期刊文献+
共找到856篇文章
< 1 2 43 >
每页显示 20 50 100
Prediction of joint roughness coefficient via hybrid machine learning model combined with principal components analysis 被引量:1
1
作者 Shijie Xie Hang Lin +2 位作者 Tianxing Ma Kang Peng Zhen Sun 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2291-2306,共16页
Joint roughness coefficient(JRC)is the most commonly used parameter for quantifying surface roughness of rock discontinuities in practice.The system composed of multiple roughness statistical parameters to measure JRC... Joint roughness coefficient(JRC)is the most commonly used parameter for quantifying surface roughness of rock discontinuities in practice.The system composed of multiple roughness statistical parameters to measure JRC is a nonlinear system with a lot of overlapping information.In this paper,a dataset of eight roughness statistical parameters covering 112 digital joints is established.Then,the principal component analysis method is introduced to extract the significant information,which solves the information overlap problem of roughness characterization.Based on the two principal components of extracted features,the white shark optimizer algorithm was introduced to optimize the extreme gradient boosting model,and a new machine learning(ML)prediction model was established.The prediction accuracy of the new model and the other 17 models was measured using statistical metrics.The results show that the prediction result of the new model is more consistent with the real JRC value,with higher recognition accuracy and generalization ability. 展开更多
关键词 Rock discontinuities Joint roughness coefficient(JRC) Roughness characterization principal components analysis(PCA) Machine learning
在线阅读 下载PDF
Estimation of the Number of Collapsed Houses Damaged by Typhoon Based on Principal Components Analysis and Support Vector Machine 被引量:2
2
作者 张新厂 娄伟平 《Meteorological and Environmental Research》 CAS 2010年第4期11-14,共4页
The evaluation model was established to estimate the number of houses collapsed during typhoon disaster for Zhejiang Province.The factor leading to disaster,the environment fostering disaster and the exposure of build... The evaluation model was established to estimate the number of houses collapsed during typhoon disaster for Zhejiang Province.The factor leading to disaster,the environment fostering disaster and the exposure of buildings were processed by Principal Component Analysis.The key factor was extracted to support input of vector machine model and to build an evaluation model;the historical fitting result kept in line with the fact.In the real evaluation of two typhoons landed in Zhejiang Province in 2008 and 2009,the coincidence of evaluating result and actual value proved the feasibility of this model. 展开更多
关键词 TYPHOON The number of collapsed houses principal components analysis Support Vector Machine EVALUATION China
在线阅读 下载PDF
Comparison of dimension reduction-based logistic regression models for case-control genome-wide association study:principal components analysis vs.partial least squares 被引量:2
3
作者 Honggang Yi Hongmei Wo +9 位作者 Yang Zhao Ruyang Zhang Junchen Dai Guangfu Jin Hongxia Ma Tangchun Wu Zhibin Hu Dongxin Lin Hongbing Shen Feng Chen 《The Journal of Biomedical Research》 CAS CSCD 2015年第4期298-307,共10页
With recent advances in biotechnology, genome-wide association study (GWAS) has been widely used to identify genetic variants that underlie human complex diseases and traits. In case-control GWAS, typical statistica... With recent advances in biotechnology, genome-wide association study (GWAS) has been widely used to identify genetic variants that underlie human complex diseases and traits. In case-control GWAS, typical statistical strategy is traditional logistical regression (LR) based on single-locus analysis. However, such a single-locus analysis leads to the well-known multiplicity problem, with a risk of inflating type I error and reducing power. Dimension reduction-based techniques, such as principal component-based logistic regression (PC-LR), partial least squares-based logistic regression (PLS-LR), have recently gained much attention in the analysis of high dimensional genomic data. However, the perfor- mance of these methods is still not clear, especially in GWAS. We conducted simulations and real data application to compare the type I error and power of PC-LR, PLS-LR and LR applicable to GWAS within a defined single nucleotide polymorphism (SNP) set region. We found that PC-LR and PLS can reasonably control type I error under null hypothesis. On contrast, LR, which is corrected by Bonferroni method, was more conserved in all simulation settings. In particular, we found that PC-LR and PLS-LR had comparable power and they both outperformed LR, especially when the causal SNP was in high linkage disequilibrium with genotyped ones and with a small effective size in simulation. Based on SNP set analysis, we applied all three methods to analyze non-small cell lung cancer GWAS data. 展开更多
