期刊文献+
共找到8,452篇文章
< 1 2 250 >
每页显示 20 50 100
Impulse pressuring diffusion bonding of titanium to 304 stainless steel using pure Ni interlayer 被引量:8
1
作者 Fang-Li Wang Guang-Min Sheng Yong-Qiang Deng 《Rare Metals》 SCIE EI CAS CSCD 2016年第4期331-336,共6页
In the present study, impulse pressuring diffu- sion bonding technology (IPDB) was utilized between commercially pure titanium and 304 stainless steel (SS) using pure nickel (Ni) as interlayer metal. The interfa... In the present study, impulse pressuring diffu- sion bonding technology (IPDB) was utilized between commercially pure titanium and 304 stainless steel (SS) using pure nickel (Ni) as interlayer metal. The interfacial microstructures of the bonded joints were investigated by scanning electron microscopy (SEM) and energy dispersive spectroscope (EDS) analyses. It is found that with the aid of the Ni interlayer, the interdiffusion and reaction between Ti and SS can be effectively restricted and robust joints can be obtained. Intermetallic compounds (IMCs) including Ti2Ni, TiNi, and TiNi3 are detected at the Ti/Ni interface; however, only Ni-Fe solid solution is found at the Ni/SS interface. The maximum tensile strength of 358 MPa is obtained by IPDB for 90 s and the fracture takes place along the Ti2Ni and TiNi phase upon tensile loading. The existence of cleavage pattern on the fracture surface indi- cates the brittle nature of the joints. 展开更多
关键词 Impulse pressuring diffusion bonding TITANIUM Stainless steel Ni interlayer
原文传递
Partial transient-liquid-phase bonding of TiC cermet to stainless steel using impulse pressuring with Ti/Cu/Nb interlayer 被引量:1
2
作者 黄利 盛光敏 +2 位作者 李佳 黄光杰 袁新建 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第5期1025-1032,共8页
Partial transient liquid phase (PTLP) bonding of TiC cermet to 06Cr19Ni10 stainless steel was carried out. Impulse pressuring was used to reduce the bonding time, and a Ti/Cu/Nb interlayer was employed to alleviate ... Partial transient liquid phase (PTLP) bonding of TiC cermet to 06Cr19Ni10 stainless steel was carried out. Impulse pressuring was used to reduce the bonding time, and a Ti/Cu/Nb interlayer was employed to alleviate the detrimental effect of interfacial reaction products on the bonding strength. Successful bonding was achieved at 885℃ under a pulsed pressure of 2-10 MPa within durations in the range of 2-8 min, which was notably shortened in comparison with conventional PTLP bonding. Microstructure characterization revealed the o- phase with a limit solubility of Nb, a sequence of Ti-Cu intermetallic phases and solid solutions of Ni and Cu in α+β Ti in the reaction zone. The maximum shear strength of 106.7 MPa was obtained when the joint was bonded for 5 rain, indicating that a robust metallurgical bonding was achieved. Upon shear loading, the joints fractured along the Ti-Cu intermetallics interface and spread to the interior of TiC cermet in a brittle cleavage manner. 展开更多
关键词 TiC cermet transient liquid phase impulse pressuring mechanical property fracture
在线阅读 下载PDF
DS6~*8000K Pressuring Machines
3
《China's Foreign Trade》 1999年第6期44-44,共1页
关键词 DS6 pressuring Machines
在线阅读 下载PDF
Impact pressuring diffusion bonding of TA17 to 0Cr18Ni9Ti
4
作者 秦斌 盛光敏 +1 位作者 周波 黄家伟 《China Welding》 EI CAS 2008年第2期67-71,共5页
Impact pressuring diffusion bonding tests were carried out to produce joint between TA17 titanium alloy and 0Cr18Ni9Ti stainless steel. The reaction products and microstructure near the bonding interface were analyzed... Impact pressuring diffusion bonding tests were carried out to produce joint between TA17 titanium alloy and 0Cr18Ni9Ti stainless steel. The reaction products and microstructure near the bonding interface were analyzed. The diffusion of Fe, Cr, Ni and Ti in the bond was revealed by energy dispersive spectroscopy. A number of phases, such as β-Ti, Fe2Ti and σ phases were identified by X-ray diffraction. It was concluded that the bonded joint broke in the region somewhere between Fe-Ti intermetallics and β-Ti during tensile loading. The relationship between bonding parameters and tensile strength of the joint was also determined experimentally, and the optimum time of bonding was only 220 s with 293 MPa joint strength. 展开更多
关键词 diffusion bonding impact pressure titanium alloy stainless steel INTERMETALLICS
在线阅读 下载PDF
THE m-VALUE FORMULAE AND MEASURING METHODS OF SUPERPLASTIC BULGING UNDER DIFFERENT PRESSURING METHODS 被引量:1
5
作者 宋玉泉 《Chinese Science Bulletin》 SCIE EI CAS 1991年第3期253-258,共6页
Ⅰ. INTRODUCTIONBecause of the strong structural sensitivity of superplastic deformation, the m-value, which is an important index for the evaluation of superplasticity of materials, is related not only to stress stat... Ⅰ. INTRODUCTIONBecause of the strong structural sensitivity of superplastic deformation, the m-value, which is an important index for the evaluation of superplasticity of materials, is related not only to stress state, but also to pressuring method. In the superplastic bulging re.value formula measured by means of fixed height jump-pressure established by the author, 展开更多
关键词 SUPERPLASTIC BULGING strain rate SENSITIVE index pressuring METHOD monospecimen METHOD bispecimen method.
