Glaucoma is a leading cause of irreve rsible blindness wo rldwide,and previous studies have shown that,in addition to affecting the eyes,it also causes abnormalities in the brain.However,it is not yet clear how the pr...Glaucoma is a leading cause of irreve rsible blindness wo rldwide,and previous studies have shown that,in addition to affecting the eyes,it also causes abnormalities in the brain.However,it is not yet clear how the primary visual cortex(V1)is altered in glaucoma.This study used DBA/2J mice as a model for spontaneous secondary glaucoma.The aim of the study was to compare the electrophysiological and histomorphological chara cteristics of neurons in the V1between 9-month-old DBA/2J mice and age-matched C57BL/6J mice.We conducted single-unit recordings in the V1 of light-anesthetized mice to measure the visually induced responses,including single-unit spiking and gamma band oscillations.The morphology of layerⅡ/Ⅲneurons was determined by neuronal nuclear antigen staining and Nissl staining of brain tissue sections.Eighty-seven neurons from eight DBA/2J mice and eighty-one neurons from eight C57BL/6J mice were examined.Compared with the C57BL/6J group,V1 neurons in the DBA/2J group exhibited weaker visual tuning and impaired spatial summation.Moreove r,fewer neuro ns were observed in the V1 of DBA/2J mice compared with C57BL/6J mice.These findings suggest that DBA/2J mice have fewer neurons in the VI compared with C57BL/6J mice,and that these neurons have impaired visual tuning.Our findings provide a better understanding of the pathological changes that occur in V1 neuron function and morphology in the DBA/2J mouse model.This study might offer some innovative perspectives regarding the treatment of glaucoma.展开更多
Recent studies show that a reduced effect of inhibitory transmitter system in the visual cortex may underlie aged visual function degradation. Whether excitatory transmitter system changes with age and hence affects i...Recent studies show that a reduced effect of inhibitory transmitter system in the visual cortex may underlie aged visual function degradation. Whether excitatory transmitter system changes with age and hence affects intracortical excitation-inhibition balance is not clear. To explore this issue, we used Nissl staining and immunohistochemical methods as well as Image-Pro Express software to examine the density of Nissl-stained neurons, Glutamie acid-immunoreactive (Glu-IR) neurons and T-Aminobutyric acid-immunoreactive (GABA-IR) neurons in the primary visual cortex of young adult and aged cats. The results showed that there was no significant difference in the density of Nissl-stained neurons between young and old cats (2〉0.05). However, the density of Glu-IR neurons and GABA-IR neurons in the primary visual cortex of aged cats was significantly lower than that of young ones (P〈0.01). The ratio between Glu-IR neurons and GABA-IR neurons was significantly increased in old cats compared to that in young adult ones (P〈0.01). These results indicated that the effect of excitatory transmitter system in the old visual cortex was increased relative to the inhibitory transmitter system, which might cause an imbalance between cortical excitation and inhibition and might be an important factor mediating the visual function decline during aging.展开更多
Diffusion-weighted magnetic resonance imaging(d MRI) is widely used to study white and gray matter(GM) micro-organization and structural connectivity in the brain. Super-resolution track-density imaging(TDI) is ...Diffusion-weighted magnetic resonance imaging(d MRI) is widely used to study white and gray matter(GM) micro-organization and structural connectivity in the brain. Super-resolution track-density imaging(TDI) is an image reconstruction method for d MRI data, which is capable of providing spatial resolution beyond the acquired data, as well as novel and meaningful anatomical contrast that cannot be obtained with conventional reconstruction methods. TDI has been used to reveal anatomical features in human and animal brains. In this study, we used short track TDI(st TDI), a variation of TDI with enhanced contrast for GM structures, to reconstruct directionencoded color maps of fixed tree shrew brain. The results were compared with those obtained with the traditional diffusion tensor imaging(DTI) method. We demonstrated that fine microstructures in the tree shrew brain, such as Baillarger bands in the primary visual cortex and the longitudinal component of the mossy fibers within the hippocampal CA3 subfield, were observable with st TDI,but not with DTI reconstructions from the same d MRI data.The possible mechanisms underlying the enhanced GM contrast are discussed.展开更多
Studies have shown that spatial attention remarkably affects the trial-to-trial response variability shared between neurons.Difficulty in the attentional task adjusts how much concentration we maintain on what is curr...Studies have shown that spatial attention remarkably affects the trial-to-trial response variability shared between neurons.Difficulty in the attentional task adjusts how much concentration we maintain on what is currently important and what is filtered as irrelevant sensory information.However,how task difficulty mediates the interactions between neurons with separated receptive fields(RFs)that are attended to or attended away is still not clear.We examined spike count correlations between single-unit activities recorded simultaneously in the primary visual cortex(V1)while monkeys performed a spatial attention task with two levels of difficulty.Moreover,the RFs of the two neurons recorded were non-overlapping to allow us to study fluctuations in the correlated responses between competing visual inputs when the focus of attention was allocated to the RF of one neuron.While increasing difficulty in the spatial attention task,spike count correlations were either decreased to become negative between neuronal pairs,implying competition among them,with one neuron(or none)exhibiting attentional enhancement of firing rate,or increased to become positive,suggesting inter-neuronal cooperation,with one of the pair showing attentional suppression of spiking responses.Besides,the modulation of spike count correlations by task difficulty was independent of the attended locations.These findings provide evidence that task difficulty affects the functional interactions between different neuronal pools in V1 when selective attention resolves the spatial competition.展开更多