关键词 principal components analysis partial least squares-based logistic regression genome-wide association study type I error POWER
暂未订购
QUALITY CONTROL OF SEMICONDUCTOR PACKAGING BASED ON PRINCIPAL COMPONENTS ANALYSIS 被引量:2
4
作者 HE Shuguang QI Ershi HE Zhen NIE Bin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第6期84-86,共3页
5 critical quality characteristics must be controlled in the surface mount and wire-bond process in semiconductor packaging. And these characteristics are correlated with each other. So the principal components analy... 5 critical quality characteristics must be controlled in the surface mount and wire-bond process in semiconductor packaging. And these characteristics are correlated with each other. So the principal components analysis(PCA) is used in the analysis of the sample data firstly. And then the process is controlled with hotelling T^2 control chart for the first several principal components which contain sufficient information. Furthermore, a software tool is developed for this kind of problems. And with sample data from a surface mounting device(SMD) process, it is demonstrated that the T^2 control chart with PCA gets the same conclusion as without PCA, but the problem is transformed from high-dimensional one to a lower dimensional one, i.e., from 5 to 2 in this demonstration. 展开更多
关键词 Semiconductor packaging principal components analysis Quality control
在线阅读 下载PDF
Comparison of Principal Components Analysis,Independent Components Analysis and Common Components Analysis
5
作者 Douglas N.Rutledge 《Journal of Analysis and Testing》 EI 2018年第3期235-248,共14页
The aim of this work is to describe and compare three exploratory chemometrical tools,principal components analysis,independent components analysis and common components analysis,the last one being a modification of t... The aim of this work is to describe and compare three exploratory chemometrical tools,principal components analysis,independent components analysis and common components analysis,the last one being a modification of the multi-block statistical method known as common components and specific weights analysis.The three methods were applied to a set of data to show the differences and similarities of the results obtained,highlighting their complementarity. 展开更多
关键词 Exploratory data analysis CHEMOMETRICS principal components analysis Independent components analysis Common components analysis Common components and specific weights analysis
原文传递
Influencing factor of the characterization and restoration of phase aberrations resulting from atmospheric turbulence based on Principal Component Analysis
6
作者 WANG Jiang-pu-zhen WANG Zhi-qiang +2 位作者 ZHANG Jing-hui QIAO Chun-hong FAN Cheng-yu 《中国光学(中英文)》 北大核心 2025年第4期899-907,共9页
Restoration of phase aberrations is crucial for addressing atmospheric turbulence in light propagation.Traditional restoration algorithms based on Zernike polynomials(ZPs)often encounter challenges related to high com... Restoration of phase aberrations is crucial for addressing atmospheric turbulence in light propagation.Traditional restoration algorithms based on Zernike polynomials(ZPs)often encounter challenges related to high computational complexity and insufficient capture of high-frequency phase aberration components,so we proposed a Principal-Component-Analysis-based method for representing phase aberrations.This paper discusses the factors influencing the accuracy of restoration,mainly including the sample space size and the sampling interval of D/r_(0),on the basis of characterizing phase aberrations by Principal Components(PCs).The experimental results show that a larger D/r_(0)sampling interval can ensure the generalization ability and robustness of the principal components in the case of a limited amount of original data,which can help to achieve high-precision deployment of the model in practical applications quickly.In the environment with relatively strong turbulence in the test set of D/r_(0)=24,the use of 34 terms of PCs can improve the corrected Strehl ratio(SR)from 0.007 to 0.1585,while the Strehl ratio of the light spot after restoration using 34 terms of ZPs is only 0.0215,demonstrating almost no correction effect.The results indicate that PCs can serve as a better alternative in representing and restoring the characteristics of atmospheric turbulence induced phase aberrations.These findings pave the way to use PCs of phase aberrations with fewer terms than traditional ZPs to achieve data dimensionality reduction,and offer a reference to accelerate and stabilize the model and deep learning based adaptive optics correction. 展开更多
关键词 phase aberration atmospheric turbulence principal component analysis Zernike polynomials
