An experimental study on co-pyrolysis of bituminous coal and biomass was performed in a pressured fluidized bed reactor.The blend ratio of biomass in the mixture was varied between 0 and 100 wt%,and the temperature wa...An experimental study on co-pyrolysis of bituminous coal and biomass was performed in a pressured fluidized bed reactor.The blend ratio of biomass in the mixture was varied between 0 and 100 wt%,and the temperature was over a range of 550–650℃ under 1.0 MPa pressure with different atmospheres.On the basis of the individual pyrolysis behavior of bituminous coal and biomass,the influences of the biomass blending ratio,temperature,pressure and atmosphere on the product distribution were investigated.The results indicated that there existed a synergetic effect in the co-pyrolysis of bituminous coal and biomass in this pressured fluidized bed reactor,especially when the condition of bituminous coal and biomass blend ratio of 70:30(w/w),600℃,and 0.3 MPa was applied.The addition of biomass influenced the tar and char yields and gas and tar composition during co-pyrolysis.The tar yields were higher than the calculated values from individual pyrolysis of each fuel,and consequently the char yields were lower.The experimental results showed that the composition of the gaseous products was not in accordance with those of their individual fuel.The improvement of composition in tar also indicated synergistic effect in the co-pyrolysis.展开更多
A pressured microwave-assisted hydrolysis (PMAH) technique has been developed for hydrolyzing the crude glycyrrhizic acid (GA) extracted from licorice root to prepare glycyrrhetinic acid (GRA). In order to optim...A pressured microwave-assisted hydrolysis (PMAH) technique has been developed for hydrolyzing the crude glycyrrhizic acid (GA) extracted from licorice root to prepare glycyrrhetinic acid (GRA). In order to optimize the efficiency of PMAH, several experimental parameters were investigated, including liquid-solid ratio, hydrolysis time, sulfuric acid concentration and hydrolysis temperature. The optimized hydrolysis conditions were as follows:pressured microwave-assisted hydrolysis of crude GA for 21 min (taking 15 min to reach 150 ℃, and holding it for 6 rain) at 150 ℃ (at a radiation power of 450 W) in 3%-5% sulfuric acid solution with the liquid-solid (ml.g-1 crude GA) ratio of 25 : 1. As a result of the considerable saving in time and higher product yields (up to 90%), PMAH was proved more effective than conventional methods.展开更多
Biogas is a kind of regenerable energy which is inexpensive and friendly to the environment, but the potential ofbiogas is difficult to develop fully in China, for most biogas have badly qualities and the utilization ...Biogas is a kind of regenerable energy which is inexpensive and friendly to the environment, but the potential ofbiogas is difficult to develop fully in China, for most biogas have badly qualities and the utilization of it is monotonous. The suitable operation term about biogas upgrading by pressurized water scrubbing was researched through the orthogonal test in this study. Two sorts of scrubber packing included the random multidimensional hollow sphere packing and the structured screen packing were also used, and the effects of experiment factors included packing, water temperature, gas flow speed, water flow speed and washing pressure were studied. The results showed that better effect was got when the screen structured packing was used; all the five test factors affected the processing significantly in the arrange as before and had better and better significant effects.展开更多
Application of pressured grouting method (PGM) in pile engineering can tackle problems encountered during construction of bored piles. Bearing capacity of piles can be increased through compaction of subsoils around p...Application of pressured grouting method (PGM) in pile engineering can tackle problems encountered during construction of bored piles. Bearing capacity of piles can be increased through compaction of subsoils around piles. This paper reports research efforts of this technique by the pile research team in Southwest Jiaotong University in last decade with respect to the construction process, test findings, and primary research conclusions. The social-economical benefits of this method and application market in pile engineering are also analyzed.展开更多
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a...Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.展开更多
Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crac...Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines.展开更多
This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with t...This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field.展开更多