AIM: To evaluate the differences in the functional connectivity(FC) of the primary visual cortex(V1) between the youth comitant exotropia(CE) patients and health subjects using resting functional magnetic reson...AIM: To evaluate the differences in the functional connectivity(FC) of the primary visual cortex(V1) between the youth comitant exotropia(CE) patients and health subjects using resting functional magnetic resonance imaging(f MRI) data.METHODS: Totally, 32 CEs(25 males and 7 females) and 32 healthy control subjects(HCs)(25 males and 7 females) were enrolled in the study and underwent the MRI scanning. Two-sample t-test was used to examine differences in FC maps between the CE patients and HCs. RESULTS: The CE patients showed significantly less FC between the left brodmann area(BA17) and left lingual gyrus/cerebellum posterior lobe, right middle occipital gyrus, left precentral gyrus/postcentral gyrus and right inferior parietal lobule/postcentral gyrus. Meanwhile, CE patients showed significantly less FC between right BA17 and right middle occipital gyrus(BA19, 37).CONCLUSION: Our findings show that CE involves abnormal FC in primary visual cortex in many regions, which may underlie the pathologic mechanism of impaired fusion and stereoscopic vision in CEs.展开更多
Fear memory contextualization is critical for selecting adaptive behavior to survive.Contextual fear conditioning(CFC)is a classical model for elucidating related underlying neuronal circuits.The primary visual cortex...Fear memory contextualization is critical for selecting adaptive behavior to survive.Contextual fear conditioning(CFC)is a classical model for elucidating related underlying neuronal circuits.The primary visual cortex(V1)is the primary cortical region for contextual visual inputs,but its role in CFC is poorly understood.Here,our experiments demonstrated that bilateral inactivation of V1 in mice impaired CFC retrieval,and both CFC learning and extinction increased the turnover rate of axonal boutons in V1.The frequency of neuronal Ca^(2+)activity decreased after CFC learning,while CFC extinction reversed the decrease and raised it to the naïve level.Contrary to control mice,the frequency of neuronal Ca^(2+)activity increased after CFC learning in microglia-depleted mice and was maintained after CFC extinction,indicating that microglial depletion alters CFC learning and the frequency response pattern of extinction-induced Ca^(2+)activity.These findings reveal a critical role of microglia in neocortical information processing in V1,and suggest potential approaches for cellular-based manipulation of acquired fear memory.展开更多
Several recent studies using either viral or transgenic mouse models have shown different results on whether the activation of parvalbumin-positive(PV~+)neurons expressing channelrhodopsin-2(ChR2) in the primary ...Several recent studies using either viral or transgenic mouse models have shown different results on whether the activation of parvalbumin-positive(PV~+)neurons expressing channelrhodopsin-2(ChR2) in the primary visual cortex(V1) improves the orientation-and direction-selectivity of V1 neurons. Although this discrepancy was thoroughly discussed in a follow-up communication, the issue of using different models to express ChR2 in V1 was not mentioned. We found that ChR2 was expressed in retinal ganglion cells(RGCs) and V1 neurons in ChR2fl/~+; PV-Cre mice. Our results showed that the activation of PV~+RGCs using white drifting gratings alone significantly decreased the firing rates of V1 neurons and improved their direction-and orientation-selectivity. Longduration activation of PV~+interneurons in V1 further enhanced the feature-selectivity of V1 neurons in anesthetized mice, confirming the conclusions from previous findings. These results suggest that the activation of both PV~+RGCs and V1 neurons improves feature-selectivity in mice.展开更多
Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized...Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex(the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine(LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern.展开更多
In this study,we investigated orientation selectivity in cat primary visual cortex(V1) and its relationship with various parameters.We found a strong correlation between circular variance(CV) and orthogonal-topref...In this study,we investigated orientation selectivity in cat primary visual cortex(V1) and its relationship with various parameters.We found a strong correlation between circular variance(CV) and orthogonal-topreferred response ratio(O/P ratio),and a moderate correlation between tuning width and O/P ratio.Moreover,the suppression far from the peak that accounted for the lower CV in cat V1 cells also contributed to the narrowing of the tuning width of cells.We also studied the dependence of orientation selectivity on the modulation ratio for each cell,which is consistent with robust entrainment of the neuronal response to the phase of the drifting grating stimulus.In conclusion,the CV(global measure) and tuning width(local measure) are significantly correlated with the modulation ratio.展开更多
Background:Information about the visual world is processed by an ensemble of cortical visual areas,which follow a hierarchical organization.The primary visual cortex(V1)first receives most of this information through ...Background:Information about the visual world is processed by an ensemble of cortical visual areas,which follow a hierarchical organization.The primary visual cortex(V1)first receives most of this information through the lateral geniculate nucleus(LGN),before being conveyed to higher-order cortical areas.Aside from this connectional route,there is also a complex network of bilateral connections between areas of the visual cortex and the pulvinar,considered as the largest extrageniculate visual thalamic nucleus.Despite an increasing number of studies on pulvinar,the exact function of this thalamic complex remains unknown.In this study,we investigated the functional impact of the lateral posterior(LP)nucleus,the homologue of the primate pulvinar,on the activity of neurons in the primary visual cortex in mice using optogenetic stimulation.Methods:A channel rhodopsin-2 gene-carrying viral vector(AAV5.CaMKII.hChR2-eYFP.WPRE)was injected into the LP of wild-type(C57BL/6)mice.Extracellular recordings of the activity of V1 neurons were carried out using 16-and 32-channel silicon probes.The stimulation of LP was achieved with light pulses(470 nm,20 pulse trains of 5 ms each at 10 Hz)delivered by a 4-channel optrode,which also recorded the thalamic activity.Visual stimuli consisted on drifting sinewave gratings of varying parameters(direction,contrast,spatial or temporal frequency and size).Results:Our preliminary data shows that LP stimulation performed in conjunction with the visual stimulation decreases the amplitude of neuronal responses up to 50%.To date,results indicate that this inhibitory effect is only observed in neurons in the infragranular layers.The response profiles of V1 neurons to size-increasing stimuli were also affected.Conclusions:These findings suggest that the pulvinar nucleus can exert layer-dependent contextual modulation on the activity of neurons in the mouse primary visual cortex.展开更多
