We often hear statements like“the market raises expectations for central bank interest rate cuts,resulting in higher commodity prices”.Given the current situation,the People’s Bank of China might adopt a more accom...We often hear statements like“the market raises expectations for central bank interest rate cuts,resulting in higher commodity prices”.Given the current situation,the People’s Bank of China might adopt a more accommodative monetary policy to mitigate the impact of the China-U.S.trade friction.Will this further easing of the monetary environment lead to an increase in natural gas prices?展开更多
On April 2,the United States announced the implementation of the so-called“reciprocal tariffs”plan.Combined with factors such as the OPEC+plan to increase production starting in May,this led to a continuous plunge i...On April 2,the United States announced the implementation of the so-called“reciprocal tariffs”plan.Combined with factors such as the OPEC+plan to increase production starting in May,this led to a continuous plunge in the benchmark oil prices of WTI and Brent over the subsequent three trading days.Despite the significant impact of the United States’“reciprocal tariffs”plan on the global political and economic landscape,the fundamental dynamics of supply and demand remain the decisive factors in the fluctuations of international oil prices.The current trend of international oil price fluctuations is still primarily driven by the supply side,with both supply and demand factors playing a role.Investment,costs,and resource constraints on the supply side do not allow for a significant increase in crude oil production,while“consumption rigidity”on the demand side does not permit a significant decrease in crude oil demand.As a result,International oil prices are expected to fluctuate in the short term,but a significant decline is unlikely to be sustained in the near to medium term.In this context,Chinese oil companies should focus on four key areas to ensure the security of national oil and gas supplies:first,promoting high-quality increases in domestic oil and gas reserves and production;second,steadily strengthening the acquisition of overseas oil and gas resources;third,continuously driving innovation in oil and gas exploration and development technologies;fourth,enhancing the capacity for domestic oil and gas reserves in an orderly manner.展开更多
This study examines the dynamic interplay between the US Dollar Index(USDI)and gold prices(GP)to assess the sustainability of gold price trends.Employing a rolling window bootstrapping causality test methodology acros...This study examines the dynamic interplay between the US Dollar Index(USDI)and gold prices(GP)to assess the sustainability of gold price trends.Employing a rolling window bootstrapping causality test methodology across full and sub-samples,the findings of this study challenge the conventional assumption of a stable long-term inverse correlation between USDI and GP,thereby validating the hypothesis that their relationship is nonlinear and time-dependent.During periods of heightened geopolitical and economic volatility,both the US dollar and gold function as safe-haven assets,with USDI fluctuations exerting a positive influence on GP.Conversely,under stable market conditions,the US dollar serves as the currency in which gold is denominated,resulting in a negative impact of USDI on GP.Notably,GP also demonstrates bidirectional causality,exhibiting both positive and negative effects on USDI.The analysis reveals that while a general inverse correlation persists between gold and the US dollar,this relationship transitions to positive during surges in global political and economic instability.In light of contemporary developments—including escalating geopolitical rivalries,tepid post-pandemic economic recovery,and elevated US interest rates driven by inflationary pressures—this study posit that the upward trajectory of gold prices retains a robust empirical foundation.展开更多
While the significant role of technological innovation in promoting renewable energy has been extensively explored in the literature,limited attention has been paid to the impact of energy patents,particularly clean e...While the significant role of technological innovation in promoting renewable energy has been extensively explored in the literature,limited attention has been paid to the impact of energy patents,particularly clean energy patents and fossil fuel patents.This study pioneers an investigation into the effects of energy patents and energy prices on renewable energy consumption.The study utilizes data from 2000Q1 to 2023Q4 and,due to the nonlinear nature of the series,applies wavelet quantile-based methods.Specifically,it introduces the wavelet quantile cointegration approach to evaluate cointegration across different quantiles and time horizons,along with the wavelet quantile-on-quantile regression method.The results confirm cointegration across different periods and quantiles,highlighting the significant relationships between energy patents,economic factors,and renewable energy consumption.Furthermore,we found that fossil energy patents negatively affect renewable energy consumption,while clean energy patents have a similar but weaker effect,especially in the short term.In addition,higher energy prices promote renewable energy adoption while economic growth positively influences renewable energy consumption,particularly in the short term.The study formulates specific policies based on these findings.展开更多
Accurate forecasting of electricity spot prices is crucial for market participants in formulating bidding strategies.However,the extreme volatility of electricity spot prices,influenced by various factors,poses signif...Accurate forecasting of electricity spot prices is crucial for market participants in formulating bidding strategies.However,the extreme volatility of electricity spot prices,influenced by various factors,poses significant challenges for forecasting.To address the data uncertainty of electricity prices and effectively mitigate gradient issues,overfitting,and computational challenges associated with using a single model during forecasting,this paper proposes a framework for forecasting spot market electricity prices by integrating wavelet packet decomposition(WPD)with a hybrid deep neural network.By ensuring accurate data decomposition,the WPD algorithm aids in detecting fluctuating patterns and isolating random noise.The hybrid model integrates temporal convolutional networks(TCN)and long short-term memory(LSTM)networks to enhance feature extraction and improve forecasting performance.Compared to other techniques,it significantly reduces average errors,decreasing mean absolute error(MAE)by 27.3%,root mean square error(RMSE)by 66.9%,and mean absolute percentage error(MAPE)by 22.8%.This framework effectively captures the intricate fluctuations present in the time series,resulting in more accurate and reliable predictions.展开更多
