensively understand the research progress of biomimetic drag reduction materials,and provide reference for further designing the next generation of drag reduction materials.
文摘This article provides a review and summary of the principles of English teaching to achieve breakthroughs in teaching principles.The review of theories such as input-output theory,self-efficacy,and learned helplessness is not new,but it is useful.These principles are essential theories for guiding educational work,and we must learn them if we want to improve the quality of education.The quality of education in China will improve under the guidance of these theories and principles.Both the qualitative research and quantitative research methodologies must be employed if the desired purposes are to be reached.
基金supported by the National Natural Science Foundation of China(No.12372005)the Aeronautical Science Foundation of China(No.ASFC-2024Z070050001)the Natural Science Foundation of Liaoning Province(2024-MSBA-32).
文摘In this paper,inspired by the running motion gait of a cheetah,an H-shaped bionic piezoelectric robot(H-BPR)based on the standing wave principle is proposed and designed.The piezoelectric robot realizes linear motion,turning motion,and turning motion with different radi by the voltage differential driving method.A prototype with a weight of 38 g and dimensions of 150×80×31 mm^(3) was fabricated.Firstly,the dynamics and kinematics of the piezoelectric robot were analyzed to obtain the trajectory of a point at the end of the piezoelectric robot leg.The motion principle of the piezo-electric robot was analyzed,and then the piezoelectric robot's modal analysis and harmonic response analysis were carried out using finite element analysis software.Finally,an experimental setup was built to verify the effectiveness and high efficiency of the robot's motion,and the effects of frequency,voltage,load,and height of the driving leg on the robot's motion performance were discussed.The performance test results show that the piezoelectric robot has a maximum veloc-ity of 66.79 mm/s at an excitation voltage of 320 V and a load capacity of 55 g.In addition,the H-BPR with unequal drive legs has better climbing performance,and the obtained conclusions are informative for selecting leg heights for piezoelectric robots.
文摘In interpersonal communication,the principle of politeness is an important communicative principle that is widely applied in people’s daily life.However,the communication patterns of the principle of politeness and face theory in the travel planning process among friends still need further exploration.This study aims to analyze the specific manifestations of these principles in the communication patterns of travel planning among friends through a pragmatic interpretation of the principle of politeness and face theory,providing a new perspective for understanding linguistic behavior in interpersonal relationships.