在线阅读 下载PDF
Deep Learning-Assisted Organogel Pressure Sensor for Alphabet Recognition and Bio-Mechanical Motion Monitoring
6
作者 Kusum Sharma Kousik Bhunia +5 位作者 Subhajit Chatterjee Muthukumar Perumalsamy Anandhan Ayyappan Saj Theophilus Bhatti Yung‑Cheol Byun Sang-Jae Kim 《Nano-Micro Letters》 2026年第2期644-663,共20页
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,... Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility,adhesion,self-healing,and environmental robustness with excellent sensing metrics.Herein,we report a multifunctional,anti-freezing,selfadhesive,and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes(CoN CNT)embedded in a polyvinyl alcohol-gelatin(PVA/GLE)matrix.Fabricated using a binary solvent system of water and ethylene glycol(EG),the CoN CNT/PVA/GLE organogel exhibits excellent flexibility,biocompatibility,and temperature tolerance with remarkable environmental stability.Electrochemical impedance spectroscopy confirms near-stable performance across a broad humidity range(40%-95%RH).Freeze-tolerant conductivity under sub-zero conditions(-20℃)is attributed to the synergistic role of CoN CNT and EG,preserving mobility and network integrity.The Co N CNT/PVA/GLE organogel sensor exhibits high sensitivity of 5.75 k Pa^(-1)in the detection range from 0 to 20 k Pa,ideal for subtle biomechanical motion detection.A smart human-machine interface for English letter recognition using deep learning achieved 98%accuracy.The organogel sensor utility was extended to detect human gestures like finger bending,wrist motion,and throat vibration during speech. 展开更多
关键词 Wearable ORGANOGEL Deep learning Pressure sensor Bio-mechanical motion
在线阅读 下载PDF
Pressure-Modulated Host–vip Interactions Boost Effective Blue-Light Emission of MIL-140A Nanocrystals
7
作者 Ting Zhang Jiaju Liang +7 位作者 Ruidong Qiao Binhao Yang Kaiyan Yuan Yixuan Wang Chuang Liu Zhaodong Liu Xinyi Yang Bo Zou 《Nano-Micro Letters》 2026年第2期845-856,共12页
Luminescent metal-organic frameworks(MOFs)have garnered significant attention due to their structural tunability and potential applications in solid-state lighting,bioimaging,sensing,anticounterfeiting,and other field... Luminescent metal-organic frameworks(MOFs)have garnered significant attention due to their structural tunability and potential applications in solid-state lighting,bioimaging,sensing,anticounterfeiting,and other fields.Nevertheless,due to the tendency of1,4-benzenedicarboxylic acid(BDC)to rotate within the framework,MOFs composed of it exhibit significant non-radiative energy dissipation and thus impair the emissive properties.In this study,efficient luminescence of MIL-140A nanocrystals(NCs)with BDC rotors as ligands is achieved by pressure treatment strategy.Pressure treatment effectively modulates the pore structure of the framework,enhancing the interactions between the N,N-dimethylformamide vip molecules and the BDC ligands.The enhanced host-vip interaction contributes to the structural rigidity of the MOF,thereby suppressing the rotation-induced excited-state energy loss.As a result,the pressure-treated MIL-140A NCs displayed bright blue-light emission,with the photoluminescence quantum yield increasing from an initial 6.8%to 69.2%.This study developed an effective strategy to improve the luminescence performance of rotor ligand MOFs,offers a new avenue for the rational design and synthesis of MOFs with superior luminescent properties. 展开更多
关键词 Metal–organic framework nanocrystals Blue-light emission Host–vip interactions Pressure treatment
在线阅读 下载PDF
Prediction and optimization of flue pressure in sintering process based on SHAP 被引量:2
8
作者 Mingyu Wang Jue Tang +2 位作者 Mansheng Chu Quan Shi Zhen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期346-359,共14页
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a... Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect. 展开更多
关键词 sintering process flue pressure shapley additive explanation PREDICTION OPTIMIZATION
在线阅读 下载PDF
Novel Methodologies for Preventing Crack Propagation in Steel Gas Pipelines Considering the Temperature Effect 被引量:3
9
作者 Nurlan Zhangabay Ulzhan Ibraimova +4 位作者 Marco Bonopera Ulanbator Suleimenov Konstantin Avramov Maryna Chernobryvko Aigerim Yessengali 《Structural Durability & Health Monitoring》 EI 2025年第1期1-23,共23页
Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crac... Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines. 展开更多
