期刊文献+
共找到4,727篇文章
< 1 2 237 >
每页显示 20 50 100
Prediction of joint roughness coefficient via hybrid machine learning model combined with principal components analysis 被引量:1
1
作者 Shijie Xie Hang Lin +2 位作者 Tianxing Ma Kang Peng Zhen Sun 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2291-2306,共16页
Joint roughness coefficient(JRC)is the most commonly used parameter for quantifying surface roughness of rock discontinuities in practice.The system composed of multiple roughness statistical parameters to measure JRC... Joint roughness coefficient(JRC)is the most commonly used parameter for quantifying surface roughness of rock discontinuities in practice.The system composed of multiple roughness statistical parameters to measure JRC is a nonlinear system with a lot of overlapping information.In this paper,a dataset of eight roughness statistical parameters covering 112 digital joints is established.Then,the principal component analysis method is introduced to extract the significant information,which solves the information overlap problem of roughness characterization.Based on the two principal components of extracted features,the white shark optimizer algorithm was introduced to optimize the extreme gradient boosting model,and a new machine learning(ML)prediction model was established.The prediction accuracy of the new model and the other 17 models was measured using statistical metrics.The results show that the prediction result of the new model is more consistent with the real JRC value,with higher recognition accuracy and generalization ability. 展开更多
关键词 Rock discontinuities Joint roughness coefficient(JRC) Roughness characterization principal components analysis(pca) Machine learning
在线阅读 下载PDF
Assessment of Spatial Water Quality Variations in Shallow Wells Using Principal Component Analysis in Half London Ward, Tanzania
2
作者 Matungwa William Zacharia Katambara 《Journal of Water Resource and Protection》 2025年第2期108-143,共36页
Groundwater is a crucial water source for urban areas in Africa, particularly where surface water is insufficient to meet demand. This study analyses the water quality of five shallow wells (WW1-WW5) in Half-London Wa... Groundwater is a crucial water source for urban areas in Africa, particularly where surface water is insufficient to meet demand. This study analyses the water quality of five shallow wells (WW1-WW5) in Half-London Ward, Tunduma Town, Tanzania, using Principal Component Analysis (PCA) to identify the primary factors influencing groundwater contamination. Monthly samples were collected over 12 months and analysed for physical, chemical, and biological parameters. The PCA revealed between four and six principal components (PCs) for each well, explaining between 84.61% and 92.55% of the total variance in water quality data. In WW1, five PCs captured 87.53% of the variability, with PC1 (33.05%) dominated by pH, EC, TDS, and microbial contamination, suggesting significant influences from surface runoff and pit latrines. In WW2, six PCs explained 92.55% of the variance, with PC1 (36.17%) highlighting the effects of salinity, TDS, and agricultural runoff. WW3 had four PCs explaining 84.61% of the variance, with PC1 (39.63%) showing high contributions from pH, hardness, and salinity, indicating geological influences and contamination from human activities. Similarly, in WW4, six PCs explained 90.83% of the variance, where PC1 (43.53%) revealed contamination from pit latrines and fertilizers. WW5 also had six PCs, accounting for 92.51% of the variance, with PC1 (42.73%) indicating significant contamination from agricultural runoff and pit latrines. The study concludes