Thermalization in many-body systems,especially with strong interactions,is a central question in physics.In this work,we present a novel framework for the thermalization of interacting wave systems,distinguishing betw...Thermalization in many-body systems,especially with strong interactions,is a central question in physics.In this work,we present a novel framework for the thermalization of interacting wave systems,distinguishing between trivial(no momentum exchange)and nontrivial interactions(significant energy redistribution).This distinction leads to a statistically equivalent model with weakened interactions.By applying this to FPUT-like models,we identify a unique double scaling of thermalization times.Crucially,our findings suggest the persistence of prethermalization in strong interactions.展开更多
The STAR Collaboration has offered an eminent nuclear modification factor of J/ψ at high p T and midrapidity produced in Cu-Cu collisions at sNN^(1/2) = 200 GeV. Recalling a prediction, we can understand that the f...The STAR Collaboration has offered an eminent nuclear modification factor of J/ψ at high p T and midrapidity produced in Cu-Cu collisions at sNN^(1/2) = 200 GeV. Recalling a prediction, we can understand that the feature of high-pT nuclear modification factor is related to cc produced by 2 → 1 and 2 → 2 partonic processes in deconfined matter, particularly in the prethermal stage and to the recombination of c and c. The nuclear modification factor at high p T is sensitive to the earliest form of deconfined matter that does not have a temperature.展开更多
基金partially supported by the National Natural Science Foundation of China (Grant Nos.11925507,12047503,11975190,12247106,12005156,12247101 and 12465010)the support from the Youth Talent (Team)Project of Gansu Provincefrom the Innovation Fund from Department of Education of Gansu Province (Grant No.2023A-106)。
文摘Thermalization in many-body systems,especially with strong interactions,is a central question in physics.In this work,we present a novel framework for the thermalization of interacting wave systems,distinguishing between trivial(no momentum exchange)and nontrivial interactions(significant energy redistribution).This distinction leads to a statistically equivalent model with weakened interactions.By applying this to FPUT-like models,we identify a unique double scaling of thermalization times.Crucially,our findings suggest the persistence of prethermalization in strong interactions.
基金Supported by National Natural Science Foundation of China (10675079)
文摘The STAR Collaboration has offered an eminent nuclear modification factor of J/ψ at high p T and midrapidity produced in Cu-Cu collisions at sNN^(1/2) = 200 GeV. Recalling a prediction, we can understand that the feature of high-pT nuclear modification factor is related to cc produced by 2 → 1 and 2 → 2 partonic processes in deconfined matter, particularly in the prethermal stage and to the recombination of c and c. The nuclear modification factor at high p T is sensitive to the earliest form of deconfined matter that does not have a temperature.