期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A prolific and robust whole-genome genotyping method using PCR amplification via primer-template mismatched annealing 被引量:1
1
作者 Sheng Zhao Cuicui Zhang +15 位作者 Liqun Wang Minxuan Luo Peng Zhang Yue Wang Waqar Afzal Malik Yue Wang Peng Chen Xianjin Qiu Chongrong Wang Hong Lu Yong Xiang Yuwen Liu Jue Ruan Qian Qian Haijian Zhi Yuxiao Chang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2023年第3期633-645,共13页
Whole-genome genotyping methods are important for breeding.However,it has been challenging to develop a robust method for simultaneous foreground and background genotyping that can easily be adapted to different genes... Whole-genome genotyping methods are important for breeding.However,it has been challenging to develop a robust method for simultaneous foreground and background genotyping that can easily be adapted to different genes and species.In our study,we accidently discovered that in adapter ligation-mediated PCR,the amplification by primertemplate mismatched annealing(PTMA)along the genome could generate thousands of stable PCR products.Based on this observation,we consequently developed a novel method for simultaneous foreground and background integrated genotyping by sequencing(FBI-seq)using one specific primer,in which foreground genotyping is performed by primer-template perfect annealing(PTPA),while background genotyping employs PTMA.Unlike DNA arrays,multiple PCR,or genome target enrichments,FBI-seq requires little preliminary work for primer design and synthesis,and it is easily adaptable to different foreground genes and species.FBI-seq therefore provides a prolific,robust,and accurate method for simultaneous foreground and background genotyping to facilitate breeding in the postgenomics era. 展开更多
关键词 background selection foreground genotyping primer-template mismatched annealing marker-assisted breeding whole-genome genotyping
原文传递
Streamlined whole-genome genotyping through NGS-enhanced thermal asymmetric interlaced(TAIL)-PCR
2
作者 Sheng Zhao Yue Wang +8 位作者 Zhenghang Zhu Peng Chen Wuge Liu Chongrong Wang Hong Lu Yong Xiang Yuwen Liu Qian Qian Yuxiao Chang 《Plant Communications》 SCIE CSCD 2024年第9期25-37,共13页
Whole-genome genotyping(WGG)stands as a pivotal element in genomic-assisted plant breeding.Nevertheless,sequencing-based approaches for WGG continue to be costly,primarily owing to the high expenses associated with li... Whole-genome genotyping(WGG)stands as a pivotal element in genomic-assisted plant breeding.Nevertheless,sequencing-based approaches for WGG continue to be costly,primarily owing to the high expenses associated with library preparation and the laborious protocol.During prior development of foreground and background integrated genotyping by sequencing(FBI-seq),we discovered that any sequence-specific primer(SP)inherently possesses the capability to amplify a massive array of stable and reproducible non-specific PCR products across the genome.Here,we further improved FBI-seq by replacing the adapter ligated by Tn5 transposase with an arbitrary degenerate(AD)primer.The protocol for the enhanced FBI-seq unexpectedly mirrors a simplified thermal asymmetric interlaced(TAIL)-PCR,a technique that is widely used for isolation of flanking sequences.However,the improved TAIL-PCR maximizes the primer-template mismatched annealing capabilities of both SP and AD primers.In addition,leveraging of next-generation sequencing enhances the ability of this technique to assay tens of thousands of genome-wide loci for any species.This cost-effective,user-friendly,and powerful WGG tool,which we have named TAIL-PCR by sequencing(TAIL-peq),holds great potential for widespread application in breeding programs,thereby facilitating genome-assisted crop improvement. 展开更多
关键词 whole-genome genotyping primer-template mismatched annealing specific primer arbitrary degenerate primer molecular breeding
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部