关键词 Crack propagation finite-element internal pressure PRESTRESSING steel gas pipeline temperature effect
在线阅读 下载PDF
Study on the hydrogen absorption properties of a YGdTbDyHo rare-earth high-entropy alloy 被引量:1
10
作者 Tongyue Li Ziliang Xie +5 位作者 Wenjiao Zhou Huan Tong Dawen Yang Anjia Zhang Yuan Wu Xiping Song 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期127-135,共9页
This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with t... This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field. 展开更多
关键词 RARE-EARTH high-entropy alloy hydrogen absorption capacity pressure–composition–temperature curves KINETICS
在线阅读 下载PDF
Ultrahigh-pressure generation above 50 GPa in a Kawai-type large-volume press 被引量:1
11
作者 Xinyu Zhao Fenglin Ren +8 位作者 Jinze He Yue Pan Hu Tang Xiaoming Zhang Di Yao Ran Liu Kuo Hu Zhaodong Liu Bingbing Liu 《Matter and Radiation at Extremes》 2025年第4期80-87,共8页
The ability to generate high pressures in a large-volume press(LVP)is crucial for the study of matter under extreme conditions.Here,we have achieved ultrahigh pressures of and 50 GPa,respectively,at room temperature a... The ability to generate high pressures in a large-volume press(LVP)is crucial for the study of matter under extreme conditions.Here,we have achieved ultrahigh pressures of and 50 GPa,respectively,at room temperature and a high temperature of 1900 K∼60within a millimeter-sized sample volume in a Kawai-type LVP(KLVP)using hard tungsten carbide(WC)and newly designed assem-blies.The introduction of electroconductive polycrystalline boron-doped diamond and dense alumina wrapped with Cu foils into a large conventional cell assembly enables the detection of resistance variations in the Fe_(2)O_(3) pressure standard upon compression.The efficiency of pressure generation in the newly developed cell assembly equipped with conventional ZK10F WC anvils is significantly higher than that of conventional assemblies with some ultrahard or tapered WC anvils.Our study has enabled the routine gener-ation of pressures exceeding 50 GPa within a millimeter-sized sample chamber that have been inaccessible with traditional KLVPs.This advance in high-pressure technology not only breaks a record for pressure generation in traditional KLVPs,but also opens up new avenues for exploration of the properties of the Earth’s deep interior and for the synthesis of novel materials at extreme high pressures. 展开更多
关键词 ultrahigh pressure large conventio study matter extreme conditionsherewe generate high pressures tungsten carbide ultrahigh pressures Kawai type large volume press hard tungsten carbide wc
在线阅读 下载PDF
Challenges and development direction of deep fragmented soft coalbed methane in China 被引量:2
12
作者 Yiyu Lu Guilin Zhao +7 位作者 Zhaolong Ge Yunzhong Jia Jiren Tang Tianyi Gong Shan Huang Zhongtan Li Wenyu Fu Jianyu Mi 《Earth Energy Science》 2025年第1期38-64,共27页
Developing deep fragmented soft coalbed methane(CBM)can significantly enhance domestic natural gas supplies,reduce reliance on imported energy,and bolster national energy security.This manuscript provides a comprehens... Developing deep fragmented soft coalbed methane(CBM)can significantly enhance domestic natural gas supplies,reduce reliance on imported energy,and bolster national energy security.This manuscript provides a comprehensive review of commonly employed coalbed methane extraction technologies.It then delves into several critical issues in the current stage of CBM exploration and development in China,including the compatibility of existing technologies with CBM reservoirs,the characteristics and occurrence states of CBM reservoirs,critical desorption pressure,and gas generation mechanisms.Our research indicates that current CBM exploration and development technologies in China have reached an internationally advanced level,yet the industry is facing unprecedented challenges.Despite progress in low-permeability,high-value coal seams,significant breakthroughs have not been achieved in exploring other types of coal seams.For different coal reservoirs,integrated extraction technologies have been developed,such as surface pre-depressurisation and segmented hydraulic fracturing of coal seam roof strata.Additionally,techniques like large-scale volume fracturing in horizontal wells have been established,significantly enhancing reservoir stimulation effects and coalbed methane recovery rates.However,all of