Urban shrinkage has emerged as a widespread phenomenon globally and has a significant impact on land,particularly in terms of land use and price.This study focuses on 2851 county-level cities in China in 2005–2018(ex...Urban shrinkage has emerged as a widespread phenomenon globally and has a significant impact on land,particularly in terms of land use and price.This study focuses on 2851 county-level cities in China in 2005–2018(excluding Hong Kong region,Macao region,Taiwan region,and‘no data’areas in Qinhai-Tibet Plateau)as the fundamental units of analysis.By employing nighttime light(NTL)data to identify shrinking cities,the propensity score matching(PSM)model was used to quantitatively examine the impact of shrinking cities on land prices,and evaluate the magnitude of this influence.The findings demonstrate the following:1)there were 613 shrinking cities in China,with moderate shrinkage being the most prevalent and severe shrinkage being the least.2)Regional disparities are evident in the spatial distribution of shrinking cities,especially in areas with diverse terrain.3)The spatial pattern of land price exhibits a significant correlated to the economic and administrative levels.4)Shrinking cities significantly negatively impact on the overall land price(ATT=–0.1241,P<0.05).However,the extent of the effect varies significantly among different spatial regions.This study contributes novel insights into the investigation of land prices and shrinking cities,ultimately serving as a foundation for government efforts to promote the sustainable development of urban areas.展开更多
Dominant Finnish assortment pricing gives prices for sawlog and pulp wood volumes. Buyers buck stems to sawlogs using secret price matrices. Agreed dimensions allow wide range of sawlog volumes. Forest owners cannot o...Dominant Finnish assortment pricing gives prices for sawlog and pulp wood volumes. Buyers buck stems to sawlogs using secret price matrices. Agreed dimensions allow wide range of sawlog volumes. Forest owners cannot objectively compare biddings: timber trade is a lottery game. Bucking is analyzed in terms of sawlog, pulp wood, log cylinder, sawn wood, value-weighted sawn wood, and chips. Sawn wood and its value are computed from top diameter of the sawlog. Profit maximization requires buyers to buck logs producing smaller than maximal value, causing dead weight loss. Nominal assortment prices have unpredictable relation to effective stumpage price. Assortment pricing does not meet requirements of market economy. If sawmills linked to pulp mills buck smaller sawlog percentages than independent sawmills, as generally believed, they use higher price for chips in their own harvests than they pay for independent sawmills, indicating imperfect competition for chips. Sawn wood potential pricing is suggested which gives prices for sawn wood and chips coming both from sawlogs and pulp wood in reference bucking which maximizes sawn wood for given minimum and maximum log length and minimum top diameter. Simple algorithm generates feasible bucking schedules from which optimum can be selected using any objective. Pricing produces unit price for all commercial wood utilizing ratio of theoretical sawn wood and commercial volume in stand. Unit price can be compared to stem pricing and could be compared to assortment pricing if assortment pricing would produce predictable sawlog percentages. Sawn wood potential pricing is concrete, transparent, easy to compute, considers stem size and tapering, reduces trading cost and is less risky to buyers than stem pricing. It meets requirements of market economy. Readers can repeat computations using open-source software Jlp22.展开更多
Recent theoretical developments in economics distinguish between risk and ambiguity(Knightian uncertainty).Using state-of-the-art methods with intraday stock market data from February 1993 to February 2021,we derive f...Recent theoretical developments in economics distinguish between risk and ambiguity(Knightian uncertainty).Using state-of-the-art methods with intraday stock market data from February 1993 to February 2021,we derive financial ambiguity and empirically examine the effect of shocks to it on the price and volatility of crude oil.We provide evidence that ambiguity carries important information about future oil returns and volatility perceived by investors.We validate these results using Granger causality and in-sample and out-of-sample forecasting tests.Our findings reveal that financial ambiguity is a possible factor that explains future drops in oil prices and their increased variability.Our findings will benefit scholars and investors interested in how financial ambiguity shapes short-term oil prices.展开更多
The yield on the 10-year U.S.Treasury Note is among the most cited interest rates by investors,policymakers,and financial institutions.We show that the 10-year Treasury yield’s forward-looking volatility,a VIX-style ...The yield on the 10-year U.S.Treasury Note is among the most cited interest rates by investors,policymakers,and financial institutions.We show that the 10-year Treasury yield’s forward-looking volatility,a VIX-style measure that is a proxy for uncertainty about future interest rates,is a useful state variable capable of predicting the returns and volatility of crude oil prices over the near term.Using monthly data from 2003 to 2020,we document that higher implied volatility in the 10-year U.S.Treasury derivatives market predicts declining oil prices and higher forward-looking volatility in those prices.Our results are robust to different subsamples and various empirical designs.展开更多
This paper uses the HS2 extension cancellation in November 2021 as a quasi-experiment to study its impact on house prices and rents in Leeds.Using a DiD approach on repeat sales and monthly rents,I compare property va...This paper uses the HS2 extension cancellation in November 2021 as a quasi-experiment to study its impact on house prices and rents in Leeds.Using a DiD approach on repeat sales and monthly rents,I compare property values near the HS2 station and proposed construction site before and after the announcement.Results show a 3.6%decrease in house prices and a 3.9%decline in rents near the station,while properties near the construction site experienced a 2.4%increase in prices and a 2.1%rise in rents.This is the first paper to analyse the HS2 cancellation effect using panel data methods.展开更多