that groundwater quality in Half-London Ward is primarily affected by a combination of surface runoff, pit latrine contamination, agricultural inputs, and geological factors. The presence of microbial contaminants and elevated nitrate and phosphate levels underscores the need for improved sanitation and sustainable agricultural practices. Recommendations include strengthening sanitation infrastructure, promoting responsible farming techniques, and implementing regular groundwater monitoring to safeguard water resources and public health in the region. 展开更多
关键词 Groundwater Contamination principal component analysis (pca) Shallow Well Water Quality Anthropogenic Pollution Hydrogeological Processes
在线阅读 下载PDF
Prediction of rock mass classification in tunnel boring machine tunneling using the principal component analysis (PCA)-gated recurrent unit (GRU) neural network
3
作者 Ke Man Liwen Wu +3 位作者 Xiaoli Liu Zhifei Song Kena Li Nawnit Kumar 《Deep Underground Science and Engineering》 2024年第4期413-425,共13页
Due to the complexity of underground engineering geology,the tunnel boring machine(TBM)usually shows poor adaptability to the surrounding rock mass,leading to machine jamming and geological hazards.For the TBM project... Due to the complexity of underground engineering geology,the tunnel boring machine(TBM)usually shows poor adaptability to the surrounding rock mass,leading to machine jamming and geological hazards.For the TBM project of Lanzhou Water Source Construction,this study proposed a neural network called PCA-GRU,which combines principal component analysis(PCA)with gated recurrent unit(GRU)to improve the accuracy of predicting rock mass classification in TBM tunneling.The input variables from the PCA dimension reduction of nine parameters in the sample data set were utilized for establishing the PCA-GRU model.Subsequently,in order to speed up the response time of surrounding rock mass classification predictions,the PCA-GRU model was optimized.Finally,the prediction results obtained by the PCA-GRU model were compared with those of four other models and further examined using random sampling analysis.As indicated by the results,the PCA-GRU model can predict the rock mass classification in TBM tunneling rapidly,requiring about 20 s to run.It performs better than the previous four models in predicting the rock mass classification,with accuracy A,macro precision MP,and macro recall MR being 0.9667,0.963,and 0.9763,respectively.In Class II,III,and IV rock mass prediction,the PCA-GRU model demonstrates better precision P and recall R owing to the dimension reduction technique.The random sampling analysis indicates that the PCA-GRU model shows stronger generalization,making it more appropriate in situations where the distribution of various rock mass classes and lithologies change in percentage. 展开更多
关键词 gated recurrent unit(GRU) prediction of rock mass classification principal component analysis(pca) TBM tunneling
原文传递
Tool Health Condition Recognition Method for High Speed Milling of Titanium Alloy Based on Principal Component Analysis(PCA)and Long Short Term Memory(LSTM) 被引量:2
4
作者 YANG Qirui XU Kaizhou +2 位作者 ZHENG Xiaohu XIAO Lei BAO Jinsong 《Journal of Donghua University(English Edition)》 EI CAS 2019年第4期364-368,共5页