Background:The primary visual cortex(V1)is a key component of the visual system that builds some of the first levels of coherent visual representations from sparse visual inputs.While the study of its dynamics has bee...Background:The primary visual cortex(V1)is a key component of the visual system that builds some of the first levels of coherent visual representations from sparse visual inputs.While the study of its dynamics has been the focus of many computational models for the past years,there is still relatively few research works that put an emphasis on both synaptic plasticity in V1 and biorealism in the context of learning visual inputs.Here,we present a recurrent spiking neural network that is capable of spike timing dependent plasticity(STDP)and we demonstrate its capacity to discriminate spatio-temporal orientation patterns in noisy natural images.Methods:A two stage model was developed.First,natural images flux(be it videos/gratings/camera)were converted into spikes,using a difference of gaussians(DOG)approach.This transformation approximates the retina-lateral geniculate nucleus(LGN)organization.Secondly,a spiking neural network was build using PyNN simulator,mimicking cortical neurons dynamics and plasticity,as well as V1 topology.This network was then fed with spikes generated by the first model and its ability to build visual representations was assessed using control gratings inputs.Results:The neural network exhibited several interesting properties.After a short period of learning,it was capable of learning multiples orientations and reducing noise in such learned feature,compared to the inputs.These learned features were stable even after increasing the noise in inputs and were found to not only encoding the spatial properties of the input,but also its temporal aspects(i.e.,the time of each grating presentation Conclusions:Our work shows that topological structuring of the cortical neural networks,combined with simple plasticity rules,are sufficient to drive strong learning dynamics of natural images properties.This computational model fits many properties found in the literature and provides some theoritical explanations for the shape of tuning curve of certain layers of V1.Further investigations are now conducted to validate its properties against the neuronal responses of rodents,using identical visual stimuli.展开更多
A family of moving ‘random-line' patterns was developed and used to study the directional tuning of 91 single units in cat primary visual cortex (V1). The results suggest that, in addition to the well-known orien...A family of moving ‘random-line' patterns was developed and used to study the directional tuning of 91 single units in cat primary visual cortex (V1). The results suggest that, in addition to the well-known orientation-dependent mechanism, there is also some kind of orientation-independent mechanism underlying the direction selectivity. The directional tuning of the neurons varies in accordance with the increase of orientation or non-orientation element in the stimulus.展开更多
Nogo-A and Nogo receptor (NgR) expression in the visual cortex following a critical developmental period (postnatal days 20-60) has been previously shown. However, little is known regarding Nogo-A and NgR expressi...Nogo-A and Nogo receptor (NgR) expression in the visual cortex following a critical developmental period (postnatal days 20-60) has been previously shown. However, little is known regarding Nogo-A and NgR expression between postnatal day 0 and initiation of the critical period. The present study analyzed Nogo-A and NgR expression at four different time points: postnatal day 0 (P0), before critical period (P14), during critical period (P28), and after critical period (P60). Results showed significantly increased Nogo-A mRNA and protein expression levels in the visual cortex following birth, and expression levels remained steady between P28 and P60. NgR mRNA or protein expression was dramatically upregulated with age and peaked at P14 or P28, respectively, and maintained high expression to P60. In addition, Nogo-A and NgR expression was analyzed in each visual cortex layer in normal developing rats and rats with monocular deprivation. Monocular deprivation decreased Nogo-A and NgR mRNA and protein expression in the rat visual cortex, in particular in layers Ⅱ-Ⅲ and Ⅳ in the visual cortex contralateral to the deprived eye. These findings suggested that Nogo-A and NgR regulated termination of the critical period in experience- dependent visual cortical plasticity.展开更多
Previous studies have shown that visual cortical neurons in old mammals exhibit higher spontaneous activity,higher responsiveness to visual stimuli,and lower selectivity for stimulus orientations and motion directions...Previous studies have shown that visual cortical neurons in old mammals exhibit higher spontaneous activity,higher responsiveness to visual stimuli,and lower selectivity for stimulus orientations and motion directions than did neurons in young adult counterparts.However,whether the responsive difference in cortical neurons between young and old animals resulted from different effects induced by anesthetics has remained unclear.To clarify this issue,we recorded the response properties of individual neurons in the primary visual cortex of old and young adult cats while systematically varying the anesthesia level of urethane,a widely used anesthetic in physiology experiments.Our results showed that cumulatively administrating 50 mg and 100 mg of urethane upon the minimal level of urethane required to anesthetize an old or young adult cat did not significantly alter the degree of neuronal response selectivity for stimulus orientations and motion directions nor significantly change the visually-driven response and spontaneous activity of neurons in old and young adult cats.Cumulatively administrating 150 mg of urethane decreased neuronal responsiveness similarly in both age groups.Therefore,urethane appears to exert similar effects on neuronal response properties of old and young adult animals.展开更多
The mean firing rate of visual cortical neurons is reduced after prolonged visual stimulation, but the underlying process by which this occurs as well as the biological significance of this phenomenon remains unknown....The mean firing rate of visual cortical neurons is reduced after prolonged visual stimulation, but the underlying process by which this occurs as well as the biological significance of this phenomenon remains unknown. Computational neuroscience studies indicate that high-frequency bursts in stimulus-driven responses can be transmitted across synapses more reliably than isolated spikes, and thus may carry accurate stimulus-related information. Our research examined whether or not adaptation affects the burst firing property of visual cortical neurons by examining changes in the burst firing changes of V1 neurons during adaptation to the preferred visual stimulus. The results show that adaptation to prolonged visual stimulation significantly decreased burst frequency (bursts/s) and burst length (spikes/burst), but increased burst duration and the interspike interval within bursts. These results suggest that the adaptation of V1 neurons to visual stimulation may result in a decrease of feedforward response gain but an increase of functional activities from lateral and/or feedback connections, which could lead to a reduction in the effectiveness of adapted neurons in transmitting information to its driven neurons.展开更多