This study examines the market efficiency in the prices and volumes of transactions of 41 cryptocurrencies.Specifically,the correlation dimension(CD),Lyapunov Exponent(LE),and approximate entropy(AE)were estimated bef...This study examines the market efficiency in the prices and volumes of transactions of 41 cryptocurrencies.Specifically,the correlation dimension(CD),Lyapunov Exponent(LE),and approximate entropy(AE)were estimated before and during the COVID-19 pandemic.Then,we applied Student’s t-test and F-test to check whether the estimated nonlinear features differ across periods.The empirical results show that(i)the COVID-19 pandemic has not affected the means of CD,LE,and AE in prices,(ii)the variances of CD,LE,and AE estimated from prices are different across pre-pandemic and during pandemic periods,and specifically(iii)the variance of CD decreased during the pandemic;however,the variance of LE and the variance of AE increased during the pandemic period.Furthermore,the pandemic has not affected all three features estimated from the volume series.Our findings suggest that investing in cryptocurrencies is advantageous during a pandemic because their prices become more regular and stable,and the latter has not affected the volume of transactions.展开更多
The new energy industry is strongly supported by the state,and accurate forecasting of stock price can lead to better understanding of its development.However,factors such as cost and ease of use of new energy,as well...The new energy industry is strongly supported by the state,and accurate forecasting of stock price can lead to better understanding of its development.However,factors such as cost and ease of use of new energy,as well as economic situation and policy environment,have led to continuous changes in its stock price and increased stock price volatility.By calculating the Lyapunov index and observing the Poincarésurface of the section,we find that the sample of the China Securities Index Green Power 50 Index has chaotic characteristics,and the data indicate strong volatility and uncertainty.This study proposes a new method of stock price index prediction,namely,EWT-S-ALOSVR.Empirical wavelet decomposition extracts features from multiple factors affecting stock prices to form multiple sub-columns with features,significantly reducing the complexity of the stock price series.Support vector regression is well suited for dealing with nonlinear stock price series,and the support vector machine model parameters are selected using random wandering and picking elites via Ant Lion Optimization,making stock price prediction more accurate.展开更多
Tungsten current price was transformed yearly to its constant price since 1900, which is roughly decomposed into four components as trend, cycle, impact and random. The core prices, consisting of the trend and the cyc...Tungsten current price was transformed yearly to its constant price since 1900, which is roughly decomposed into four components as trend, cycle, impact and random. The core prices, consisting of the trend and the cycle, present regularities that a long-run cycle is embedded within two major cycles, and major cycle is composed of low-price period and high-price period, along with the rapid rise into a tower, and along with deep down into next trough; three sharply upward shocks occur by the events in a tower. Fluctuations in prices trend to slow cycles and expand the bands. It can be expected that tungsten price will highly stand over 17 a, and is is a advice that reducing production and restricting export maybe maintain a high price level.展开更多
From the perspective of long-term and short-term, the methods of TY causality test, generalized impulse response function, variance decomposition were used to investigate the impacts of international oil prices and ma...From the perspective of long-term and short-term, the methods of TY causality test, generalized impulse response function, variance decomposition were used to investigate the impacts of international oil prices and macroeconomic variables on Chinese gold, silver and platinum prices, but also the feedback effects of Chinese precious metal prices under this impact. The results show that international oil prices play an important role in precious metal price variation both in long-term and short-term, and exchange rate only has an effect in short-term, while interest rate is ineffective in predicting precious metal prices. In addition, precious metal prices have some feedback effects on international oil prices and interest rate in short-term.展开更多
At the beginning of 2025,China’s national carbon market carbon price trend exhibited a continuous unilateral downward trajectory,representing a departure from the overall steady upward trend in carbon prices since th...At the beginning of 2025,China’s national carbon market carbon price trend exhibited a continuous unilateral downward trajectory,representing a departure from the overall steady upward trend in carbon prices since the carbon market launched in 2021.The analysis suggests that the primary reason for the recent decline in carbon prices is the reversal of supply and demand dynamics in the carbon market,with increased quota supply amid a sluggish economy.It is expected that downward pressure on carbon prices will persist in the short term,but with more industries being included and continued policy optimization and improvement,a rise in China’s medium-to long-term carbon prices is highly probable.Recommendations for enterprises involved in carbon asset operations and management:first,refining carbon asset reserves and trading strategies;second,accelerating internal CCER project development;third,exploring carbon financial instrument applications;fourth,establishing and improving internal carbon pricing mechanisms;fifth,proactively planning for new industry inclusion.展开更多
Stock price prediction is a typical complex time series prediction problem characterized by dynamics,nonlinearity,and complexity.This paper introduces a generative adversarial network model that incorporates an attent...Stock price prediction is a typical complex time series prediction problem characterized by dynamics,nonlinearity,and complexity.This paper introduces a generative adversarial network model that incorporates an attention mechanism(GAN-LSTM-Attention)to improve the accuracy of stock price prediction.Firstly,the generator of this model combines the Long and Short-Term Memory Network(LSTM),the Attention Mechanism and,the Fully-Connected Layer,focusing on generating the predicted stock price.The discriminator combines the Convolutional Neural Network(CNN)and the Fully-Connected Layer to discriminate between real stock prices and generated stock prices.Secondly,to evaluate the practical application ability and generalization ability of the GAN-LSTM-Attention model,four representative stocks in the United States of America(USA)stock market,namely,Standard&Poor’s 500 Index stock,Apple Incorporatedstock,AdvancedMicroDevices Incorporatedstock,and Google Incorporated stock were selected for prediction experiments,and the prediction performance was comprehensively evaluated by using the three evaluation metrics,namely,mean absolute error(MAE),root mean square error(RMSE),and coefficient of determination(R2).Finally,the specific effects of the attention mechanism,convolutional layer,and fully-connected layer on the prediction performance of the model are systematically analyzed through ablation study.The results of experiment show that the GAN-LSTM-Attention model exhibits excellent performance and robustness in stock price prediction.展开更多