在线阅读 下载PDF
Refining GNSS-based water storage estimation:Improved hydrological signal extraction using principal component analysis
7
作者 Jiaxiang Tian Yulong Zhong +4 位作者 Yingchun Shen Kaijun Yang Hongbing Bai Fan Lei Changqing Wang 《Geodesy and Geodynamics》 2025年第5期591-603,共13页
The Global Navigation Satellite System(GNSS)is vital for monitoring terrestrial water storage(TWS).However,effectively extracting hydrological load deformation from GNSS observations poses a significant challenge.This... The Global Navigation Satellite System(GNSS)is vital for monitoring terrestrial water storage(TWS).However,effectively extracting hydrological load deformation from GNSS observations poses a significant challenge.This study proposes a novel strategy;the seasonal hydrological load signals are removed from the raw data,and the remaining signals use principal component analysis(PCA).Simulation results from Yunnan Province demonstrate that the spatial distribution of the root mean square error(RMSE)is improved by approximately 15% compared with traditional PCA extraction from raw data.From January 2013 to December 2022,TWS was inverted from 24 GNSS stations in Yunnan Province.The spatial distribution and time series of TWS inverted from GNSS align well with those TWS inferred from the Gravity Recovery and Climate Experiment(GRACE),GRACE Follow-On(GFO),and the Global Land Data Assimilation System(GLDAS)land surface model.However,the amplitude of the GNSS-inverted TWS is slightly higher.Since GNSS ground stations are more sensitive to hydrological load signals,they show correlations with precipitation data that are 8.6%and 6.0%higher than those of GRACE and GLDAS,respectively.In the power spectral density analysis of GRACE/GFO,GLDAS,and GNSS,the signal strength of GNSS is much higher than that of GRACE/GFO and GLDAS in the June and February cycles.These findings suggest that the new data extraction strategy can capture higher frequency hydrological signals in TWS,and GNSS observations can help address limitations in GRACE/GFO observations.This study demonstrates the potential of GNSS TWS in capturing higher-frequency hydrological signals and climate extremes application. 展开更多
关键词 Hydrography GNSS Green's function principal component analysis Yunnan Province
原文传递
A novel method for indicating landfill stabilization combining microbial metabolic analysis with principal component analysis
8
作者 Fangming Xu Yiping Wu +3 位作者 Boning Kong Jiahui Yuan Xiangrui Kong Hongtao Wang 《Frontiers of Environmental Science & Engineering》 2025年第10期83-97,共15页
It is of critical importance to determine the endpoint of stabilization for landfills that are stabilized by aeration acceleration.Current stabilization evaluation methods are inconsistent and mostly fail to account f... It is of critical importance to determine the endpoint of stabilization for landfills that are stabilized by aeration acceleration.Current stabilization evaluation methods are inconsistent and mostly fail to account for the effect of oxygen concentration.In this study,degradation experiments were conducted to quantitatively analyze the impact of oxygen on microbial communities and metabolic functions.High-throughput sequencing analysis demonstrated that an oxygen concentration exceeding 10%significantly enhances amino acid metabolism,secondary metabolite biosynthesis,and exogenous biodegradation.Three-dimensional fluorescence data were analyzed using the PARAFAC method,and a novel fluorescence-based stabilization indicator was proposed based on the ratio of fulvic-like to tyrosine-like substances.When the growth multiples of the fluorescence index exceed 10-fold,it can be inferred that degradation has been met the stabilization endpoint.Principal component analysis was employed to establish multiple regression equations between the physicochemical parameters of landfill waste and dissolved fluorescent substants,offering an innovative insight to evaluate the stabilization process of aerated landfills. 展开更多
关键词 Landfill stabilization Municipal solid waste AERATION principal component analysis Microbial metabolism
原文传递
Separation of rotating and stationary sound sources based on robust principal component analysis
9
作者 Fangli NING Weizhe ZHENG +1 位作者 Hongjie HOU Yang WANG 《Chinese Journal of Aeronautics》 2025年第8期217-230,共14页