these technologies are fundamentally based on permeation.These technologies lack direct methods aimed at enhancing the diffusion rate of CBM,thereby failing to fully reflect the unique characteristics of CBM.Current CBM exploration and development theories and technologies are not universally applicable to all coal seams.They do not adequately account for the predominantly adsorbed state of CBM,and the complex and variable gas generation mechanisms further constrain CBM development in China.Finally,continuous exploration of new deep CBM exploration technologies is necessary.Integrating more effective reservoir stimulation technologies is essential to enhance technical adaptability concerning CBM reservoir characteristics,gas occurrence states,and gas generation mechanisms,ultimately achieving efficient CBM development.We conclude that while China possesses a substantial foundation of deep fractured CBM resources,industry development is constrained and requires continuous exploration of new CBM exploration and development technologies to utilize these resources effectively. 展开更多
关键词 Deep coalbed methane Exploration and development technology Reservoir characteristics Critical desorption pressure Gas production mechanism Development direction
在线阅读 下载PDF
Systematic experimental investigation on pressure build-up characteristics of water-jet injection into a molten LBE pool 被引量:1
13
作者 Hao-Ran Huang Zi-Jian Deng +1 位作者 Song-Bai Cheng Jia-Yue Chen 《Nuclear Science and Techniques》 2025年第1期161-174,共14页
In the scenario of a steam generator tube rupture accident in a lead-cooled fast reactor,secondary circuit subcooled water under high pressure is injected into an ordinary-pressure primary vessel,where a molten lead-b... In the scenario of a steam generator tube rupture accident in a lead-cooled fast reactor,secondary circuit subcooled water under high pressure is injected into an ordinary-pressure primary vessel,where a molten lead-based alloy(typically pure lead or lead-bismuth eutectic(LBE))is used as the coolant.To clarify the pressure build-up characteristics under water-jet injection,this study conducted several experiments by injecting pressurized water into a molten LBE pool at Sun Yat-sen University.To obtain a further understanding,several new experimental parameters were adopted,including the melt temperature,water subcooling,injection pressure,injection duration,and nozzle diameter.Through detailed analyses,it was found that the pressure and temperature during the water-melt interaction exhibited a consistent variation trend with our previous water-droplet injection mode LBE experiment.Similarly,the existence of a steam explosion was confirmed,which typically results in a much stronger pressure build-up.For the non-explosion cases,increasing the injection pressure,melt-pool temperature,nozzle diameter,and water subcooling promoted pressure build-up in the melt pool.However,a limited enhancement effect was observed when increasing the injection duration,which may be owing to the continually rising pressure in the interaction vessel or the isolation effect of the generated steam cavity.Regardless of whether a steam explosion occurred,the calculated mechanical and kinetic energy conversion efficiencies of the melt were relatively small(not exceeding 4.1%and 0.7%,respectively).Moreover,the range of the conversion efficiency was similar to that of previous water-droplet experiments,although the upper limit of the jet mode was slightly lower. 展开更多
关键词 Lead-cooled fast reactor Steam generator tube rupture accident Pressure build-up characteristics Experimental study Pressure water-jet injection
在线阅读 下载PDF
All-fiber anti-jamming capacitive pressure sensors based on liquid metals 被引量:1
14
作者 Hui-Chen Xu Yue Liu +4 位作者 Ye-Pei Mo Zi-Yu Chen Xiao-Jun Pan Rong-Rong Bao Cao-Feng Pan 《Rare Metals》 2025年第7期4839-4850,共12页