The mean firing rate of visual cortical neurons is reduced after prolonged visual stimulation,but the underlying process by which this occurs as well as the biological significance of this phenomenon remains unknown.C...The mean firing rate of visual cortical neurons is reduced after prolonged visual stimulation,but the underlying process by which this occurs as well as the biological significance of this phenomenon remains unknown.Computational neuroscience studies indicate that high-frequency bursts in stimulus-driven responses can be transmitted across synapses more reliably than isolated spikes,and thus may carry accurate stimulus-related information.Our research examined whether or not adaptation affects the burst firing property of visual cortical neurons by examining changes in the burst firing changes of V1 neurons during adaptation to the preferred visual stimulus.The results show that adaptation to prolonged visual stimulation significantly decreased burst frequency(bursts/s)and burst length(spikes/burst),but increased burst duration and the interspike interval within bursts.These results suggest that the adaptation of V1 neurons to visual stimulation may result in a decrease of feedforward response gain but an increase of functional activities from lateral and/or feedback connections,which could lead to a reduction in the effectiveness of adapted neurons in transmitting information to its driven neurons.展开更多
To explore the effect of the location of a visual stimulus on neural responses in the primary visual cortex (V1), a micro-electromechanical system-based microelectrode array with nine channels was implanted on the c...To explore the effect of the location of a visual stimulus on neural responses in the primary visual cortex (V1), a micro-electromechanical system-based microelectrode array with nine channels was implanted on the cerebral dura mater of V1 in adult cats. 2 Hz pattern reversal checkerboard stimul were used to stimulate the four visual quadrants (i.e., upper left, upper right, lower left, and lower right fields). The results showed that there was a N75 component of the visual evoked potential around 50-80 ms after the onset of a checkerboard stimulus, and the onset of these N75 peaks varied with different stimulus locations. The checkerboard stimuli Jnduced shorter latencJes in the contralateral V1 than in the ipsilateral V1, while the checkerboard stimulus in the upper half visual field induced shorter latencies for N75. These results suggested that the pattern-reversal stimuli induced neural activities in V1 that can be recorded with multichannel microelectrodes, and more detailed temporal and spatial properties can be measured.展开更多
Background:For years,studies using several animal models have highlighted the predominant role of the primary visual area in visual information processing.Its six cortical layers have morphological,hodological and phy...Background:For years,studies using several animal models have highlighted the predominant role of the primary visual area in visual information processing.Its six cortical layers have morphological,hodological and physiological differences,although their roles regarding the integration of visual contrast and the messages sent by the layers to other brain regions have been poorly explored.Given that cortical layers have distinct properties,this study aims to understand these differences and how they are affected by a changing visual contrast.Methods:A linear multi-channel electrode was placed in the primary visual cortex(V1)of the anesthetized mouse to record neuronal activity across the different cortical layers.The laminar position of the electrode was verified in real time by measuring the current source density(CSD)and the multi-unit activity(MUA),and confirmed post-mortem by histological analysis.Drifting gratings varying in contrast enabled the measurement of the firing rate of neurons throughout layers.We fitted this data to the Naka-Rushton equations,which generated the contrast response function(CRF)of neurons.Results:The analysis revealed that the baseline activity as well as the rate of change of neural discharges(the slope of the CRF)had a positive correlation across the cortical layers.In addition,we found a trend between the cortical position and the contrast evoking the semi-saturation of the activity.A significant difference in the maximum discharge rate was also found between layers II/III and IV,as well as between layers II/III and V.Conclusions:Since layers II/III and V process visual contrast differently,our results suggest that higher cortical visual areas,as well subcortical regions,receive different information regarding a change in visual contrast.Thus,a contrast may be processed differently throughout the different areas of the visual cortex.展开更多
General anesthesia is widely applied in clinical practice.However,the precise mechanism of loss of consciousness induced by general anesthetics remains unknown.Here,we measured the dynamics of five neurotransmitters,i...General anesthesia is widely applied in clinical practice.However,the precise mechanism of loss of consciousness induced by general anesthetics remains unknown.Here,we measured the dynamics of five neurotransmitters,includingγ-aminobutyric acid,glutamate,norepinephrine,acetylcholine,and dopamine,in the medial prefrontal cortex and primary visual cortex of C57BL/6 mice through in vivo fiber photometry and genetically encoded neurotransmitter sensors under anesthesia to reveal the mechanism of general anesthesia from a neurotransmitter perspective.Results revealed that the concentrations of γ-aminobutyric acid,glutamate,norepinephrine,and acetylcholine increased in the cortex during propofol-induced loss of consciousness.Dopamine levels did not change following the hypnotic dose of propofol but increased significantly following surgical doses of propofol anesthesia.Notably,the concentrations of the five neurotransmitters generally decreased during sevoflurane-induced loss of consciousness.Furthermore,the neurotransmitter dynamic networks were not synchronized in the non-anesthesia groups but were highly synchronized in the anesthetic groups.These findings suggest that neurotransmitter dynamic network synchronization may cause anesthetic-induced loss of consciousness.展开更多
The thalamic reticular nucleus(TRN)plays a crucial role in regulating sensory encoding,even at the earliest stages of visual processing,as evidenced by numerous studies.Orientation selectivity,a vital neural response,...The thalamic reticular nucleus(TRN)plays a crucial role in regulating sensory encoding,even at the earliest stages of visual processing,as evidenced by numerous studies.Orientation selectivity,a vital neural response,is essential for detecting objects through edge perception.Here,we demonstrate that somatostatin(SOM)-expressing and parvalbumin(PV)-expressing neurons in the TRN project to the dorsal lateral geniculate nucleus and modulate orientation selectivity and the capacity for visual information processing in the primary visual cortex(V1).These findings show that SOM-positive and PV-positive neurons in the TRN are powerful modulators of visual information encoding in V1,revealing a novel role for this thalamic nucleus in influencing visual processing.展开更多