In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy sys...In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy system(IIES).The upper level represents the integrated energy operator,and the lower level is the electricity-heatgas load aggregator.Owing to the benefit conflict between the upper and lower levels of the IIES,a dynamic pricing mechanism for coordinating the interests of the upper and lower levels is proposed,combined with factors such as the carbon emissions of the IIES,as well as the lower load interruption power.The price of selling energy can be dynamically adjusted to the lower LA in the mechanism,according to the information on carbon emissions and load interruption power.Mutual benefits and win-win situations are achieved between the upper and lower multistakeholders.Finally,CPLEX is used to iteratively solve the bilevel optimization model.The optimal solution is selected according to the joint optimal discrimination mechanism.Thesimulation results indicate that the sourceload coordinate operation can reduce the upper and lower operation costs.Using the proposed pricingmechanism,the carbon emissions and load interruption power of IEO-LA are reduced by 9.78%and 70.19%,respectively,and the capture power of the carbon capture equipment is improved by 36.24%.The validity of the proposed model and method is verified.展开更多
For the longest time,New York's Upper Fifth Avenue held the title of“the most expensive street in the world”,but it has recently been overtaken by Montenapoleone,an upscale shopping street in Milan,Italy.Every y...For the longest time,New York's Upper Fifth Avenue held the title of“the most expensive street in the world”,but it has recently been overtaken by Montenapoleone,an upscale shopping street in Milan,Italy.Every year,America publishes a global index(指数)that ranks the world's most expensive shopping areas by the rent prices they command.Fifth Avenue has been ranking first out of 138 leading retail destinations around the world for many years,but last year,it was surpassed by Montenapoleone,the most popular luxury shopping street in Milan.Not only is this short street a magnet(有吸引力的事物)for tourists interested only in window⁃shopping,but it also attracts some of the wealthiest people around the globe,many of who spend at least$2,600 per purchase,the highest average receipt in the world.展开更多
Nodal pricing is a critical mechanism in electricity markets,utilized to determine the cost of power transmission to various nodes within a distribution network.As power systems evolve to incorporate higher levels of ...Nodal pricing is a critical mechanism in electricity markets,utilized to determine the cost of power transmission to various nodes within a distribution network.As power systems evolve to incorporate higher levels of renewable energy and face increasing demand fluctuations,traditional nodal pricing models often fall short to meet these new challenges.This research introduces a novel enhanced nodal pricing mechanism for distribution networks,integrating advanced optimization techniques and hybrid models to overcome these limitations.The primary objective is to develop a model that not only improves pricing accuracy but also enhances operational efficiency and system reliability.This study leverages cutting-edge hybrid algorithms,combining elements of machine learning with conventional optimization methods,to achieve superior performance.Key findings demonstrate that the proposed hybrid nodal pricing model significantly reduces pricing errors and operational costs compared to conventional methods.Through extensive simulations and comparative analysis,the model exhibits enhanced performance under varying load conditions and increased levels of renewable energy integration.The results indicate a substantial improvement in pricing precision and network stability.This study contributes to the ongoing discourse on optimizing electricity market mechanisms and provides actionable insights for policymakers and utility operators.By addressing the complexities of modern power distribution systems,our research offers a robust solution that enhances the efficiency and reliability of power distribution networks,marking a significant advancement in the field.展开更多
Global climate change has created substantial difficulties in the areas of sustainability,development,and environmental conservation due to the widespread dependence on fossil fuels for energy production.Nevertheless,...Global climate change has created substantial difficulties in the areas of sustainability,development,and environmental conservation due to the widespread dependence on fossil fuels for energy production.Nevertheless,the promotion of renewable energy programs has the potential to significantly expedite endeavors aimed at tackling climate change.Thus,it is essential to conduct a thorough analysis that considers the financial aspects to fully understand the main hurdles that are preventing the advancement of renewable energy initiatives.Italy is a leading country in the worldwide deployment of renewable energy.The objective of this research is to assess the impact of financial growth,economic progress,and energy expenses on Italy’s adoption of renewable energy sources.By employing the Auto-Regressive Distributed Lag(ARDL)technique,we analyzed annual data spanning from1990 to 2022.Findings revealed that a 1%increase in financial and economic development would boost renewable energy consumption in the long run by 0.29%and 0.48%,respectively.Instead,a 1%increase in energy prices might reduce consumption of renewable energy by 0.05%in the long run.This study’s primary significance lies in furnishing actionable strategies for Italy to augment green finance for renewable energy,fostering sustained social and economic progress.Moreover,the analytical insights gleaned from this research offer valuable insights for energy-importing nations worldwide.展开更多
文摘We often hear statements like“the market raises expectations for central bank interest rate cuts,resulting in higher commodity prices”.Given the current situation,the People’s Bank of China might adopt a more accommodative monetary policy to mitigate the impact of the China-U.S.trade friction.Will this further easing of the monetary environment lead to an increase in natural gas prices?