Traditional beamforming techniques may not accurately locate sources in scenarios with both stationary and rotating sound sources.The existence of rotating sound sources can cause blurring in the stationary beamformin... Traditional beamforming techniques may not accurately locate sources in scenarios with both stationary and rotating sound sources.The existence of rotating sound sources can cause blurring in the stationary beamforming map.Current algorithms for separating different moving sound sources have limited effectiveness,leading to significant residual noise,especially when the rotating source is strong enough to mask stationary sources completely.To overcome these challenges,a novel solution utilizing a virtual rotating array in the modal domain combined with robust principal component analysis is proposed to separate sound sources with different rotational speeds.This approach,named Robust Principal Component Analysis in the Modal domain(RPCA-M),investigates the performance of convex nuclear norm and non-convex Schatten-p norm to distinguish stationary and rotating sources.By comparing the errors in Cross-Spectral Matrix(CSM)recovery and acoustic imaging across different algorithms,the effectiveness of RPCA-M in separating stationary and moving sound sources is demonstrated.Importantly,this method effectively separates sound sources,even when there are significant variations in their amplitudes at different rotation speeds. 展开更多
关键词 BEAMFORMING Cross-spectral matrix Virtual rotating array Robust principal component analysis Separation of sources
原文传递
Assessment of Spatial Water Quality Variations in Shallow Wells Using Principal Component Analysis in Half London Ward, Tanzania
10
作者 Matungwa William Zacharia Katambara 《Journal of Water Resource and Protection》 2025年第2期108-143,共36页
Groundwater is a crucial water source for urban areas in Africa, particularly where surface water is insufficient to meet demand. This study analyses the water quality of five shallow wells (WW1-WW5) in Half-London Wa... Groundwater is a crucial water source for urban areas in Africa, particularly where surface water is insufficient to meet demand. This study analyses the water quality of five shallow wells (WW1-WW5) in Half-London Ward, Tunduma Town, Tanzania, using Principal Component Analysis (PCA) to identify the primary factors influencing groundwater contamination. Monthly samples were collected over 12 months and analysed for physical, chemical, and biological parameters. The PCA revealed between four and six principal components (PCs) for each well, explaining between 84.61% and 92.55% of the total variance in water quality data. In WW1, five PCs captured 87.53% of the variability, with PC1 (33.05%) dominated by pH, EC, TDS, and microbial contamination, suggesting significant influences from surface runoff and pit latrines. In WW2, six PCs explained 92.55% of the variance, with PC1 (36.17%) highlighting the effects of salinity, TDS, and agricultural runoff. WW3 had four PCs explaining 84.61% of the variance, with PC1 (39.63%) showing high contributions from pH, hardness, and salinity, indicating geological influences and contamination from human activities. Similarly, in WW4, six PCs explained 90.83% of the variance, where PC1 (43.53%) revealed contamination from pit latrines and fertilizers. WW5 also had six PCs, accounting for 92.51% of the variance, with PC1 (42.73%) indicating significant contamination from agricultural runoff and pit latrines. The study concludes that groundwater quality in Half-London Ward is primarily affected by a combination of surface runoff, pit latrine contamination, agricultural inputs, and geological factors. The presence of microbial contaminants and elevated nitrate and phosphate levels underscores the need for improved sanitation and sustainable agricultural practices. Recommendations include strengthening sanitation infrastructure, promoting responsible farming techniques, and implementing regular groundwater monitoring to safeguard water resources and public health in the region. 展开更多
关键词 Groundwater Contamination principal Component analysis (PCA) Shallow Well Water Quality Anthropogenic Pollution Hydrogeological Processes
在线阅读 下载PDF
Inter-hemispheric couplings in the middle atmosphere exhibited by principal component analysis of the SD-WACCM-X simulations
11
作者 Sheng-Yang Gu YuBo Zeng +3 位作者 Jin Hu YuSong Qin Liang Tang YuXuan Liu 《Earth and Planetary Physics》 2025年第4期925-937,共13页
This study employs Principal Component Analysis(PCA)and 13 years of SD-WACCM-X model data(2007-2019)to investigate the characteristics and mechanisms of Inter-hemispheric Coupling(IHC)triggered by sudden stratospheric... This study employs Principal Component Analysis(PCA)and 13 years of SD-WACCM-X model data(2007-2019)to investigate the characteristics and mechanisms of Inter-hemispheric Coupling(IHC)triggered by sudden stratospheric warming(SSW)events.IHC in both hemispheres leads to a cold anomaly in the equatorial stratosphere,a warm anomaly in the equatorial mesosphere,and increased temperatures in the mesosphere and lower thermosphere(MLT)region of the summer hemisphere.However,the IHC features during boreal winter period are significantly weaker than during the austral winter period,primarily due to weaker stationary planetary wave activity in the Southern Hemisphere(SH).During the austral winter period,IHC results in a warm anomaly in the polar mesosphere of the SH,which does not occur in the NH during boreal winter period.This study also examines the possible influence of quasi-two-day waves(QTDWs)on IHC.We found that the largest temperature anomaly in the summer polar MLT region is associated with a large wind instability area,and a well-developed critical layer structure of QTDW in January.In contrast,during July,despite favorable conditions for QTDW propagation in the Northern Hemisphere,weaker IHC response is observed,suggesting that IHC features and the relationship with QTDWs during July would be more complex than during January. 展开更多
