期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Principal-component estimates of the Kuroshio Current axis and path based on the mathematical verification between satellite altimeter and drifting buoy data 被引量:2
1
作者 Zhanpeng Zhuang Zhenli Hui +2 位作者 Guangbing Yang Xinhua Zhao Yeli Yuan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第1期14-24,共11页
We used satellite altimetry data to investigate the Kuroshio Current because of the higher resolution and wider range of observations. In previous studies, satellite absolute geostrophic velocities were used to study ... We used satellite altimetry data to investigate the Kuroshio Current because of the higher resolution and wider range of observations. In previous studies, satellite absolute geostrophic velocities were used to study the spatiotemporal variability of the sea surface velocity field along the current, and extraction methods were employed to detect the Kuroshio axes and paths. However, sea surface absolute geostrophic velocity estimated from absolute dynamic topography should be regarded as the geostrophic component of the actual surface velocity, which cannot represent a sea surface current accurately. In this study, mathematical verification between the climatic absolute geostrophic and bin-averaged drifting buoy velocity was established and then adopted to correct the satellite absolute geostrophic velocities. There were some differences in the characteristics between satellite geostrophic and drifting buoy velocities. As a result, the corrected satellite absolute geostrophic velocities were used to detect the Kuroshio axis and path based on a principal-component detection scheme. The results showed that the detection of the Kuroshio axes and paths from corrected absolute geostrophic velocities performed better than those from satellite absolute geostrophic velocities and surface current estimations. The corrected satellite absolute geostrophic velocity may therefore contribute to more precise day-to-day detection of the Kuroshio Current axis and path. 展开更多
关键词 Kuroshio axis detection Kuroshio path detection mathematical verification satellite absolute geostrophic velocity principal-component detection
在线阅读 下载PDF
Uncertainty analysis of measured geometric variations in turbine blades and impact on aerodynamic performance 被引量:8
2
作者 Xiaojing WANG Pengcheng DU +2 位作者 Lichao YAO Zhengping ZOU Fei ZENG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第6期140-160,共21页
Inevitable geometric variations significantly affect the performance of turbines or even that of entire engines;thus,it is necessary to determine their actual characteristics and accurately estimate their impact on pe... Inevitable geometric variations significantly affect the performance of turbines or even that of entire engines;thus,it is necessary to determine their actual characteristics and accurately estimate their impact on performance.In this study,based on 1781 measured profiles of a typical turbine blade,the statistical characteristics of the geometric variations and the uncertainty impact are analyzed,and some commonly used uncertainty modelling methods based on Principal-Component Analysis(PCA)are verified.The geometric variations are found to be evident,asymmetric,and non-uniform,and the non-normality of the random distributions is non-negligible.The performance is notably affected,which is manifested as an overall offset,a notable scattering,and significant deterioration in several extreme cases.Additionally,it is demonstrated that the PCA reconstruction model is effective in characterizing major uncertainty characteristics of the geometric variations and their impact on the performance with almost the first 10 PCA modes.Based on a reasonable profile error and mean geometric deviation,the Gaussian assumption and stochasticprocess-based model are also found to be effective in predicting the mean values and standard deviations of the performance variations.However,they fail to predict the probability of some extreme cases with high loss.Finally,a Chi-square-based correction model is proposed to compensate for this deficiency.The present work can provide a useful reference for uncertainty analysis of the impact of geometric variations,and the corresponding uncertainty design of turbine blades. 展开更多
关键词 Aerodynamic performance Measured geometric variations principal-component analysis Turbine blade Uncertainty analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部