Capacitive pressure sensors have a promising application in the field of wearable electronic devices due to their excellent electrical properties.Owing to the complexity of the environment,capacitive sensors are susce... Capacitive pressure sensors have a promising application in the field of wearable electronic devices due to their excellent electrical properties.Owing to the complexity of the environment,capacitive sensors are susceptible to electromagnetic interference and changes in the surrounding medium,resulting in unstable signal acquisition.Capacitive sensor with excellent immunity to interference while maintaining flexibility is an urgent challenge.This study proposes an all-fiber anti-jamming capacitive pressure sensor that integrates liquid metal(LM)into a fiber-based dielectric layer.The combination of the LM and the fiber not only improves the dielectric properties of the dielectric layer but also reduces the Young's modulus of the fiber.The sensor has high interference immunity in various noise environments.Its all-fiber structure ensures lightweight,great air permeability and stretchability,whichmakes it a promising application in wearable electronic devices fields. 展开更多
关键词 Liquid metal ANTI-JAMMING Pressure sensors Dielectric properties Hybrid electrospinning
原文传递
A Flexible‑Integrated Multimodal Hydrogel‑Based Sensing Patch 被引量:1
15
作者 Peng Wang Guoqing Wang +4 位作者 Guifen Sun Chenchen Bao Yang Li Chuizhou Meng Zhao Yao 《Nano-Micro Letters》 2025年第7期107-125,共19页
Sleep monitoring is an important part of health management because sleep quality is crucial for restoration of human health.However,current commercial products of polysomnography are cumbersome with connecting wires a... Sleep monitoring is an important part of health management because sleep quality is crucial for restoration of human health.However,current commercial products of polysomnography are cumbersome with connecting wires and state-of-the-art flexible sensors are still interferential for being attached to the body.Herein,we develop a flexible-integrated multimodal sensing patch based on hydrogel and its application in unconstraint sleep monitoring.The patch comprises a bottom hydrogel-based dualmode pressure–temperature sensing layer and a top electrospun nanofiber-based non-contact detection layer as one integrated device.The hydrogel as core substrate exhibits strong toughness and water retention,and the multimodal sensing of temperature,pressure,and non-contact proximity is realized based on different sensing mechanisms with no crosstalk interference.The multimodal sensing function is verified in a simulated real-world scenario by a robotic hand grasping objects to validate its practicability.Multiple multimodal sensing patches integrated on different locations of a pillow are assembled for intelligent sleep monitoring.Versatile human–pillow interaction information as well as their evolution over time are acquired and analyzed by a one-dimensional convolutional neural network.Track of head movement and recognition of bad patterns that may lead to poor sleep are achieved,which provides a promising approach for sleep monitoring. 展开更多
关键词 Multimodal sensing Proximity sensor Pressure sensor Temperature sensor Electrospun nanofibers
在线阅读 下载PDF
Effects of pressure oscillations on impinging-jet atomization and spray combustion in liquid rocket engines 被引量:1
16
作者 Zhili PENG Bo ZHONG +1 位作者 Xiaodong CHEN Longfei LI 《Chinese Journal of Aeronautics》 2025年第4期25-43,共19页
Combustion dynamics are a critical factor in determining the performance and reliabilityof a chemical propulsion engine.The underlying processes include liquid atomization,evaporation,mixing,and chemical reactions.Thi... Combustion dynamics are a critical factor in determining the performance and reliabilityof a chemical propulsion engine.The underlying processes include liquid atomization,evaporation,mixing,and chemical reactions.This paper presents a high-fidelity numerical study of liquidatomization and spray combustion under high-pressure conditions,emphasizing the effects of pres-sure oscillations on the flow evolution and combustion dynamics.The theoretical framework isbased on the three-dimensional conservation equations for multiphase flows and turbulent combus-tion.The numerical solution is achieved using a coupling method of volume-of-fluid and Lagran-gian particle tracking.The Zhuang-Kadota-Sutton(ZKS)high-pressure evaporation model andthe eddy breakup-Arrhenius combustion model are employed.Simulations are conducted for amodel combustion chamber with impinging-jet injectors using liquid oxygen and kerosene as pro-pellants.Both conditions with and without inlet and outlet pressure oscillations are considered.Thefindings reveal that pressure oscillations amplify flow fluctuations and can be characterized usingkey physical parameters such as droplet evaporation,chemical reaction,and chamber pressure.The spectral analysis uncovers the axial variations of the dominant and secondary frequenciesand their amplitudes in terms of the characteristic physical quantities.This research helps establisha methodology for exploring the coupling effect of liquid atomization and spray combustion.It alsoprovides practical insights into their responses to pressure oscillations during the occurrence ofcombustion instability.This information can be used to enhance the design and operation ofliquid-fueled propulsion engines. 展开更多