Developing deep fragmented soft coalbed methane(CBM)can significantly enhance domestic natural gas supplies,reduce reliance on imported energy,and bolster national energy security.This manuscript provides a comprehens...Developing deep fragmented soft coalbed methane(CBM)can significantly enhance domestic natural gas supplies,reduce reliance on imported energy,and bolster national energy security.This manuscript provides a comprehensive review of commonly employed coalbed methane extraction technologies.It then delves into several critical issues in the current stage of CBM exploration and development in China,including the compatibility of existing technologies with CBM reservoirs,the characteristics and occurrence states of CBM reservoirs,critical desorption pressure,and gas generation mechanisms.Our research indicates that current CBM exploration and development technologies in China have reached an internationally advanced level,yet the industry is facing unprecedented challenges.Despite progress in low-permeability,high-value coal seams,significant breakthroughs have not been achieved in exploring other types of coal seams.For different coal reservoirs,integrated extraction technologies have been developed,such as surface pre-depressurisation and segmented hydraulic fracturing of coal seam roof strata.Additionally,techniques like large-scale volume fracturing in horizontal wells have been established,significantly enhancing reservoir stimulation effects and coalbed methane recovery rates.However,all of these technologies are fundamentally based on permeation.These technologies lack direct methods aimed at enhancing the diffusion rate of CBM,thereby failing to fully reflect the unique characteristics of CBM.Current CBM exploration and development theories and technologies are not universally applicable to all coal seams.They do not adequately account for the predominantly adsorbed state of CBM,and the complex and variable gas generation mechanisms further constrain CBM development in China.Finally,continuous exploration of new deep CBM exploration technologies is necessary.Integrating more effective reservoir stimulation technologies is essential to enhance technical adaptability concerning CBM reservoir characteristics,gas occurrence states,and gas generation mechanisms,ultimately achieving efficient CBM development.We conclude that while China possesses a substantial foundation of deep fractured CBM resources,industry development is constrained and requires continuous exploration of new CBM exploration and development technologies to utilize these resources effectively.展开更多
In the scenario of a steam generator tube rupture accident in a lead-cooled fast reactor,secondary circuit subcooled water under high pressure is injected into an ordinary-pressure primary vessel,where a molten lead-b...In the scenario of a steam generator tube rupture accident in a lead-cooled fast reactor,secondary circuit subcooled water under high pressure is injected into an ordinary-pressure primary vessel,where a molten lead-based alloy(typically pure lead or lead-bismuth eutectic(LBE))is used as the coolant.To clarify the pressure build-up characteristics under water-jet injection,this study conducted several experiments by injecting pressurized water into a molten LBE pool at Sun Yat-sen University.To obtain a further understanding,several new experimental parameters were adopted,including the melt temperature,water subcooling,injection pressure,injection duration,and nozzle diameter.Through detailed analyses,it was found that the pressure and temperature during the water-melt interaction exhibited a consistent variation trend with our previous water-droplet injection mode LBE experiment.Similarly,the existence of a steam explosion was confirmed,which typically results in a much stronger pressure build-up.For the non-explosion cases,increasing the injection pressure,melt-pool temperature,nozzle diameter,and water subcooling promoted pressure build-up in the melt pool.However,a limited enhancement effect was observed when increasing the injection duration,which may be owing to the continually rising pressure in the interaction vessel or the isolation effect of the generated steam cavity.Regardless of whether a steam explosion occurred,the calculated mechanical and kinetic energy conversion efficiencies of the melt were relatively small(not exceeding 4.1%and 0.7%,respectively).Moreover,the range of the conversion efficiency was similar to that of previous water-droplet experiments,although the upper limit of the jet mode was slightly lower.展开更多