文摘On April 2,the United States announced the implementation of the so-called“reciprocal tariffs”plan.Combined with factors such as the OPEC+plan to increase production starting in May,this led to a continuous plunge in the benchmark oil prices of WTI and Brent over the subsequent three trading days.Despite the significant impact of the United States’“reciprocal tariffs”plan on the global political and economic landscape,the fundamental dynamics of supply and demand remain the decisive factors in the fluctuations of international oil prices.The current trend of international oil price fluctuations is still primarily driven by the supply side,with both supply and demand factors playing a role.Investment,costs,and resource constraints on the supply side do not allow for a significant increase in crude oil production,while“consumption rigidity”on the demand side does not permit a significant decrease in crude oil demand.As a result,International oil prices are expected to fluctuate in the short term,but a significant decline is unlikely to be sustained in the near to medium term.In this context,Chinese oil companies should focus on four key areas to ensure the security of national oil and gas supplies:first,promoting high-quality increases in domestic oil and gas reserves and production;second,steadily strengthening the acquisition of overseas oil and gas resources;third,continuously driving innovation in oil and gas exploration and development technologies;fourth,enhancing the capacity for domestic oil and gas reserves in an orderly manner.
基金Project of National Social Science Fund of China(Project No.:23BGJ010)。
文摘This study examines the dynamic interplay between the US Dollar Index(USDI)and gold prices(GP)to assess the sustainability of gold price trends.Employing a rolling window bootstrapping causality test methodology across full and sub-samples,the findings of this study challenge the conventional assumption of a stable long-term inverse correlation between USDI and GP,thereby validating the hypothesis that their relationship is nonlinear and time-dependent.During periods of heightened geopolitical and economic volatility,both the US dollar and gold function as safe-haven assets,with USDI fluctuations exerting a positive influence on GP.Conversely,under stable market conditions,the US dollar serves as the currency in which gold is denominated,resulting in a negative impact of USDI on GP.Notably,GP also demonstrates bidirectional causality,exhibiting both positive and negative effects on USDI.The analysis reveals that while a general inverse correlation persists between gold and the US dollar,this relationship transitions to positive during surges in global political and economic instability.In light of contemporary developments—including escalating geopolitical rivalries,tepid post-pandemic economic recovery,and elevated US interest rates driven by inflationary pressures—this study posit that the upward trajectory of gold prices retains a robust empirical foundation.
文摘While the significant role of technological innovation in promoting renewable energy has been extensively explored in the literature,limited attention has been paid to the impact of energy patents,particularly clean energy patents and fossil fuel patents.This study pioneers an investigation into the effects of energy patents and energy prices on renewable energy consumption.The study utilizes data from 2000Q1 to 2023Q4 and,due to the nonlinear nature of the series,applies wavelet quantile-based methods.Specifically,it introduces the wavelet quantile cointegration approach to evaluate cointegration across different quantiles and time horizons,along with the wavelet quantile-on-quantile regression method.The results confirm cointegration across different periods and quantiles,highlighting the significant relationships between energy patents,economic factors,and renewable energy consumption.Furthermore,we found that fossil energy patents negatively affect renewable energy consumption,while clean energy patents have a similar but weaker effect,especially in the short term.In addition,higher energy prices promote renewable energy adoption while economic growth positively influences renewable energy consumption,particularly in the short term.The study formulates specific policies based on these findings.
基金partially supported by projects funded by the National Key R&D Program of China(2022YFB2403000)the State Grid Corporation of China Science and Technology Project(522722230034).
文摘Accurate forecasting of electricity spot prices is crucial for market participants in formulating bidding strategies.However,the extreme volatility of electricity spot prices,influenced by various factors,poses significant challenges for forecasting.To address the data uncertainty of electricity prices and effectively mitigate gradient issues,overfitting,and computational challenges associated with using a single model during forecasting,this paper proposes a framework for forecasting spot market electricity prices by integrating wavelet packet decomposition(WPD)with a hybrid deep neural network.By ensuring accurate data decomposition,the WPD algorithm aids in detecting fluctuating patterns and isolating random noise.The hybrid model integrates temporal convolutional networks(TCN)and long short-term memory(LSTM)networks to enhance feature extraction and improve forecasting performance.Compared to other techniques,it significantly reduces average errors,decreasing mean absolute error(MAE)by 27.3%,root mean square error(RMSE)by 66.9%,and mean absolute percentage error(MAPE)by 22.8%.This framework effectively captures the intricate fluctuations present in the time series,resulting in more accurate and reliable predictions.