关键词 Liquid atomization Spray combustion Pressure oscillations High-pressure evaporation Combustion instability
原文传递
Sensorless battery expansion estimation using electromechanical coupled models and machine learning 被引量:1
17
作者 Xue Cai Caiping Zhang +4 位作者 Jue Chen Zeping Chen Linjing Zhang Dirk Uwe Sauer Weihan Li 《Journal of Energy Chemistry》 2025年第6期142-157,I0004,共17页
Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper... Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries. 展开更多
关键词 Sensorless estimation Electromechanical coupling Impedance model Data-driven model Mechanical pressure
在线阅读 下载PDF
Study on cook-off characteristics and thermal safety venting area of RBOE charge 被引量:1
18
作者 Kebin Zhang Wenbin Li +3 位作者 Changfang Zhao Zhifang Wei Shuxia Zhang Jin Li 《Defence Technology(防务技术)》 2025年第1期271-287,共17页
RBOE is a new type of DNAN-based high-energy melt-cast mixed explosive,whose safety under thermal stimulation is significantly affected by heating conditions and venting area of the warhead.Based on the thermal decomp... RBOE is a new type of DNAN-based high-energy melt-cast mixed explosive,whose safety under thermal stimulation is significantly affected by heating conditions and venting area of the warhead.Based on the thermal decomposition reaction characteristics and combustion characteristics of each component of RBOE explosive,the cook-off calculation models of RBOE warhead before and after ignition were established.In addition,closed and vented warheads were designed,as well as fast and slow cook-off test devices.The cook-off characteristics and thermal safety venting area of RBOE warhead were extensively studied.The results showed that the closed RBOE warhead underwent deflagration reaction under both slow and fast cook-off conditions.The calculation result of the shell wall temperature before slow cookoff ignition response of the warhead was 454.06 K,with an error of+1.75%compared to the test result of462.15 K,and the temperature rise rate calculated was in good agreement with the test.The calculated ignition time of RBOE warhead under fast cook-off was 161 s,with an error of+8.8%compared to the test result of 148 s,which verified the accuracy of cook-off model of RBOE warhead before ignition.According to the cook-off calculation model of the warhead after ignition and cook-off test of the vented warhead,it was determined that the thermal safety venting area was 1124.61 mm^(2)for fast cook-off and 530.66 mm~2 for slow cook-off,effectively preventing the reaction of warhead above combustion.Therefore,this study provides a scientific basis for the thermal safety design and evaluation of insensitive warheads. 展开更多
关键词 RBOE explosive Cook-off model Temperature distribution Pressure growth Venting area
在线阅读 下载PDF
Effects of a culture-specificbehavior modificationprogram on glycated hemoglobin and blood pressure among adults with diabetes and hypertension:A randomized controlled trial 被引量:1
19
作者 Patcharee Numsang Sureeporn Thanasilp Ratsiri Thato 《International Journal of Nursing Sciences》 2025年第4期328-334,I0002,共8页
Objective:This study aimed to determine the effect of a culture-specificbehavior modificationprogram on glycated hemoglobin(HbA1c)and blood pressure among adults with diabetes and hypertension.Methods:This study was a... Objective:This study aimed to determine the effect of a culture-specificbehavior modificationprogram on glycated hemoglobin(HbA1c)and blood pressure among adults with diabetes and hypertension.Methods:This study was a single-blind randomized controlled trial design.From January to May 2024,a total of 60 patients with uncontrolled type 2 diabetes and hypertension from the primary care unit of a hospital in northeastern(Isan)Thailand were recruited.The intervention group received the usual care supplemented by a culture-specificbehavior modificationprogramm implemented through interactive classes and online web application