基金supported by the STI 2030-Major Projects 2022ZD0208500(to DY)the National Natural Science Foundation of China,Nos.82072011(to YX),82121003(to DY),82271120(to YS)+2 种基金Sichuan Science and Technology Program,No.2022ZYD0066(to YS)a grant from Chinese Academy of Medical Science,No.2019-12M-5-032(to YS)the Fundamental Research Funds for the Central Universities,No.ZYGX2021YGLH219(to KC)。
文摘Glaucoma is a leading cause of irreve rsible blindness wo rldwide,and previous studies have shown that,in addition to affecting the eyes,it also causes abnormalities in the brain.However,it is not yet clear how the primary visual cortex(V1)is altered in glaucoma.This study used DBA/2J mice as a model for spontaneous secondary glaucoma.The aim of the study was to compare the electrophysiological and histomorphological chara cteristics of neurons in the V1between 9-month-old DBA/2J mice and age-matched C57BL/6J mice.We conducted single-unit recordings in the V1 of light-anesthetized mice to measure the visually induced responses,including single-unit spiking and gamma band oscillations.The morphology of layerⅡ/Ⅲneurons was determined by neuronal nuclear antigen staining and Nissl staining of brain tissue sections.Eighty-seven neurons from eight DBA/2J mice and eighty-one neurons from eight C57BL/6J mice were examined.Compared with the C57BL/6J group,V1 neurons in the DBA/2J group exhibited weaker visual tuning and impaired spatial summation.Moreove r,fewer neuro ns were observed in the V1 of DBA/2J mice compared with C57BL/6J mice.These findings suggest that DBA/2J mice have fewer neurons in the VI compared with C57BL/6J mice,and that these neurons have impaired visual tuning.Our findings provide a better understanding of the pathological changes that occur in V1 neuron function and morphology in the DBA/2J mouse model.This study might offer some innovative perspectives regarding the treatment of glaucoma.
基金Natural Science Fund of Anhui Province (070413138)Key Laboratory Foundation of Anhui Province for Researches on the Conservation and Utilization of Important Biological ResourceKey Laboratory Foundation for Universities and Colleges in Anhui
文摘Recent studies show that a reduced effect of inhibitory transmitter system in the visual cortex may underlie aged visual function degradation. Whether excitatory transmitter system changes with age and hence affects intracortical excitation-inhibition balance is not clear. To explore this issue, we used Nissl staining and immunohistochemical methods as well as Image-Pro Express software to examine the density of Nissl-stained neurons, Glutamie acid-immunoreactive (Glu-IR) neurons and T-Aminobutyric acid-immunoreactive (GABA-IR) neurons in the primary visual cortex of young adult and aged cats. The results showed that there was no significant difference in the density of Nissl-stained neurons between young and old cats (2〉0.05). However, the density of Glu-IR neurons and GABA-IR neurons in the primary visual cortex of aged cats was significantly lower than that of young ones (P〈0.01). The ratio between Glu-IR neurons and GABA-IR neurons was significantly increased in old cats compared to that in young adult ones (P〈0.01). These results indicated that the effect of excitatory transmitter system in the old visual cortex was increased relative to the inhibitory transmitter system, which might cause an imbalance between cortical excitation and inhibition and might be an important factor mediating the visual function decline during aging.
基金supported by grants from the National Basic Research Development Program of China (2011CB707800)the National Natural Science Foundation of China (21790390, 21790392, and 61371014)
文摘Diffusion-weighted magnetic resonance imaging(d MRI) is widely used to study white and gray matter(GM) micro-organization and structural connectivity in the brain. Super-resolution track-density imaging(TDI) is an image reconstruction method for d MRI data, which is capable of providing spatial resolution beyond the acquired data, as well as novel and meaningful anatomical contrast that cannot be obtained with conventional reconstruction methods. TDI has been used to reveal anatomical features in human and animal brains. In this study, we used short track TDI(st TDI), a variation of TDI with enhanced contrast for GM structures, to reconstruct directionencoded color maps of fixed tree shrew brain. The results were compared with those obtained with the traditional diffusion tensor imaging(DTI) method. We demonstrated that fine microstructures in the tree shrew brain, such as Baillarger bands in the primary visual cortex and the longitudinal component of the mossy fibers within the hippocampal CA3 subfield, were observable with st TDI,but not with DTI reconstructions from the same d MRI data.The possible mechanisms underlying the enhanced GM contrast are discussed.
基金This work was supported by the National Natural Science Foundation of China(61773259,31471081,61773256,62073221,and 61971280).
文摘Studies have shown that spatial attention remarkably affects the trial-to-trial response variability shared between neurons.Difficulty in the attentional task adjusts how much concentration we maintain on what is currently important and what is filtered as irrelevant sensory information.However,how task difficulty mediates the interactions between neurons with separated receptive fields(RFs)that are attended to or attended away is still not clear.We examined spike count correlations between single-unit activities recorded simultaneously in the primary visual cortex(V1)while monkeys performed a spatial attention task with two levels of difficulty.Moreover,the RFs of the two neurons recorded were non-overlapping to allow us to study fluctuations in the correlated responses between competing visual inputs when the focus of attention was allocated to the RF of one neuron.While increasing difficulty in the spatial attention task,spike count correlations were either decreased to become negative between neuronal pairs,implying competition among them,with one neuron(or none)exhibiting attentional enhancement of firing rate,or increased to become positive,suggesting inter-neuronal cooperation,with one of the pair showing attentional suppression of spiking responses.Besides,the modulation of spike count correlations by task difficulty was independent of the attended locations.These findings provide evidence that task difficulty affects the functional interactions between different neuronal pools in V1 when selective attention resolves the spatial competition.