Capacitive pressure sensors have a promising application in the field of wearable electronic devices due to their excellent electrical properties.Owing to the complexity of the environment,capacitive sensors are susce...Capacitive pressure sensors have a promising application in the field of wearable electronic devices due to their excellent electrical properties.Owing to the complexity of the environment,capacitive sensors are susceptible to electromagnetic interference and changes in the surrounding medium,resulting in unstable signal acquisition.Capacitive sensor with excellent immunity to interference while maintaining flexibility is an urgent challenge.This study proposes an all-fiber anti-jamming capacitive pressure sensor that integrates liquid metal(LM)into a fiber-based dielectric layer.The combination of the LM and the fiber not only improves the dielectric properties of the dielectric layer but also reduces the Young's modulus of the fiber.The sensor has high interference immunity in various noise environments.Its all-fiber structure ensures lightweight,great air permeability and stretchability,whichmakes it a promising application in wearable electronic devices fields.展开更多
Counter-gravity casting(CGC)is a widely adopted material processing technique in metals due to its notable benefits,including enhanced filling behavior,reduced defect occurrence,and elevated mechani-cal properties.It ...Counter-gravity casting(CGC)is a widely adopted material processing technique in metals due to its notable benefits,including enhanced filling behavior,reduced defect occurrence,and elevated mechani-cal properties.It plays a pivotal role in fabricating intricate,high-quality components.After its inception in the early 1900s,various CGC processes have emerged,such as low-pressure,counter-pressure,vac-uum suction,and adjusted pressure casting,which are explored in this discourse with an eye toward further advancements.Despite CGC’s superiority over traditional gravity casting and other manufacturing methodologies,specific issues and constraints persist within CGC.This paper endeavors to provide a com-prehensive overview of the historical progression of CGC,its recent developments,and the associated re-search aspects,encompassing topics like filling processes,solidification,microstructural transformations,and the resultant mechanical properties of the fabricated products.Additionally,this paper offers insights into the future challenges and opportunities of CGC.展开更多
Sleep monitoring is an important part of health management because sleep quality is crucial for restoration of human health.However,current commercial products of polysomnography are cumbersome with connecting wires a...Sleep monitoring is an important part of health management because sleep quality is crucial for restoration of human health.However,current commercial products of polysomnography are cumbersome with connecting wires and state-of-the-art flexible sensors are still interferential for being attached to the body.Herein,we develop a flexible-integrated multimodal sensing patch based on hydrogel and its application in unconstraint sleep monitoring.The patch comprises a bottom hydrogel-based dualmode pressure–temperature sensing layer and a top electrospun nanofiber-based non-contact detection layer as one integrated device.The hydrogel as core substrate exhibits strong toughness and water retention,and the multimodal sensing of temperature,pressure,and non-contact proximity is realized based on different sensing mechanisms with no crosstalk interference.The multimodal sensing function is verified in a simulated real-world scenario by a robotic hand grasping objects to validate its practicability.Multiple multimodal sensing patches integrated on different locations of a pillow are assembled for intelligent sleep monitoring.Versatile human–pillow interaction information as well as their evolution over time are acquired and analyzed by a one-dimensional convolutional neural network.Track of head movement and recognition of bad patterns that may lead to poor sleep are achieved,which provides a promising approach for sleep monitoring.展开更多
Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper...Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries.展开更多
RBOE is a new type of DNAN-based high-energy melt-cast mixed explosive,whose safety under thermal stimulation is significantly affected by heating conditions and venting area of the warhead.Based on the thermal decomp...RBOE is a new type of DNAN-based high-energy melt-cast mixed explosive,whose safety under thermal stimulation is significantly affected by heating conditions and venting area of the warhead.Based on the thermal decomposition reaction characteristics and combustion characteristics of each component of RBOE explosive,the cook-off calculation models of RBOE warhead before and after ignition were established.In addition,closed and vented warheads were designed,as well as fast and slow cook-off test devices.The cook-off characteristics and thermal safety venting area of RBOE warhead were extensively studied.The results showed that the closed RBOE warhead underwent deflagration reaction