关键词 inter-hemispheric coupling principal component analysis middle atmosphere quasi-two-day waves
在线阅读 下载PDF
Phase transition extracted by principal component analysis in the disordered Moore–Read state
12
作者 Na Jiang Shuaixin Fu +1 位作者 Zhengzhi Ma Lian Wang 《Chinese Physics B》 2025年第4期552-558,共7页
We study the influence of disorder on the Moore–Read state by principal component analysis(PCA),which is one of the ground state candidates for the 5/2 fractional Hall state.By using PCA,the topological features of t... We study the influence of disorder on the Moore–Read state by principal component analysis(PCA),which is one of the ground state candidates for the 5/2 fractional Hall state.By using PCA,the topological features of the ground state wave functions with different disorder strengths can be distilled.As the disorder strength increases,the Moore–Read state will be destroyed.We explore the phase transition by analyzing the overlaps between the random sample wave functions and the topologically distilled state.The cross-point between the amplitudes of the principal component and its counterpart is the phase transition point.Additionally,the origin of the second component comes from the excited states,which is different from the Laughlin state. 展开更多
关键词 fractional quantum Hall phase transition principal component analysis
原文传递
Correlation and Principal Component Analysis on Main Agronomic Traits of New Waxy Corn Varieties 被引量:6
13
作者 吕莹莹 李特 +3 位作者 张萌 沈丹丹 张士东 张恩盈 《Agricultural Science & Technology》 CAS 2017年第9期1732-1737,共6页
[Objective] This study was conducted to provide certain theoretical reference for the comprehensive evaluation and breeding of new fresh waxy corn vari- eties. [Method] With 5 good fresh waxy corn varieties as experim... [Objective] This study was conducted to provide certain theoretical reference for the comprehensive evaluation and breeding of new fresh waxy corn vari- eties. [Method] With 5 good fresh waxy corn varieties as experimental materials, correlation analysis and principal component anatysis were performed on 13 agronomic traits, i.e., plant height, ear position, ear weight, ear diameter, axis diameter, ear length, bald tip length, ear row number, number of grains per row, 100-kernel weight, fresh ear yield, tassel length, and tassel branch number. [Result] The principal component analysis performed to the 13 agronomic traits showed that the first three principal components, i.e., the fresh ear yield factors, the tassel factors and the bald top factors, had an accumulative contribution rate over 87.2767%, and could basically represent the genetic information represented by the 13 traits. The first principal component is the main index for the selection and evaluation of good corn varieties which should have large ear, large ear diameter but small axis diameter, i.e., longer grains, larger number of grains per ear, higher, 100-grain weight and higher plant height. As to the second principal component, the plants of fresh corn varieties are best to have longer tassel and not too many branches, and under the premise of ensuring enough pollen for the female spike, the varieties with fewer tassel branches shoud be selected as far as possible. From the point of the third principal component, bald tip length affects the marketing quality of fresh corn, and during fariety evaluation and breeding, the bald top length should be control at the Iowest standard. [Conclusion] The fresh ear yield of corn is in close positive correlation with ear weight, 100-grain weight, ear diameter, number of grains per row and ear length, and plant height also affects fresh ear yield. 展开更多
关键词 Waxy corn Fresh ear yield Agronomic traits principal component analysis Correlation analysis
在线阅读 下载PDF
Construction of Anti-breaking Models of the Main Veins of Flue-cured Tobacco Leaves and Principal Component Analysis 被引量:4
14
作者 王宝玉 孙婷婷 +3 位作者 章国顺 张蜀香 阮龙 张云华 《Agricultural Science & Technology》 CAS 2011年第11期1615-1616,1656,共3页