基金Supported by the National Natural Science Foundation of China(No.81660158No.81160118No.81400372)
文摘AIM: To evaluate the differences in the functional connectivity(FC) of the primary visual cortex(V1) between the youth comitant exotropia(CE) patients and health subjects using resting functional magnetic resonance imaging(f MRI) data.METHODS: Totally, 32 CEs(25 males and 7 females) and 32 healthy control subjects(HCs)(25 males and 7 females) were enrolled in the study and underwent the MRI scanning. Two-sample t-test was used to examine differences in FC maps between the CE patients and HCs. RESULTS: The CE patients showed significantly less FC between the left brodmann area(BA17) and left lingual gyrus/cerebellum posterior lobe, right middle occipital gyrus, left precentral gyrus/postcentral gyrus and right inferior parietal lobule/postcentral gyrus. Meanwhile, CE patients showed significantly less FC between right BA17 and right middle occipital gyrus(BA19, 37).CONCLUSION: Our findings show that CE involves abnormal FC in primary visual cortex in many regions, which may underlie the pathologic mechanism of impaired fusion and stereoscopic vision in CEs.
基金supported by the National Natural Science Foundation of China(61735016)the Natural Science Foundation of Zhejiang Province(LR20F050002)+3 种基金the Key R&D Program of Zhejiang Province(2020C03009 and 2021C03001)the Zhejiang Leading Innovation and Entrepreneurship Team(202099144)the CAMS Innovation Fund for Medical Sciences(2019-I2M-5-057)Fundamental Research Funds for the Central Universities.
文摘Fear memory contextualization is critical for selecting adaptive behavior to survive.Contextual fear conditioning(CFC)is a classical model for elucidating related underlying neuronal circuits.The primary visual cortex(V1)is the primary cortical region for contextual visual inputs,but its role in CFC is poorly understood.Here,our experiments demonstrated that bilateral inactivation of V1 in mice impaired CFC retrieval,and both CFC learning and extinction increased the turnover rate of axonal boutons in V1.The frequency of neuronal Ca^(2+)activity decreased after CFC learning,while CFC extinction reversed the decrease and raised it to the naïve level.Contrary to control mice,the frequency of neuronal Ca^(2+)activity increased after CFC learning in microglia-depleted mice and was maintained after CFC extinction,indicating that microglial depletion alters CFC learning and the frequency response pattern of extinction-induced Ca^(2+)activity.These findings reveal a critical role of microglia in neocortical information processing in V1,and suggest potential approaches for cellular-based manipulation of acquired fear memory.
基金supported by the grants of National Natural Science Foundation of China(31271158,31421091,and 31422025)the Science and Technology Commission of Shanghai Municipality,China(13PJ1401000)the Young 1000 Plan and the Ministry of Science and Technology of China(2015AA020512)
文摘Several recent studies using either viral or transgenic mouse models have shown different results on whether the activation of parvalbumin-positive(PV~+)neurons expressing channelrhodopsin-2(ChR2) in the primary visual cortex(V1) improves the orientation-and direction-selectivity of V1 neurons. Although this discrepancy was thoroughly discussed in a follow-up communication, the issue of using different models to express ChR2 in V1 was not mentioned. We found that ChR2 was expressed in retinal ganglion cells(RGCs) and V1 neurons in ChR2fl/~+; PV-Cre mice. Our results showed that the activation of PV~+RGCs using white drifting gratings alone significantly decreased the firing rates of V1 neurons and improved their direction-and orientation-selectivity. Longduration activation of PV~+interneurons in V1 further enhanced the feature-selectivity of V1 neurons in anesthetized mice, confirming the conclusions from previous findings. These results suggest that the activation of both PV~+RGCs and V1 neurons improves feature-selectivity in mice.
基金supported by the National Natural Science Foundation of China,No.31070758,31271060the Natural Science Foundation of Chongqing in China,No.cstc2013jcyj A10085
文摘Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex(the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine(LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern.
基金supported by the National Basic Research Development Program of China (2013CB329401)the National Natural Science Foundation of China (91420105, 61105116, 91120013, and 90820301)Shanghai Municipal Committee of Science and Technology (088014158 and 098014026)
文摘In this study,we investigated orientation selectivity in cat primary visual cortex(V1) and its relationship with various parameters.We found a strong correlation between circular variance(CV) and orthogonal-topreferred response ratio(O/P ratio),and a moderate correlation between tuning width and O/P ratio.Moreover,the suppression far from the peak that accounted for the lower CV in cat V1 cells also contributed to the narrowing of the tuning width of cells.We also studied the dependence of orientation selectivity on the modulation ratio for each cell,which is consistent with robust entrainment of the neuronal response to the phase of the drifting grating stimulus.In conclusion,the CV(global measure) and tuning width(local measure) are significantly correlated with the modulation ratio.
文摘Background:Information about the visual world is processed by an ensemble of cortical visual areas,which follow a hierarchical organization.The primary visual cortex(V1)first receives most of this information through the lateral geniculate nucleus(LGN),before being conveyed to higher-order cortical areas.Aside from this connectional route,there is also a complex network of bilateral connections between areas of the visual cortex and the pulvinar,considered as the largest extrageniculate visual thalamic nucleus.Despite an increasing number of studies on pulvinar,the exact function of this thalamic complex remains unknown.In this study,we investigated the functional impact of the lateral posterior(LP)nucleus,the homologue of the primate pulvinar,on the activity of neurons in the primary visual cortex in mice using optogenetic stimulation.Methods:A channel rhodopsin-2 gene-carrying viral vector(AAV5.CaMKII.hChR2-eYFP.WPRE)was injected into the LP of wild-type(C57BL/6)mice.Extracellular recordings of the activity of V1 neurons were carried out using 16-and 32-channel silicon probes.The stimulation of LP was achieved with light pulses(470 nm,20 pulse trains of 5 ms each at 10 Hz)delivered by a 4-channel optrode,which also recorded the thalamic activity.Visual stimuli consisted on drifting sinewave gratings of varying parameters(direction,contrast,spatial or temporal frequency and size).Results:Our preliminary data shows that LP stimulation performed in conjunction with the visual stimulation decreases the amplitude of neuronal responses up to 50%.To date,results indicate that this inhibitory effect is only observed in neurons in the infragranular layers.The response profiles of V1 neurons to size-increasing stimuli were also affected.Conclusions:These findings suggest that the pulvinar nucleus can exert layer-dependent contextual modulation on the activity of neurons in the mouse primary visual cortex.