under both slow and fast cook-off conditions.The calculation result of the shell wall temperature before slow cookoff ignition response of the warhead was 454.06 K,with an error of+1.75%compared to the test result of462.15 K,and the temperature rise rate calculated was in good agreement with the test.The calculated ignition time of RBOE warhead under fast cook-off was 161 s,with an error of+8.8%compared to the test result of 148 s,which verified the accuracy of cook-off model of RBOE warhead before ignition.According to the cook-off calculation model of the warhead after ignition and cook-off test of the vented warhead,it was determined that the thermal safety venting area was 1124.61 mm^(2)for fast cook-off and 530.66 mm~2 for slow cook-off,effectively preventing the reaction of warhead above combustion.Therefore,this study provides a scientific basis for the thermal safety design and evaluation of insensitive warheads.展开更多
BACKGROUND Most patients who were included in previous studies on achalasia had increased lower esophageal sphincter(LES)pressure.Peroral endoscopic myotomy(POEM)has been confirmed to be effective at relieving the cli...BACKGROUND Most patients who were included in previous studies on achalasia had increased lower esophageal sphincter(LES)pressure.Peroral endoscopic myotomy(POEM)has been confirmed to be effective at relieving the clinical symptoms of achalasia associated with increased LES pressure.AIM To identify the safety and efficacy of POEM for patients with normal LES integrated relaxation pressure(LES-IRP).METHODS The clinical data of patients who underwent POEM successfully in The First Medical Center of Chinese PLA General Hospital were retrospectively analyzed.A total of 481 patients who underwent preoperative high-resolution manometry(HRM)at our hospital were ultimately included in this research.According to the HRM results,the patients were divided into two groups:71 patients were included in the normal LES-IRP group(LES-IRP<15 mmHg)and 410 patients were included in the increased LES-IRP group(LES-IRP≥15 mmHg).Clinical characteristics,procedure-related parameters,adverse events,and outcomes were compared between the two groups to evaluate the safety and efficacy of POEM for patients with normal LES-IRP.RESULTS Among the 481 patients included in our study,209 were males and 272 were females,with a mean age of 44.2 years.All patients underwent POEM without severe adverse events.The median pre-treatment Eckardt scores of the normal LES-IRP and increased LES-IRP groups were 7.0 and 7.0(P=0.132),respectively,decreasing to 1.0 and 1.0 post-treatment(P=0.572).The clinical success rate of the normal LES-IRP group was 87.3%(62/71),and that of the increased LES-IRP group was 91.2%(374/410)(P=0.298).Reflux symptoms were measured by the GerdQ questionnaire,and the percentages of patients with GerdQ scores≥9 in the normal LES-IRP and increased LES-IRP groups were 8.5%and 10.7%,respectively(P=0.711).After matching,the rates of clinical success and the rates of GerdQ score≥9 were not significantly different between the two groups.CONCLUSION Our results suggest that POEM is safe and effective for achalasia and patients with normal LES-IRP.In addition,in patients with normal LES-IRP,compared with those with increased LES-IRP,POEM was not associated with a greater incidence of reflux symptoms.展开更多
Precast driven piles are extensively used for infrastructure on soft soils,but the buildup of excess pore water pressure associated with pile driving is a challenging issue.The process of soil consolidation could take...Precast driven piles are extensively used for infrastructure on soft soils,but the buildup of excess pore water pressure associated with pile driving is a challenging issue.The process of soil consolidation could take several months.Measures are sought to shorten the drainage path in the ground,and permeable pipe pile is a concept that involves drainage channels at the peak pore pressure locations around the pile circumference.Centrifuge tests were conducted to understand the responses of permeable pipe pile treated ground,experiencing the whole pile driving,soil consolidating,and axially loading process.Results show that the dissipation rate of pore pressures can be improved,especially at a greater depth or at a shorter distance from the pile,since the local hydraulic gradient was higher.Less significant buildup of pore pressures can be anticipated with the use of permeable pipe pile.For this,the bearing capacity of composite foundation with permeable pipe pile can be increased by over 36.9%,compared to the case with normal pipe pile at a specific time period.All these demonstrate the ability of permeable pipe pile in accelerating the consolidation process,mobilizing the bearing capacity of treated ground at an early stage,and minimizing the set-up effect.展开更多