基金Under the auspices of National Natural Science Foundation of China(No.42071222,41771194)。
文摘Urban shrinkage has emerged as a widespread phenomenon globally and has a significant impact on land,particularly in terms of land use and price.This study focuses on 2851 county-level cities in China in 2005–2018(excluding Hong Kong region,Macao region,Taiwan region,and‘no data’areas in Qinhai-Tibet Plateau)as the fundamental units of analysis.By employing nighttime light(NTL)data to identify shrinking cities,the propensity score matching(PSM)model was used to quantitatively examine the impact of shrinking cities on land prices,and evaluate the magnitude of this influence.The findings demonstrate the following:1)there were 613 shrinking cities in China,with moderate shrinkage being the most prevalent and severe shrinkage being the least.2)Regional disparities are evident in the spatial distribution of shrinking cities,especially in areas with diverse terrain.3)The spatial pattern of land price exhibits a significant correlated to the economic and administrative levels.4)Shrinking cities significantly negatively impact on the overall land price(ATT=–0.1241,P<0.05).However,the extent of the effect varies significantly among different spatial regions.This study contributes novel insights into the investigation of land prices and shrinking cities,ultimately serving as a foundation for government efforts to promote the sustainable development of urban areas.
文摘Dominant Finnish assortment pricing gives prices for sawlog and pulp wood volumes. Buyers buck stems to sawlogs using secret price matrices. Agreed dimensions allow wide range of sawlog volumes. Forest owners cannot objectively compare biddings: timber trade is a lottery game. Bucking is analyzed in terms of sawlog, pulp wood, log cylinder, sawn wood, value-weighted sawn wood, and chips. Sawn wood and its value are computed from top diameter of the sawlog. Profit maximization requires buyers to buck logs producing smaller than maximal value, causing dead weight loss. Nominal assortment prices have unpredictable relation to effective stumpage price. Assortment pricing does not meet requirements of market economy. If sawmills linked to pulp mills buck smaller sawlog percentages than independent sawmills, as generally believed, they use higher price for chips in their own harvests than they pay for independent sawmills, indicating imperfect competition for chips. Sawn wood potential pricing is suggested which gives prices for sawn wood and chips coming both from sawlogs and pulp wood in reference bucking which maximizes sawn wood for given minimum and maximum log length and minimum top diameter. Simple algorithm generates feasible bucking schedules from which optimum can be selected using any objective. Pricing produces unit price for all commercial wood utilizing ratio of theoretical sawn wood and commercial volume in stand. Unit price can be compared to stem pricing and could be compared to assortment pricing if assortment pricing would produce predictable sawlog percentages. Sawn wood potential pricing is concrete, transparent, easy to compute, considers stem size and tapering, reduces trading cost and is less risky to buyers than stem pricing. It meets requirements of market economy. Readers can repeat computations using open-source software Jlp22.
文摘Recent theoretical developments in economics distinguish between risk and ambiguity(Knightian uncertainty).Using state-of-the-art methods with intraday stock market data from February 1993 to February 2021,we derive financial ambiguity and empirically examine the effect of shocks to it on the price and volatility of crude oil.We provide evidence that ambiguity carries important information about future oil returns and volatility perceived by investors.We validate these results using Granger causality and in-sample and out-of-sample forecasting tests.Our findings reveal that financial ambiguity is a possible factor that explains future drops in oil prices and their increased variability.Our findings will benefit scholars and investors interested in how financial ambiguity shapes short-term oil prices.
文摘The yield on the 10-year U.S.Treasury Note is among the most cited interest rates by investors,policymakers,and financial institutions.We show that the 10-year Treasury yield’s forward-looking volatility,a VIX-style measure that is a proxy for uncertainty about future interest rates,is a useful state variable capable of predicting the returns and volatility of crude oil prices over the near term.Using monthly data from 2003 to 2020,we document that higher implied volatility in the 10-year U.S.Treasury derivatives market predicts declining oil prices and higher forward-looking volatility in those prices.Our results are robust to different subsamples and various empirical designs.
文摘This paper uses the HS2 extension cancellation in November 2021 as a quasi-experiment to study its impact on house prices and rents in Leeds.Using a DiD approach on repeat sales and monthly rents,I compare property values near the HS2 station and proposed construction site before and after the announcement.Results show a 3.6%decrease in house prices and a 3.9%decline in rents near the station,while properties near the construction site experienced a 2.4%increase in prices and a 2.1%rise in rents.This is the first paper to analyse the HS2 cancellation effect using panel data methods.
文摘This study examines the market efficiency in the prices and volumes of transactions of 41 cryptocurrencies.Specifically,the correlation dimension(CD),Lyapunov Exponent(LE),and approximate entropy(AE)were estimated before and during the COVID-19 pandemic.Then,we applied Student’s t-test and F-test to check whether the estimated nonlinear features differ across periods.The empirical results show that(i)the COVID-19 pandemic has not affected the means of CD,LE,and AE in prices,(ii)the variances of CD,LE,and AE estimated from prices are different across pre-pandemic and during pandemic periods,and specifically(iii)the variance of CD decreased during the pandemic;however,the variance of LE and the variance of AE increased during the pandemic period.Furthermore,the pandemic has not affected all three features estimated from the volume series.Our findings suggest that investing in cryptocurrencies is advantageous during a pandemic because their prices become more regular and stable,and the latter has not affected the volume of transactions.