The healthy condition of the milling tool has a very high impact on the machining quality of the titanium components.Therefore,it is important to recognize the healthy condition of the tool and replace the damaged cut... The healthy condition of the milling tool has a very high impact on the machining quality of the titanium components.Therefore,it is important to recognize the healthy condition of the tool and replace the damaged cutter at the right time.In order to recognize the health condition of the milling cutter,a method based on the long short term memory(LSTM)was proposed to recognize tool health state in this paper.The various signals collected in the tool wear experiments were analyzed by time-domain statistics,and then the extracted data were generated by principal component analysis(PCA)method.The preprocessed data extracted by PCA is transmitted to the LSTM model for recognition.Compared with back propagation neural network(BPNN)and support vector machine(SVM),the proposed method can effectively utilize the time-domain regulation in the data to achieve higher recognition speed and accuracy. 展开更多
关键词 HEALTH CONDITION recognition MILLING TOOL principal component analysis(pca) long short TERM memory(LSTM)
在线阅读 下载PDF
Using deep neural networks coupled with principal component analysis for ore production forecasting at open-pit mines 被引量:1
5
作者 Chengkai Fan Na Zhang +1 位作者 Bei Jiang Wei Victor Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期727-740,共14页
Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challe... Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines. 展开更多
关键词 Oil sands production Open-pit mining Deep learning principal component analysis(pca) Artificial neural network Mining engineering
在线阅读 下载PDF
Optimizing data aggregation and clustering in Internet of things networks using principal component analysis and Q-learning 被引量:1
6
作者 Abhishek Bajpai Harshita Verma Anita Yadav 《Data Science and Management》 2024年第3期189-196,共8页
The Internet of things(IoT)is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring,surveillance,and healthcare.To address the limitations im... The Internet of things(IoT)is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring,surveillance,and healthcare.To address the limitations imposed by inadequate resources,energy,and network scalability,this type of network relies heavily on data aggregation and clustering algorithms.Although various conventional studies have aimed to enhance the lifespan of a network through robust systems,they do not always provide optimal efficiency for real-time applications.This paper presents an approach based on state-of-the-art machine-learning methods.In this study,we employed a novel approach that combines an extended version of principal component analysis(PCA)and a reinforcement learning algorithm to achieve efficient clustering and data reduction.The primary objectives of this study are to enhance the service life of a network,reduce energy usage,and improve data aggregation efficiency.We evaluated the proposed methodology using data collected from sensors deployed in agricultural fields for crop monitoring.Our proposed approach(PQL)was compared to previous studies that utilized adaptive Q-learning(AQL)and regional energy-aware clustering(REAC).Our study outperformed in terms of both network longevity and energy consumption and established a fault-tolerant network. 展开更多
关键词 Wireless sensor network principal component analysis(pca) Reinforcement learning Data aggregation
在线阅读 下载PDF
A novel method for chemistry tabulation of strained premixed/stratified flames based on principal component analysis 被引量:4
7
作者 Peng TANG Hongda ZHANG +2 位作者 Taohong YE Zhou YU Zhaoyang XIA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第6期855-866,共12页