文摘Background:The primary visual cortex(V1)is a key component of the visual system that builds some of the first levels of coherent visual representations from sparse visual inputs.While the study of its dynamics has been the focus of many computational models for the past years,there is still relatively few research works that put an emphasis on both synaptic plasticity in V1 and biorealism in the context of learning visual inputs.Here,we present a recurrent spiking neural network that is capable of spike timing dependent plasticity(STDP)and we demonstrate its capacity to discriminate spatio-temporal orientation patterns in noisy natural images.Methods:A two stage model was developed.First,natural images flux(be it videos/gratings/camera)were converted into spikes,using a difference of gaussians(DOG)approach.This transformation approximates the retina-lateral geniculate nucleus(LGN)organization.Secondly,a spiking neural network was build using PyNN simulator,mimicking cortical neurons dynamics and plasticity,as well as V1 topology.This network was then fed with spikes generated by the first model and its ability to build visual representations was assessed using control gratings inputs.Results:The neural network exhibited several interesting properties.After a short period of learning,it was capable of learning multiples orientations and reducing noise in such learned feature,compared to the inputs.These learned features were stable even after increasing the noise in inputs and were found to not only encoding the spatial properties of the input,but also its temporal aspects(i.e.,the time of each grating presentation Conclusions:Our work shows that topological structuring of the cortical neural networks,combined with simple plasticity rules,are sufficient to drive strong learning dynamics of natural images properties.This computational model fits many properties found in the literature and provides some theoritical explanations for the shape of tuning curve of certain layers of V1.Further investigations are now conducted to validate its properties against the neuronal responses of rodents,using identical visual stimuli.
基金the National Natural Science Foundation of China (Grant No.39893340-01), by the Life Science Special Fund in biological science and biological technology (Grant No. STZ-00-16), and by a grant to the B-M Project of the Chinese Academy of Sciences.
文摘A family of moving ‘random-line' patterns was developed and used to study the directional tuning of 91 single units in cat primary visual cortex (V1). The results suggest that, in addition to the well-known orientation-dependent mechanism, there is also some kind of orientation-independent mechanism underlying the direction selectivity. The directional tuning of the neurons varies in accordance with the increase of orientation or non-orientation element in the stimulus.
基金supported by the Graduate Degree Thesis Innovation Foundation of Central South University, No.2009BSXT050
文摘Nogo-A and Nogo receptor (NgR) expression in the visual cortex following a critical developmental period (postnatal days 20-60) has been previously shown. However, little is known regarding Nogo-A and NgR expression between postnatal day 0 and initiation of the critical period. The present study analyzed Nogo-A and NgR expression at four different time points: postnatal day 0 (P0), before critical period (P14), during critical period (P28), and after critical period (P60). Results showed significantly increased Nogo-A mRNA and protein expression levels in the visual cortex following birth, and expression levels remained steady between P28 and P60. NgR mRNA or protein expression was dramatically upregulated with age and peaked at P14 or P28, respectively, and maintained high expression to P60. In addition, Nogo-A and NgR expression was analyzed in each visual cortex layer in normal developing rats and rats with monocular deprivation. Monocular deprivation decreased Nogo-A and NgR mRNA and protein expression in the rat visual cortex, in particular in layers Ⅱ-Ⅲ and Ⅳ in the visual cortex contralateral to the deprived eye. These findings suggested that Nogo-A and NgR regulated termination of the critical period in experience- dependent visual cortical plasticity.
基金Supported by Natural Science Foundation of Anhui Province (070413138)the Key Research Foundation of Anhui Province Education Department (KJ2009A167)
文摘Previous studies have shown that visual cortical neurons in old mammals exhibit higher spontaneous activity,higher responsiveness to visual stimuli,and lower selectivity for stimulus orientations and motion directions than did neurons in young adult counterparts.However,whether the responsive difference in cortical neurons between young and old animals resulted from different effects induced by anesthetics has remained unclear.To clarify this issue,we recorded the response properties of individual neurons in the primary visual cortex of old and young adult cats while systematically varying the anesthesia level of urethane,a widely used anesthetic in physiology experiments.Our results showed that cumulatively administrating 50 mg and 100 mg of urethane upon the minimal level of urethane required to anesthetize an old or young adult cat did not significantly alter the degree of neuronal response selectivity for stimulus orientations and motion directions nor significantly change the visually-driven response and spontaneous activity of neurons in old and young adult cats.Cumulatively administrating 150 mg of urethane decreased neuronal responsiveness similarly in both age groups.Therefore,urethane appears to exert similar effects on neuronal response properties of old and young adult animals.
基金supported by the National Natural Science Foundation of China (31171082)the Natural Science Foundation of Anhui Province (070413138)+1 种基金the Key Research Foundation of the Anhui Provincial Education Department (KJ2009A167)the Foundation of Key Laboratories of Anhui Province and the Anhui Provincial Education Department
文摘The mean firing rate of visual cortical neurons is reduced after prolonged visual stimulation, but the underlying process by which this occurs as well as the biological significance of this phenomenon remains unknown. Computational neuroscience studies indicate that high-frequency bursts in stimulus-driven responses can be transmitted across synapses more reliably than isolated spikes, and thus may carry accurate stimulus-related information. Our research examined whether or not adaptation affects the burst firing property of visual cortical neurons by examining changes in the burst firing changes of V1 neurons during adaptation to the preferred visual stimulus. The results show that adaptation to prolonged visual stimulation significantly decreased burst frequency (bursts/s) and burst length (spikes/burst), but increased burst duration and the interspike interval within bursts. These results suggest that the adaptation of V1 neurons to visual stimulation may result in a decrease of feedforward response gain but an increase of functional activities from lateral and/or feedback connections, which could lead to a reduction in the effectiveness of adapted neurons in transmitting information to its driven neurons.