基金Key Research Project in Universities of Henan Province(No.24B480012)Science and Technology of Henan Province of China(No.182400410419)+1 种基金the Foundation for Fostering the National Foundation of Pingdingshan University(No.PXY-PYJJ-2016006)National Science and Technology Council,Taiwan(MOST 111-2410-H-161-001).
文摘The new energy industry is strongly supported by the state,and accurate forecasting of stock price can lead to better understanding of its development.However,factors such as cost and ease of use of new energy,as well as economic situation and policy environment,have led to continuous changes in its stock price and increased stock price volatility.By calculating the Lyapunov index and observing the Poincarésurface of the section,we find that the sample of the China Securities Index Green Power 50 Index has chaotic characteristics,and the data indicate strong volatility and uncertainty.This study proposes a new method of stock price index prediction,namely,EWT-S-ALOSVR.Empirical wavelet decomposition extracts features from multiple factors affecting stock prices to form multiple sub-columns with features,significantly reducing the complexity of the stock price series.Support vector regression is well suited for dealing with nonlinear stock price series,and the support vector machine model parameters are selected using random wandering and picking elites via Ant Lion Optimization,making stock price prediction more accurate.
基金Project(2013ZK2001)supported by the Major Soft Science Program of Hunan Provice,ChinaProjects(1382ZD024,13BGL105)supported by the National Social Science Foundation of China
文摘Tungsten current price was transformed yearly to its constant price since 1900, which is roughly decomposed into four components as trend, cycle, impact and random. The core prices, consisting of the trend and the cycle, present regularities that a long-run cycle is embedded within two major cycles, and major cycle is composed of low-price period and high-price period, along with the rapid rise into a tower, and along with deep down into next trough; three sharply upward shocks occur by the events in a tower. Fluctuations in prices trend to slow cycles and expand the bands. It can be expected that tungsten price will highly stand over 17 a, and is is a advice that reducing production and restricting export maybe maintain a high price level.
基金Project(13&ZD169)supported by the Major Program of the National Social Science Foundation,ChinaProject(13YJAZH149)supported by Research Project in Humanities and Social Sciences Conducted by the Ministry of Education,China+2 种基金Project(2011ZK2043)supported by the Key Program of the Soft Science Research Project of Hunan Province,ChinaProject(2015JJ2182)supported by Natural Science Foundation of Hunan Province of ChinaProject(2009JYJR035)supported by Emergency Project "The Study of International Financial Crisis" of Ministry of Education of China
文摘From the perspective of long-term and short-term, the methods of TY causality test, generalized impulse response function, variance decomposition were used to investigate the impacts of international oil prices and macroeconomic variables on Chinese gold, silver and platinum prices, but also the feedback effects of Chinese precious metal prices under this impact. The results show that international oil prices play an important role in precious metal price variation both in long-term and short-term, and exchange rate only has an effect in short-term, while interest rate is ineffective in predicting precious metal prices. In addition, precious metal prices have some feedback effects on international oil prices and interest rate in short-term.
文摘At the beginning of 2025,China’s national carbon market carbon price trend exhibited a continuous unilateral downward trajectory,representing a departure from the overall steady upward trend in carbon prices since the carbon market launched in 2021.The analysis suggests that the primary reason for the recent decline in carbon prices is the reversal of supply and demand dynamics in the carbon market,with increased quota supply amid a sluggish economy.It is expected that downward pressure on carbon prices will persist in the short term,but with more industries being included and continued policy optimization and improvement,a rise in China’s medium-to long-term carbon prices is highly probable.Recommendations for enterprises involved in carbon asset operations and management:first,refining carbon asset reserves and trading strategies;second,accelerating internal CCER project development;third,exploring carbon financial instrument applications;fourth,establishing and improving internal carbon pricing mechanisms;fifth,proactively planning for new industry inclusion.
基金funded by the project supported by the Natural Science Foundation of Heilongjiang Provincial(Grant Number LH2023F033)the Science and Technology Innovation Talent Project of Harbin(Grant Number 2022CXRCCG006).
文摘Stock price prediction is a typical complex time series prediction problem characterized by dynamics,nonlinearity,and complexity.This paper introduces a generative adversarial network model that incorporates an attention mechanism(GAN-LSTM-Attention)to improve the accuracy of stock price prediction.Firstly,the generator of this model combines the Long and Short-Term Memory Network(LSTM),the Attention Mechanism and,the Fully-Connected Layer,focusing on generating the predicted stock price.The discriminator combines the Convolutional Neural Network(CNN)and the Fully-Connected Layer to discriminate between real stock prices and generated stock prices.Secondly,to evaluate the practical application ability and generalization ability of the GAN-LSTM-Attention model,four representative stocks in the United States of America(USA)stock market,namely,Standard&Poor’s 500 Index stock,Apple Incorporatedstock,AdvancedMicroDevices Incorporatedstock,and Google Incorporated stock were selected for prediction experiments,and the prediction performance was comprehensively evaluated by using the three evaluation metrics,namely,mean absolute error(MAE),root mean square error(RMSE),and coefficient of determination(R2).Finally,the specific effects of the attention mechanism,convolutional layer,and fully-connected layer on the prediction performance of the model are systematically analyzed through ablation study.The results of experiment show that the GAN-LSTM-Attention model exhibits excellent performance and robustness in stock price prediction.