consisting of information,motivation,and behavioral skills(diet,exercise,and medication use),the control group received the usual care.HbA1c and blood pressure measurements were collected at both baseline and at 12 weeks.Results:A total of 51 patients completed the study,the intervention group(n=26)and control group(n=25),respectively.After 12 weeks,23.1%of patients in the intervention group could maintain their HbA1c<7.0%;those with poorly controlled HbA1c decreased from 7.7%at baseline to 3.8%at 12 weeks.After 12 weeks,69.2%of intervention group participants could maintain systolic blood pressure<130 mmHg and 53.8%could keep diastolic blood pressure<80 mmHg.Analysis revealed that HbA1c,systolic and diastolic blood pressure levels in the intervention group were lower than the control group after the intervention(P<0.05).There was a statistically significantdifference a linear combination of HbA1c and blood pressure(systolic and diastolic BP levels)between time and group(P<0.05).Conclusion:These results suggest that healthcare providers can incorporate elements of this program to manage blood glucose and blood pressure effectively.Future studies should consider a longitudinal design with a larger sample size and include outcomes of lipid levels to confirmlong-term motivation. 展开更多
关键词 Behavior modification Blood pressure Glycated hemoglobin HYPERTENSION NURSING Patients Type 2 diabetes mellitus
暂未订购
Peroral endoscopic myotomy for achalasia and patients with normal lower-esophageal-sphincter integrated relaxation pressure:A propensity-score-matched retrospective study 被引量:1
20
作者 Xiao Li Xiao-Bin Zhang +9 位作者 Jia-Kang Shao Bo Zhang Long-Song Li Rui-Qing Zhu Jia-Le Zou Jia-Feng Wang Xin Zhao Qing-Zhen Wu Ning-Li Chai En-Qiang Linghu 《World Journal of Gastroenterology》 2025年第12期27-36,共10页
BACKGROUND Most patients who were included in previous studies on achalasia had increased lower esophageal sphincter(LES)pressure.Peroral endoscopic myotomy(POEM)has been confirmed to be effective at relieving the cli... BACKGROUND Most patients who were included in previous studies on achalasia had increased lower esophageal sphincter(LES)pressure.Peroral endoscopic myotomy(POEM)has been confirmed to be effective at relieving the clinical symptoms of achalasia associated with increased LES pressure.AIM To identify the safety and efficacy of POEM for patients with normal LES integrated relaxation pressure(LES-IRP).METHODS The clinical data of patients who underwent POEM successfully in The First Medical Center of Chinese PLA General Hospital were retrospectively analyzed.A total of 481 patients who underwent preoperative high-resolution manometry(HRM)at our hospital were ultimately included in this research.According to the HRM results,the patients were divided into two groups:71 patients were included in the normal LES-IRP group(LES-IRP<15 mmHg)and 410 patients were included in the increased LES-IRP group(LES-IRP≥15 mmHg).Clinical characteristics,procedure-related parameters,adverse events,and outcomes were compared between the two groups to evaluate the safety and efficacy of POEM for patients with normal LES-IRP.RESULTS Among the 481 patients included in our study,209 were males and 272 were females,with a mean age of 44.2 years.All patients underwent POEM without severe adverse events.The median pre-treatment Eckardt scores of the normal LES-IRP and increased LES-IRP groups were 7.0 and 7.0(P=0.132),respectively,decreasing to 1.0 and 1.0 post-treatment(P=0.572).The clinical success rate of the normal LES-IRP group was 87.3%(62/71),and that of the increased LES-IRP group was 91.2%(374/410)(P=0.298).Reflux symptoms were measured by the GerdQ questionnaire,and the percentages of patients with GerdQ scores≥9 in the normal LES-IRP and increased LES-IRP groups were 8.5%and 10.7%,respectively(P=0.711).After matching,the rates of clinical success and the rates of GerdQ score≥9 were not significantly different between the two groups.CONCLUSION Our results suggest that POEM is safe and effective for achalasia and patients with normal LES-IRP.In addition,in patients with normal LES-IRP,compared with those with increased LES-IRP,POEM was not associated with a greater incidence of reflux symptoms. 展开更多
关键词 Peroral endoscopic myotomy ACHALASIA Lower esophageal sphincter integrated relaxation pressure Safety Efficacy
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部