The strength of the sliding zone soil determines the stability of reservoir landslides.Fluctuations in water levels cause a change in the seepage field,which serves as both the external hydrogeological environment and...The strength of the sliding zone soil determines the stability of reservoir landslides.Fluctuations in water levels cause a change in the seepage field,which serves as both the external hydrogeological environment and the internal component of a landslide.Therefore,considering the strength changes of the sliding zone with seepage effects,they correspond with the actual hydrogeological circumstances.To investigate the shear behavior of sliding zone soil under various seepage pressures,24 samples were conducted by a self-developed apparatus to observe the shear strength and measure the permeability coefficients at different deformation stages.After seepage-shear tests,the composition of clay minerals and microscopic structure on the shear surface were analyzed through X-ray and scanning electron microscope(SEM)to understand the coupling effects of seepage on strength.The results revealed that the sliding zone soil exhibited strain-hardening without seepage pressure.However,the introduction of seepage caused a significant reduction in shear strength,resulting in strain-softening characterized by a three-stage process.Long-term seepage action softened clay particles and transported broken particles into effective seepage channels,causing continuous damage to the interior structure and reducing the permeability coefficient.Increased seepage pressure decreased the peak strength by disrupting occlusal and frictional forces between sliding zone soil particles,which carried away more clay particles,contributing to an overhead structure in the soil that raised the permeability coefficient and decreased residual strength.The internal friction angle was less sensitive to variations in seepage pressure than cohesion.展开更多
In recent decades,capacitive pressure sensors(CPSs)with high sensitivity have demonstrated significant potential in applications such as medical monitoring,artificial intelligence,and soft robotics.Efforts to enhance ...In recent decades,capacitive pressure sensors(CPSs)with high sensitivity have demonstrated significant potential in applications such as medical monitoring,artificial intelligence,and soft robotics.Efforts to enhance this sensitivity have predominantly focused on material design and structural optimization,with surface microstructures such as wrinkles,pyramids,and micro-pillars proving effective.Although finite element modeling(FEM)has guided enhancements in CPS sensitivity across various surface designs,a theoretical understanding of sensitivity improvements remains underexplored.This paper employs sinusoidal wavy surfaces as a representative model to analytically elucidate the underlying mechanisms of sensitivity enhancement through contact mechanics.These theoretical insights are corroborated by FEM and experimental validations.Our findings underscore that optimizing material properties,such as Young’s modulus and relative permittivity,alongside adjustments in surface roughness and substrate thickness,can significantly elevate the sensitivity.The optimal performance is achieved when the amplitude-to-wavelength ratio(H/)is about 0.2.These results offer critical insights for designing ultrasensitive CPS devices,paving the way for advancements in sensor technology.展开更多
基金Supported by Hydrocarbon High-efficiency Utilization Technology Research Center of Yanchang Petroleum(Group)Co.Ltd.,China(ycsy2013ky-A-30)
文摘An experimental study on co-pyrolysis of bituminous coal and biomass was performed in a pressured fluidized bed reactor.The blend ratio of biomass in the mixture was varied between 0 and 100 wt%,and the temperature was over a range of 550–650℃ under 1.0 MPa pressure with different atmospheres.On the basis of the individual pyrolysis behavior of bituminous coal and biomass,the influences of the biomass blending ratio,temperature,pressure and atmosphere on the product distribution were investigated.The results indicated that there existed a synergetic effect in the co-pyrolysis of bituminous coal and biomass in this pressured fluidized bed reactor,especially when the condition of bituminous coal and biomass blend ratio of 70:30(w/w),600℃,and 0.3 MPa was applied.The addition of biomass influenced the tar and char yields and gas and tar composition during co-pyrolysis.The tar yields were higher than the calculated values from individual pyrolysis of each fuel,and consequently the char yields were lower.The experimental results showed that the composition of the gaseous products was not in accordance with those of their individual fuel.The improvement of composition in tar also indicated synergistic effect in the co-pyrolysis.