The principal component analysis (PCA) is used to analyze the high dimen- sional chemistry data of laminar premixed/stratified flames under strain effects. The first few principal components (PCs) with larger cont... The principal component analysis (PCA) is used to analyze the high dimen- sional chemistry data of laminar premixed/stratified flames under strain effects. The first few principal components (PCs) with larger contribution ratios axe chosen as the tabu- lated scalars to build the look-up chemistry table. Prior tests show that strained premixed flame structure can be well reconstructed. To highlight the physical meanings of the tabu- lated scalars in stratified flames, a modified PCA method is developed, where the mixture fraction is used to replace one of the PCs with the highest correlation coefficient. The other two tabulated scalars are then modified with the Schmidt orthogonalization. The modified tabulated scalars not only have clear physical meanings, but also contain passive scalars. The PCA method has good commonality, and can be extended for building the thermo-chemistry table including strain rate effects when different fuels are used. 展开更多
关键词 premixed flame stratified flame strain rate principal component analysispca chemistry table
在线阅读 下载PDF
Grey Relational Analysis Coupled with Principal Component Analysis Method For Optimization Design of Novel Crash Box Structure 被引量:1
8
作者 Shuang Wang Dengfeng Wang 《Journal of Beijing Institute of Technology》 EI CAS 2019年第3期577-584,共8页
Crashworthiness and lightweight optimization design of the crash box are studied in this paper. For the initial model, a physical test was performed to verify the model. Then, a parametric model using mesh morphing te... Crashworthiness and lightweight optimization design of the crash box are studied in this paper. For the initial model, a physical test was performed to verify the model. Then, a parametric model using mesh morphing technology is used to optimize and decrease the maximum collision force (MCF) and increase specific energy absorption (SEA) while ensure mass is not increased. Because MCF and SEA are two conflicting objectives, grey relational analysis (GRA) and principal component analysis (PCA) are employed for design optimization of the crash box. Furthermore, multi-objective analysis can convert to a single objective using the grey relational grade (GRG) simultaneously, hence, the proposed method can obtain the optimal combination of design parameters for the crash box. It can be concluded that the proposed method decreases the MCF and weight to 16.7% and 29.4% respectively, while increasing SEA to 16.4%. Meanwhile, the proposed method in comparison to the conventional NSGA-Ⅱ method, reduces the time cost by 103%. Hence, the proposed method can be properly applied to the optimization of the crash box. 展开更多
关键词 CRASH box optimization maximum COLLISION force (MCF) specific energy absorption (SEA) GREY RELATIONAL analysis (GRA) principal component analysis (pca)
在线阅读 下载PDF
Fast Tensor Principal Component Analysis via Proximal Alternating Direction Method with Vectorized Technique
9
作者 Haiyan Fan Gangyao Kuang Linbo Qiao 《Applied Mathematics》 2017年第1期77-86,共10页
This paper studies the problem of tensor principal component analysis (PCA). Usually the tensor PCA is viewed as a low-rank matrix completion problem via matrix factorization technique, and nuclear norm is used as a c... This paper studies the problem of tensor principal component analysis (PCA). Usually the tensor PCA is viewed as a low-rank matrix completion problem via matrix factorization technique, and nuclear norm is used as a convex approximation of the rank operator under mild condition. However, most nuclear norm minimization approaches are based on SVD operations. Given a matrix , the time complexity of SVD operation is O(mn2), which brings prohibitive computational