[Objective] This study aimed to explore the related mechanisms of the breaking of flue-cured tobacco leaves. [Method] Anti-breaking models of the main veins of flue-cured tobacco leaves were constructed for principal ... [Objective] This study aimed to explore the related mechanisms of the breaking of flue-cured tobacco leaves. [Method] Anti-breaking models of the main veins of flue-cured tobacco leaves were constructed for principal component analysis on the anti-breaking index, leaf traits and cellulose contents. [Result] The results showed that the growth traits had certain relevance with the cellulose contents while the leaf weight assumed a significant negative correlation with the anti-breaking index, indicating that the heavier the leaf weight was, the weaker the anti-breaking capacity of flue-cured tobacco would be; the cross-sectional area of main veins and the cellulose contents had shown a positive correlation with the anti-breaking index, indicating that the thicker the main vein of flue-cured tobacco was, the higher the cellulose contents would be, and the stronger the anti-breaking capacity of flue-cured tobacco leaves would be. [Conclusion] This study provided theoretical basis and reference to improve tobacco production and enhance the quality of flue-cured tobacco. 展开更多
关键词 Flue-cured tobacco Main vein Anti-breaking index principal component analysis
在线阅读 下载PDF
Modified algorithm of principal component analysis for face recognition 被引量:3
15
作者 罗琳 邹采荣 仰枫帆 《Journal of Southeast University(English Edition)》 EI CAS 2006年第1期26-30,共5页
In principal component analysis (PCA) algorithms for face recognition, to reduce the influence of the eigenvectors which relate to the changes of the illumination on abstract features, a modified PCA (MPCA) algori... In principal component analysis (PCA) algorithms for face recognition, to reduce the influence of the eigenvectors which relate to the changes of the illumination on abstract features, a modified PCA (MPCA) algorithm is proposed. The method is based on the idea of reducing the influence of the eigenvectors associated with the large eigenvalues by normalizing the feature vector element by its corresponding standard deviation. The Yale face database and Yale face database B are used to verify the method. The simulation results show that, for front face and even under the condition of limited variation in the facial poses, the proposed method results in better performance than the conventional PCA and linear discriminant analysis (LDA) approaches, and the computational cost remains the same as that of the PCA, and much less than that of the LDA. 展开更多
关键词 face recognition principal component analysis linear discriminant analysis
在线阅读 下载PDF
Low-dimensional multi-spectral space for color reproduction based on nonnegative constrained principal component analysis 被引量:1
16
作者 王莹 曾平 +1 位作者 罗雪梅 谢琨 《Journal of Southeast University(English Edition)》 EI CAS 2009年第4期486-490,共5页
In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonne... In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonnegative constrained principal component analysis method is proposed to construct a low-dimensional multi-spectral space and accomplish the conversion between the new constructed space and the multispectral space. First, the reason behind the negative data is analyzed and a nonnegative constraint is imposed on the classic PCA. Then a set of nonnegative linear independence weight vectors of principal components is obtained, by which a lowdimensional space is constructed. Finally, a nonlinear optimization technique is used to determine the projection vectors of the high-dimensional multi-spectral data in the constructed space. Experimental results show that the proposed method can keep the reconstructed spectral data in [ 0, 1 ]. The precision of the space created by the proposed method is equivalent to or even higher than that by the PCA. 展开更多
关键词 spectral color science nonnegative constrained principal component analysis low-dimensional spectral space nonlinear optimization multi-spectral images spectral reflectance
在线阅读 下载PDF
Determination of bioactive components in the fruits of Cercis chinensis Bunge by HPLC-MS/MS and quality evaluation by principal components and hierarchical cluster analyses 被引量:7
17
作者 Yuan Hong Xiaoyan Liao Zilin Chen 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2021年第4期465-471,共7页
The fruits of leguminous plants Cercis Chinensis Bunge are still overlooked although they have been reported to be antioxidative because of the limited information on the phytochemicals of C.chinensis fruits.A simple,... The fruits of leguminous plants Cercis Chinensis Bunge are still overlooked although they have been reported to be antioxidative because of the limited information on the phytochemicals of C.chinensis fruits.A simple,rapid and sensitive HPLC-MS/MS method was developed for the identification and quantitation of the major bioactive components in C.chinensis fruits.Eighteen polyphenols were identified,which are first reported in C.chinensis fruits.Moreover,ten components were simultaneously quantified.The validated quantitative method was proved to be sensitive,reproducible and accurate.Then,it was applied to analyze batches of C.chinensis fruits from different phytomorph and areas.The principal components analysis(PCA)realized visualization and reduction of data set dimension while the hierarchical cluster analysis(HCA)indicated that the content of phenolic acids or all ten components might be used to differentiate C.chinensis fruits of different phytomorph. 展开更多