基金supported by the Central Government Guides Local Science and Technology Development Fund Project(2023ZY0020)Key R&D and Achievement Transformation Project in InnerMongolia Autonomous Region(2022YFHH0019)+3 种基金the Fundamental Research Funds for Inner Mongolia University of Science&Technology(2022053)Natural Science Foundation of Inner Mongolia(2022LHQN05002)National Natural Science Foundation of China(52067018)Metallurgical Engineering First-Class Discipline Construction Project in Inner Mongolia University of Science and Technology,Control Science and Engineering Quality Improvement and Cultivation Discipline Project in Inner Mongolia University of Science and Technology。
文摘In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy system(IIES).The upper level represents the integrated energy operator,and the lower level is the electricity-heatgas load aggregator.Owing to the benefit conflict between the upper and lower levels of the IIES,a dynamic pricing mechanism for coordinating the interests of the upper and lower levels is proposed,combined with factors such as the carbon emissions of the IIES,as well as the lower load interruption power.The price of selling energy can be dynamically adjusted to the lower LA in the mechanism,according to the information on carbon emissions and load interruption power.Mutual benefits and win-win situations are achieved between the upper and lower multistakeholders.Finally,CPLEX is used to iteratively solve the bilevel optimization model.The optimal solution is selected according to the joint optimal discrimination mechanism.Thesimulation results indicate that the sourceload coordinate operation can reduce the upper and lower operation costs.Using the proposed pricingmechanism,the carbon emissions and load interruption power of IEO-LA are reduced by 9.78%and 70.19%,respectively,and the capture power of the carbon capture equipment is improved by 36.24%.The validity of the proposed model and method is verified.
文摘For the longest time,New York's Upper Fifth Avenue held the title of“the most expensive street in the world”,but it has recently been overtaken by Montenapoleone,an upscale shopping street in Milan,Italy.Every year,America publishes a global index(指数)that ranks the world's most expensive shopping areas by the rent prices they command.Fifth Avenue has been ranking first out of 138 leading retail destinations around the world for many years,but last year,it was surpassed by Montenapoleone,the most popular luxury shopping street in Milan.Not only is this short street a magnet(有吸引力的事物)for tourists interested only in window⁃shopping,but it also attracts some of the wealthiest people around the globe,many of who spend at least$2,600 per purchase,the highest average receipt in the world.
文摘Nodal pricing is a critical mechanism in electricity markets,utilized to determine the cost of power transmission to various nodes within a distribution network.As power systems evolve to incorporate higher levels of renewable energy and face increasing demand fluctuations,traditional nodal pricing models often fall short to meet these new challenges.This research introduces a novel enhanced nodal pricing mechanism for distribution networks,integrating advanced optimization techniques and hybrid models to overcome these limitations.The primary objective is to develop a model that not only improves pricing accuracy but also enhances operational efficiency and system reliability.This study leverages cutting-edge hybrid algorithms,combining elements of machine learning with conventional optimization methods,to achieve superior performance.Key findings demonstrate that the proposed hybrid nodal pricing model significantly reduces pricing errors and operational costs compared to conventional methods.Through extensive simulations and comparative analysis,the model exhibits enhanced performance under varying load conditions and increased levels of renewable energy integration.The results indicate a substantial improvement in pricing precision and network stability.This study contributes to the ongoing discourse on optimizing electricity market mechanisms and provides actionable insights for policymakers and utility operators.By addressing the complexities of modern power distribution systems,our research offers a robust solution that enhances the efficiency and reliability of power distribution networks,marking a significant advancement in the field.
文摘Global climate change has created substantial difficulties in the areas of sustainability,development,and environmental conservation due to the widespread dependence on fossil fuels for energy production.Nevertheless,the promotion of renewable energy programs has the potential to significantly expedite endeavors aimed at tackling climate change.Thus,it is essential to conduct a thorough analysis that considers the financial aspects to fully understand the main hurdles that are preventing the advancement of renewable energy initiatives.Italy is a leading country in the worldwide deployment of renewable energy.The objective of this research is to assess the impact of financial growth,economic progress,and energy expenses on Italy’s adoption of renewable energy sources.By employing the Auto-Regressive Distributed Lag(ARDL)technique,we analyzed annual data spanning from1990 to 2022.Findings revealed that a 1%increase in financial and economic development would boost renewable energy consumption in the long run by 0.29%and 0.48%,respectively.Instead,a 1%increase in energy prices might reduce consumption of renewable energy by 0.05%in the long run.This study’s primary significance lies in furnishing actionable strategies for Italy to augment green finance for renewable energy,fostering sustained social and economic progress.Moreover,the analytical insights gleaned from this research offer valuable insights for energy-importing nations worldwide.