complexity in large-scale problems. In this paper, an efficient and scalable algorithm for tensor principal component analysis is proposed which is called Linearized Alternating Direction Method with Vectorized technique for Tensor Principal Component Analysis (LADMVTPCA). Different from traditional matrix factorization methods, LADMVTPCA utilizes the vectorized technique to formulate the tensor as an outer product of vectors, which greatly improves the computational efficacy compared to matrix factorization method. In the experiment part, synthetic tensor data with different orders are used to empirically evaluate the proposed algorithm LADMVTPCA. Results have shown that LADMVTPCA outperforms matrix factorization based method. 展开更多
关键词 TENSOR principal component analysis PROXIMAL ALTERNATING Direction method Vectorized TECHNIQUE
在线阅读 下载PDF
FUZZY WITHIN-CLASS MATRIX PRINCIPAL COMPONENT ANALYSIS AND ITS APPLICATION TO FACE RECOGNITION 被引量:3
10
作者 朱玉莲 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第2期141-147,共7页
Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of sampl... Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of samples. As a result, the extracted features cannot provide enough useful information for distinguishing pat- tern from one another, and further resulting in degradation of classification performance. To fullly use class in- formation of samples, a novel method, called the fuzzy within-class MatPCA (F-WMatPCA)is proposed. F-WMatPCA utilizes the fuzzy K-nearest neighbor method(FKNN) to fuzzify the class membership degrees of a training sample and then performs fuzzy MatPCA within these patterns having the same class label. Due to more class information is used in feature extraction, F-WMatPCA can intuitively improve the classification perfor- mance. Experimental results in face databases and some benchmark datasets show that F-WMatPCA is effective and competitive than MatPCA. The experimental analysis on face image databases indicates that F-WMatPCA im- proves the recognition accuracy and is more stable and robust in performing classification than the existing method of fuzzy-based F-Fisherfaces. 展开更多
关键词 face recognition principal component analysis pca matrix pattern pca(Matpca fuzzy K-nearest neighbor(FKNN) fuzzy within-class Matpca(F-WMatpca
在线阅读 下载PDF
基于PCA-Logistic回归模型的图像过曝光区域检测方法
11
作者 陈涛 符均 +1 位作者 丁子硬 陈希 《制造业自动化》 2025年第4期40-47,共8页
针对过曝光区域检测问题,提出了一种基于主成分分析(Principal Components Analysis,PCA)和Logistic回归的过曝光图像饱和像素检测方法。首先通过研究分析过曝光图像的显著性特征,提取了亮度及颜色特征、人类视觉修正的饱和度特征、空... 针对过曝光区域检测问题,提出了一种基于主成分分析(Principal Components Analysis,PCA)和Logistic回归的过曝光图像饱和像素检测方法。首先通过研究分析过曝光图像的显著性特征,提取了亮度及颜色特征、人类视觉修正的饱和度特征、空间邻域特征、局部熵特征、灰度对比度特征等变量作为检测图像过曝光的初始指标;接着利用主成分分析方法对原始指标变量进行降维处理,然后利用建立的L2正则化的Logistic回归模型进行分析预测;最后与其他过曝光检测算法进行了对比分析,并在某安防监控图像中进行了过曝光区域检测效果验证。结果表明,该模型检测结果更具整体性,检测区域更紧凑,也更符合人眼对过曝光区域的视觉感知。 展开更多
关键词 过曝光图像 饱和像素检测 主成分分析(pca) LOGISTIC回归分析
在线阅读 下载PDF
基于PCA-BP神经网络的应急响应物资精准需求预测模型构建——以地震灾害响应初期的灾民生活物资需求为例
12
作者 李尧远 曲政澍 《灾害学》 北大核心 2025年第4期31-36,共6页
为提升灾害应急响应能力,实现响应初期应急物资精准供给,保障灾民基本生活需求,该文以我国部分地震灾害为例,收集地震数据,以紧急转移安置人口数量为预测目标,选取相关地震指标为影响因素,构建基于主成分分析(PCA)与反向传播(BP)神经网... 为提升灾害应急响应能力,实现响应初期应急物资精准供给,保障灾民基本生活需求,该文以我国部分地震灾害为例,收集地震数据,以紧急转移安置人口数量为预测目标,选取相关地震指标为影响因素,构建基于主成分分析(PCA)与反向传播(BP)神经网络的紧急转移安置人口数量预测模型。在此基础上,结合紧急转移安置人口数量与灾民生活物资需求的关系,建立物资需求预测模型。结果表明:该模型在在紧急转移安置人口预测方面具有更高的精度,能够较为准确估算紧急转移安置人口数量;在生活物资需求预测方面,经算例验证,该模型具备一定实践价值,可为应急响应初期的物资配置决策提供科学依据。 展开更多
关键词 应急响应 需求预测 地震 主成分分析法(pca) 反向(BP)神经网络
在线阅读 下载PDF
基于PCA-TSO-BPNN模型的海底管道内腐蚀速率预测研究 被引量:2
13
作者 肖荣鸽 刘国庆 +3 位作者 刘博 魏王颖 庄琦 靳帅帅 《热加工工艺》 北大核心 2025年第4期82-88,共7页