关键词 C.chinensis fruits HPLC-MS/MS POLYPHENOLS principal components analysis Hierarchical cluster analysis
暂未订购
FUZZY WITHIN-CLASS MATRIX PRINCIPAL COMPONENT ANALYSIS AND ITS APPLICATION TO FACE RECOGNITION 被引量:3
18
作者 朱玉莲 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第2期141-147,共7页
Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of sampl... Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of samples. As a result, the extracted features cannot provide enough useful information for distinguishing pat- tern from one another, and further resulting in degradation of classification performance. To fullly use class in- formation of samples, a novel method, called the fuzzy within-class MatPCA (F-WMatPCA)is proposed. F-WMatPCA utilizes the fuzzy K-nearest neighbor method(FKNN) to fuzzify the class membership degrees of a training sample and then performs fuzzy MatPCA within these patterns having the same class label. Due to more class information is used in feature extraction, F-WMatPCA can intuitively improve the classification perfor- mance. Experimental results in face databases and some benchmark datasets show that F-WMatPCA is effective and competitive than MatPCA. The experimental analysis on face image databases indicates that F-WMatPCA im- proves the recognition accuracy and is more stable and robust in performing classification than the existing method of fuzzy-based F-Fisherfaces. 展开更多
关键词 face recognition principal component analysis (PCA) matrix pattern PCA(MatPCA) fuzzy K-nearest neighbor(FKNN) fuzzy within-class MatPCA(F-WMatPCA)
在线阅读 下载PDF
Application of synthetic principal component analysis model to mine area farmland heavy metal pollution assessment 被引量:1
19
作者 王从陆 吴超 王卫军 《Journal of Coal Science & Engineering(China)》 2008年第1期109-113,共5页
Referring to GB5618-1995 about heavy metal pollution,and using statistical analysis SPSS,the major pollutants of mine area farmland heavy metal pollution were identified by variable clustering analysis.Assessment and ... Referring to GB5618-1995 about heavy metal pollution,and using statistical analysis SPSS,the major pollutants of mine area farmland heavy metal pollution were identified by variable clustering analysis.Assessment and classification were done to the mine area farmland heavy metal pollution situation by synthetic principal components analysis (PCA).The results show that variable clustering analysis is efficient to identify the principal components of mine area farmland heavy metal pollution.Sort and clustering were done to the synthetic principal components scores of soil sample,which is given by synthetic principal components analysis.Data structure of soil heavy metal contaminations relationships and pollution level of different soil samples are discovered.The results of mine area farmland heavy metal pollution quality assessed and classified with synthetic component scores reflect the influence of both the major and compound heavy metal pol- lutants.Identification and assessment results of mine area farmland heavy metal pollution can provide reference and guide to propose control measures of mine area farmland heavy metal pollution and focus on the key treatment region. 展开更多
关键词 synthetic principal components analysis model heavy metal pollution mineregional soils
在线阅读 下载PDF
Application of Principal Component Analysis with SPSS in Water Quality Assessment of Shenzhen Eastern Beach 被引量:1
20
作者 彭泰 周连宁 刘念 《Agricultural Science & Technology》 CAS 2014年第4期688-691,共4页
Survey and analysis were conducted on water quality of offshore seas in eastern region of Shenzhen by principal component analysis with SPSS. Then, 8 pollutants indices were then reduced to 5. Based on weighted analys... Survey and analysis were conducted on water quality of offshore seas in eastern region of Shenzhen by principal component analysis with SPSS. Then, 8 pollutants indices were then reduced to 5. Based on weighted analysis of principal component weights, comprehensive scores of different monitored stations were com- puted and sequenced in order to make evaluation on sea quality of eastern region of Shenzhen. 展开更多
关键词 principal components analysis with SPSS Water quality evaluation Eastern region in Shenzhen
在线阅读 下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部