基金Supported by the Yunnan Provincial Department of Education Key Foundation (07Z10311)
文摘A pressured microwave-assisted hydrolysis (PMAH) technique has been developed for hydrolyzing the crude glycyrrhizic acid (GA) extracted from licorice root to prepare glycyrrhetinic acid (GRA). In order to optimize the efficiency of PMAH, several experimental parameters were investigated, including liquid-solid ratio, hydrolysis time, sulfuric acid concentration and hydrolysis temperature. The optimized hydrolysis conditions were as follows:pressured microwave-assisted hydrolysis of crude GA for 21 min (taking 15 min to reach 150 ℃, and holding it for 6 rain) at 150 ℃ (at a radiation power of 450 W) in 3%-5% sulfuric acid solution with the liquid-solid (ml.g-1 crude GA) ratio of 25 : 1. As a result of the considerable saving in time and higher product yields (up to 90%), PMAH was proved more effective than conventional methods.
基金Supported by National Science and Technology Supporting Plan (2008BADC4B02)
文摘Biogas is a kind of regenerable energy which is inexpensive and friendly to the environment, but the potential ofbiogas is difficult to develop fully in China, for most biogas have badly qualities and the utilization of it is monotonous. The suitable operation term about biogas upgrading by pressurized water scrubbing was researched through the orthogonal test in this study. Two sorts of scrubber packing included the random multidimensional hollow sphere packing and the structured screen packing were also used, and the effects of experiment factors included packing, water temperature, gas flow speed, water flow speed and washing pressure were studied. The results showed that better effect was got when the screen structured packing was used; all the five test factors affected the processing significantly in the arrange as before and had better and better significant effects.
文摘Application of pressured grouting method (PGM) in pile engineering can tackle problems encountered during construction of bored piles. Bearing capacity of piles can be increased through compaction of subsoils around piles. This paper reports research efforts of this technique by the pile research team in Southwest Jiaotong University in last decade with respect to the construction process, test findings, and primary research conclusions. The social-economical benefits of this method and application market in pile engineering are also analyzed.
基金supported by the General Program of the National Natural Science Foundation of China(No.52274326)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202109)the Seventh Batch of Ten Thousand Talents Plan of China(No.ZX20220553).
文摘Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.
基金funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan(Grant No.AP19680589).
文摘Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines.
基金financially supported by the National Natural Science Foundation of China(Nos.21171018 and 51271021)the State Key Laboratory for Advanced Metals and Materials。
文摘This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field.
基金supported by the National Natural Science Foundation of China(52074045,52274074)the Science Fund for Distinguished Young Scholars of Chongqing(CSTB2022NSCQ-JQX0028).
文摘Developing deep fragmented soft coalbed methane(CBM)can significantly enhance domestic natural gas supplies,reduce reliance on imported energy,and bolster national energy security.This manuscript provides a comprehensive review of commonly employed coalbed methane extraction technologies.It then delves into several critical issues in the current stage of CBM exploration and development in China,including the compatibility of existing technologies with CBM reservoirs,the characteristics and occurrence states of CBM reservoirs,critical desorption pressure,and gas generation mechanisms.Our research indicates that current CBM exploration and development technologies in China have reached an internationally advanced level,yet the industry is facing unprecedented challenges.Despite progress in low-permeability,high-value coal seams,significant breakthroughs have not been achieved in exploring other types of coal seams.For different coal reservoirs,integrated extraction technologies have been developed,such as surface pre-depressurisation and segmented hydraulic fracturing of coal seam roof strata.Additionally,techniques like large-scale volume fracturing in horizontal wells have been established,significantly enhancing reservoir stimulation effects and coalbed methane recovery rates.However,all of these technologies are fundamentally based on permeation.These technologies lack direct methods aimed at enhancing the diffusion rate of CBM,thereby failing to fully reflect the unique characteristics of CBM.Current CBM exploration and development theories and technologies are not universally applicable to all coal seams.They do not adequately account for the predominantly adsorbed state of CBM,and the complex and variable gas generation mechanisms further constrain CBM development in China.Finally,continuous exploration of new deep CBM exploration technologies is necessary.Integrating more effective reservoir stimulation technologies is essential to enhance technical adaptability concerning CBM reservoir characteristics,gas occurrence states,and gas generation mechanisms,ultimately achieving efficient CBM development.We conclude that while China possesses a substantial foundation of deep fractured CBM resources,industry development is constrained and requires continuous exploration of new CBM exploration and development technologies to utilize these resources effectively.