近年来,随着我国海洋油气勘探开发力度不断增强,在役的和建设中的海底油气管道越来越多,海底油气管道内腐蚀速率预测对于海底油气管道的日常运行、维护和检修极为重要。为了提高海底油气管道内腐蚀速率预测精度和稳定性,建立了基于主成... 近年来,随着我国海洋油气勘探开发力度不断增强,在役的和建设中的海底油气管道越来越多,海底油气管道内腐蚀速率预测对于海底油气管道的日常运行、维护和检修极为重要。为了提高海底油气管道内腐蚀速率预测精度和稳定性,建立了基于主成分分析(Principal Component Analysis,PCA)和金枪鱼群算法(Tuna Swarm Optimization,TSO)优化BP神经网络的海底管道内腐蚀速率预测组合模型PCA-TSO-BPNN。运用PCA进行数据降维,筛选出海底管道内腐蚀速率的主要影响因素;建立海底管道内腐蚀速率BPNN预测模型,并采用TSO算法对BPNN预测模型的权值和阈值参数进行寻优;利用PCA-TSO-BPNN组合模型对海底管道内腐蚀速率进行预测,并与对比模型进行比较,验证PCA-TSO-BPNN组合模型的可行性和可靠性。结果表明:PCA-TSO-BPNN组合模型的平均绝对百分误差(MAPE)和均方根误差(RMSE)分别为1.8441%和0.06757,远低于对比模型,组合模型具有较高的预测精度和稳定性,可为海底管道内腐蚀防护和流动保障提供决策支持。 展开更多
关键词 BP神经网络 主成分分析 金枪鱼群算法 海底管道 腐蚀速率预测
原文传递
应用奇异值分解(SVD)-主成分分析(PCA)组合模型定量圈定与评价腾冲地块锡钨和铅锌多金属找矿靶区 被引量:3
14
作者 郑澳月 费金娜 +3 位作者 陈永清 宁妍云 曹一琳 赵鹏大 《地学前缘》 北大核心 2025年第1期283-301,共19页
成矿元素或元素组在一个地质单元中的富集是成岩和成矿地质过程多阶段作用的产物。基于水系沉积物地球化学数据,主成分分析(principal component analysis,PCA)可识别成矿元素组。奇异值分解(singular value decomposition,SVD)可将成... 成矿元素或元素组在一个地质单元中的富集是成岩和成矿地质过程多阶段作用的产物。基于水系沉积物地球化学数据,主成分分析(principal component analysis,PCA)可识别成矿元素组。奇异值分解(singular value decomposition,SVD)可将成矿元素组主成分得分进一步分解为两个部分:(1)成矿元素组合区域异常分量,能够表征在地壳演化过程中,由各种地质作用(岩浆作用、沉积作用和/或变质作用)形成的有利于成矿的高背景区域;(2)成矿元素组合局部异常分量,能够表征成矿作用引起的,叠加在成矿元素组合区域异常分量之上的成矿元素组合局部异常分量,应用局部异常分量能够识别找矿靶区。本次研究,首先基于国家1∶200000水系沉积物地球化学数据,应用主成分分析建立不同类型的成矿元素组;其次,利用SVD从成矿元素组的主成分得分中识别出不同类型成矿过程引起的成矿元素组合局部异常分量;最后,应用局部异常分量识别找矿靶区。最终在腾冲地块圈定15处找矿靶区,其中Sn-W找矿靶区8处,Pb-Zn-Ag找矿靶区7处。预测Sn-W潜在资源量915 Mt,Pb-Zn-Ag潜在资源量792 Mt。 展开更多
关键词 SVD pca 成矿元素组合异常分量 地球化学块体 锡钨和铅锌多金属矿 腾冲地块 西南地区
在线阅读 下载PDF
基于CEEMDAN-PCA-AC-CNN模型的离心泵故障识别技术 被引量:1
15
作者 李曈希 刘志龙 +3 位作者 罗骞 曾真 王钦超 聂常华 《核动力工程》 北大核心 2025年第1期265-272,共8页
为确保离心泵的长期健康稳定运行,对其进行在线监测与故障识别显得尤为重要。本文提出了一种基于自适应噪声的集合经验模态分解(CEEMDAN)-主成分分析(PCA)-自相关(AC)-卷积神经网络(CNN)的设备故障识别模型。首先将采集到的振动信号进行... 为确保离心泵的长期健康稳定运行,对其进行在线监测与故障识别显得尤为重要。本文提出了一种基于自适应噪声的集合经验模态分解(CEEMDAN)-主成分分析(PCA)-自相关(AC)-卷积神经网络(CNN)的设备故障识别模型。首先将采集到的振动信号进行CEEMDAN,对得到的内涵模态函数(IMF)分量进行判别,剔除噪声分量,重构第一轮去噪信号。再通过PCA对一轮去噪的信号进行二次降噪处理。然后将经历2次降噪处理后的信号进行AC处理,送入CNN作为输入数据,对模型进行训练。通过对某离心泵故障进行实验验证,结果表明:本文提出的方法相较于传统双层降噪结合CNN的算法、CEEMD-小波降噪-AC-CNN等算法具有更好的抗干扰性能与更快的模型收敛速度,具有更高的识别准确率与更好的鲁棒性,在同等量级下,识别准确率高达97.9%。 展开更多
关键词 自适应噪声的集合经验模态分解(CEEMDAN) 主成分分析(pca) 信号降噪 卷积神经网络(CNN) 故障识别
原文传递
Comprehensive multivariate grey incidence degree based on principal component analysis 被引量:6
16
作者 Ke Zhang Yintao Zhang Pinpin Qu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期840-847,共8页
To overcome the too fine-grained granularity problem of multivariate grey incidence analysis and to explore the comprehensive incidence analysis model, three multivariate grey incidences degree models based on princip... To overcome the too fine-grained granularity problem of multivariate grey incidence analysis and to explore the comprehensive incidence analysis model, three multivariate grey incidences degree models based on principal component analysis (PCA) are proposed. Firstly, the PCA method is introduced to extract the feature sequences of a behavioral matrix. Then, the grey incidence analysis between two behavioral matrices is transformed into the similarity and nearness measure between their feature sequences. Based on the classic grey incidence analysis theory, absolute and relative incidence degree models for feature sequences are constructed, and a comprehensive grey incidence model is proposed. Furthermore, the properties of models are researched. It proves that the proposed models satisfy the properties of translation invariance, multiple transformation invariance, and axioms of the grey incidence analysis, respectively. Finally, a case is studied. The results illustrate that the model is effective than other multivariate grey incidence analysis models. 展开更多
关键词 grey system multivariate grey incidence analysis behavioral matrix principal component analysis pca).