基金This work was supported by the National Natural Science Foundation of China(31171082)the Natural Science Foundation of Anhui Province(070413138)+1 种基金the Key Research Foundation of the Anhui Provincial Education Department(KJ2009A167)the Foundation of Key Laboratories of Anhui Province and the Anhui Provincial Education Department.
文摘The mean firing rate of visual cortical neurons is reduced after prolonged visual stimulation,but the underlying process by which this occurs as well as the biological significance of this phenomenon remains unknown.Computational neuroscience studies indicate that high-frequency bursts in stimulus-driven responses can be transmitted across synapses more reliably than isolated spikes,and thus may carry accurate stimulus-related information.Our research examined whether or not adaptation affects the burst firing property of visual cortical neurons by examining changes in the burst firing changes of V1 neurons during adaptation to the preferred visual stimulus.The results show that adaptation to prolonged visual stimulation significantly decreased burst frequency(bursts/s)and burst length(spikes/burst),but increased burst duration and the interspike interval within bursts.These results suggest that the adaptation of V1 neurons to visual stimulation may result in a decrease of feedforward response gain but an increase of functional activities from lateral and/or feedback connections,which could lead to a reduction in the effectiveness of adapted neurons in transmitting information to its driven neurons.
基金the National High Technology and Development Program of China, No. 2007AA04Z324the National Natural Science Foundation of China, No. 30970758, 31070882
文摘To explore the effect of the location of a visual stimulus on neural responses in the primary visual cortex (V1), a micro-electromechanical system-based microelectrode array with nine channels was implanted on the cerebral dura mater of V1 in adult cats. 2 Hz pattern reversal checkerboard stimul were used to stimulate the four visual quadrants (i.e., upper left, upper right, lower left, and lower right fields). The results showed that there was a N75 component of the visual evoked potential around 50-80 ms after the onset of a checkerboard stimulus, and the onset of these N75 peaks varied with different stimulus locations. The checkerboard stimuli Jnduced shorter latencJes in the contralateral V1 than in the ipsilateral V1, while the checkerboard stimulus in the upper half visual field induced shorter latencies for N75. These results suggested that the pattern-reversal stimuli induced neural activities in V1 that can be recorded with multichannel microelectrodes, and more detailed temporal and spatial properties can be measured.
文摘Background:For years,studies using several animal models have highlighted the predominant role of the primary visual area in visual information processing.Its six cortical layers have morphological,hodological and physiological differences,although their roles regarding the integration of visual contrast and the messages sent by the layers to other brain regions have been poorly explored.Given that cortical layers have distinct properties,this study aims to understand these differences and how they are affected by a changing visual contrast.Methods:A linear multi-channel electrode was placed in the primary visual cortex(V1)of the anesthetized mouse to record neuronal activity across the different cortical layers.The laminar position of the electrode was verified in real time by measuring the current source density(CSD)and the multi-unit activity(MUA),and confirmed post-mortem by histological analysis.Drifting gratings varying in contrast enabled the measurement of the firing rate of neurons throughout layers.We fitted this data to the Naka-Rushton equations,which generated the contrast response function(CRF)of neurons.Results:The analysis revealed that the baseline activity as well as the rate of change of neural discharges(the slope of the CRF)had a positive correlation across the cortical layers.In addition,we found a trend between the cortical position and the contrast evoking the semi-saturation of the activity.A significant difference in the maximum discharge rate was also found between layers II/III and IV,as well as between layers II/III and V.Conclusions:Since layers II/III and V process visual contrast differently,our results suggest that higher cortical visual areas,as well subcortical regions,receive different information regarding a change in visual contrast.Thus,a contrast may be processed differently throughout the different areas of the visual cortex.
基金supported by the National Natural Science Foundation of China(81870841 and 82171192 to X.S.L.,82101349 to G.L.Q.)。
文摘General anesthesia is widely applied in clinical practice.However,the precise mechanism of loss of consciousness induced by general anesthetics remains unknown.Here,we measured the dynamics of five neurotransmitters,includingγ-aminobutyric acid,glutamate,norepinephrine,acetylcholine,and dopamine,in the medial prefrontal cortex and primary visual cortex of C57BL/6 mice through in vivo fiber photometry and genetically encoded neurotransmitter sensors under anesthesia to reveal the mechanism of general anesthesia from a neurotransmitter perspective.Results revealed that the concentrations of γ-aminobutyric acid,glutamate,norepinephrine,and acetylcholine increased in the cortex during propofol-induced loss of consciousness.Dopamine levels did not change following the hypnotic dose of propofol but increased significantly following surgical doses of propofol anesthesia.Notably,the concentrations of the five neurotransmitters generally decreased during sevoflurane-induced loss of consciousness.Furthermore,the neurotransmitter dynamic networks were not synchronized in the non-anesthesia groups but were highly synchronized in the anesthetic groups.These findings suggest that neurotransmitter dynamic network synchronization may cause anesthetic-induced loss of consciousness.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(32200789)the National Natural Science Foundation of China(32070990).
文摘The thalamic reticular nucleus(TRN)plays a crucial role in regulating sensory encoding,even at the earliest stages of visual processing,as evidenced by numerous studies.Orientation selectivity,a vital neural response,is essential for detecting objects through edge perception.Here,we demonstrate that somatostatin(SOM)-expressing and parvalbumin(PV)-expressing neurons in the TRN project to the dorsal lateral geniculate nucleus and modulate orientation selectivity and the capacity for visual information processing in the primary visual cortex(V1).These findings show that SOM-positive and PV-positive neurons in the TRN are powerful modulators of visual information encoding in V1,revealing a novel role for this thalamic nucleus in influencing visual processing.