在线阅读 下载PDF
Discrimination of rice panicles by hyperspectral reflectance data based on principal component analysis and support vector classification 被引量:11
17
作者 Zhan-yu LIU Jing-jing SHI +1 位作者 Li-wen ZHANG Jing-feng HUANG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2010年第1期71-78,共8页
Detection of crop health conditions plays an important role in making control strategies of crop disease and insect damage and gaining high-quality production at late growth stages. In this study, hyperspectral reflec... Detection of crop health conditions plays an important role in making control strategies of crop disease and insect damage and gaining high-quality production at late growth stages. In this study, hyperspectral reflectance of rice panicles was measured at the visible and near-infrared regions. The panicles were divided into three groups according to health conditions: healthy panicles, empty panicles caused by Nilaparvata lugens St^l, and panicles infected with Ustilaginoidea virens. Low order derivative spectra, namely, the first and second orders, were obtained using different techniques. Principal component analysis (PCA) was performed to obtain the principal component spectra (PCS) of the foregoing derivative and raw spectra to reduce the reflectance spectral dimension. Support vector classification (SVC) was employed to discriminate the healthy, empty, and infected panicles, with the front three PCS as the in- dependent variables. The overall accuracy and kappa coefficient were used to assess the classification accuracy of SVC. The overall accuracies of SVC with PCS derived from the raw, first, and second reflectance spectra for the testing dataset were 96.55%, 99.14%, and 96.55%, and the kappa coefficients were 94.81%, 98.71%, and 94.82%, respectively. Our results demonstrated that it is feasible to use visible and near-infrared spectroscopy to discriminate health conditions of rice panicles. 展开更多
关键词 Rice panicle principal component analysis pca Support vector classification (SVC) Hyperspectra reflectance Derivative spectra
原文传递
Laser-induced breakdown spectroscopy applied to the characterization of rock by support vector machine combined with principal component analysis 被引量:6
18
作者 杨洪星 付洪波 +3 位作者 王华东 贾军伟 Markus W Sigrist 董凤忠 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第6期290-295,共6页
Laser-induced breakdown spectroscopy(LIBS) is a versatile tool for both qualitative and quantitative analysis.In this paper,LIBS combined with principal component analysis(PCA) and support vector machine(SVM) is... Laser-induced breakdown spectroscopy(LIBS) is a versatile tool for both qualitative and quantitative analysis.In this paper,LIBS combined with principal component analysis(PCA) and support vector machine(SVM) is applied to rock analysis.Fourteen emission lines including Fe,Mg,Ca,Al,Si,and Ti are selected as analysis lines.A good accuracy(91.38% for the real rock) is achieved by using SVM to analyze the spectroscopic peak area data which are processed by PCA.It can not only reduce the noise and dimensionality which contributes to improving the efficiency of the program,but also solve the problem of linear inseparability by combining PCA and SVM.By this method,the ability of LIBS to classify rock is validated. 展开更多
关键词 laser-induced breakdown spectroscopy(LIBS) principal component analysispca support vector machine(SVM) lithology identification
原文传递
Relationship of public preferences and behavior in residential outdoor spaces using analytic hierarchy process and principal component analysis—a case study of Hangzhou City, China 被引量:7
19
作者 SHI Jian-ren ZHAO Xiu-min +2 位作者 GE Jian HOKAO Kazunori WANG Zhu 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第8期1372-1385,共14页
This study examined public attitudes concerning the value of outdoor spaces which people use daily. Two successive analyses were performed based on data from common residents and college students in the city of Hangzh... This study examined public attitudes concerning the value of outdoor spaces which people use daily. Two successive analyses were performed based on data from common residents and college students in the city of Hangzhou, China. First, citizens registered various items constituting desirable values of residential outdoor spaces through a preliminary questionnaire. The result proposed three general attributes (functional, aesthetic and ecological) and ten specific qualities of residential outdoor spaces. An analytic hierarchy process (AHP) was applied to an interview survey in order to clarify the weights among these attributes and qualities. Second, principal factors were extracted from the ten specific qualities with principal component analysis (PCA) for both the common case and the campus case. In addition, the variations of respondents’ groups were classified with cluster analysis (CA) using the results of the PCA. The results of the AHP application found that the public prefers the functional attribute, rather than the aesthetic attribute. The latter is always viewed as the core value of open spaces in the eyes of architects and designers. Fur-thermore, comparisons of ten specific qualities showed that the public prefers the open spaces that can be utilized conveniently and easily for group activities, because such spaces keep an active lifestyle of neighborhood communication, which is also seen to protect human-regarding residential environments. Moreover, different groups of respondents diverge largely in terms of gender, age, behavior and preference. 展开更多
关键词 Public preference Open space Analytic hierarchy process (AHP) principal component analysis pca Cluster analysis (CA)
在线阅读 下载PDF
Decentralized Fault Diagnosis of Large-scale Processes Using Multiblock Kernel Principal Component Analysis 被引量:23
20
作者 ZHANG Ying-Wei ZHOU Hong QIN S. Joe 《自动化学报》 EI CSCD 北大核心 2010年第4期593-597,共5页
关键词 分散系统 MBKpca SPF pca
在线阅读 下载PDF
上一页 1 2 237 下一页 到第
使用帮助 返回顶部