基金supported by Basic and Applied Basic research foundation of Guangdong province(Nos.2021A1515010343 and 2022A1515011582)the Science and Technology Program of Guangdong Province(Nos.2021A0505030026 and 2022A0505050029).
文摘In the scenario of a steam generator tube rupture accident in a lead-cooled fast reactor,secondary circuit subcooled water under high pressure is injected into an ordinary-pressure primary vessel,where a molten lead-based alloy(typically pure lead or lead-bismuth eutectic(LBE))is used as the coolant.To clarify the pressure build-up characteristics under water-jet injection,this study conducted several experiments by injecting pressurized water into a molten LBE pool at Sun Yat-sen University.To obtain a further understanding,several new experimental parameters were adopted,including the melt temperature,water subcooling,injection pressure,injection duration,and nozzle diameter.Through detailed analyses,it was found that the pressure and temperature during the water-melt interaction exhibited a consistent variation trend with our previous water-droplet injection mode LBE experiment.Similarly,the existence of a steam explosion was confirmed,which typically results in a much stronger pressure build-up.For the non-explosion cases,increasing the injection pressure,melt-pool temperature,nozzle diameter,and water subcooling promoted pressure build-up in the melt pool.However,a limited enhancement effect was observed when increasing the injection duration,which may be owing to the continually rising pressure in the interaction vessel or the isolation effect of the generated steam cavity.Regardless of whether a steam explosion occurred,the calculated mechanical and kinetic energy conversion efficiencies of the melt were relatively small(not exceeding 4.1%and 0.7%,respectively).Moreover,the range of the conversion efficiency was similar to that of previous water-droplet experiments,although the upper limit of the jet mode was slightly lower.
基金financially supported by the National Natural Science Foundation of China(Nos.U20A20166,52371202,52125205,52250398,52192614 and 52003101)the National Key R&D Program of China(No.2021YFB3200300)+2 种基金the Natural Science Foundation of Beijing Municipality(No.2222088)Shenzhen Science and Technology Program(No.KQTD20170810105439418)the Fundamental Research Funds for the Central Universities
文摘Capacitive pressure sensors have a promising application in the field of wearable electronic devices due to their excellent electrical properties.Owing to the complexity of the environment,capacitive sensors are susceptible to electromagnetic interference and changes in the surrounding medium,resulting in unstable signal acquisition.Capacitive sensor with excellent immunity to interference while maintaining flexibility is an urgent challenge.This study proposes an all-fiber anti-jamming capacitive pressure sensor that integrates liquid metal(LM)into a fiber-based dielectric layer.The combination of the LM and the fiber not only improves the dielectric properties of the dielectric layer but also reduces the Young's modulus of the fiber.The sensor has high interference immunity in various noise environments.Its all-fiber structure ensures lightweight,great air permeability and stretchability,whichmakes it a promising application in wearable electronic devices fields.
基金supported by the National Sci-ence and Technology Major Project of China(No.J2019-VI-0004-0117)the National Natural Science Foundation of China(Nos.52071205 and 51821001)+3 种基金the Aeronautical Science Fund of China(No.2023Z053057003)the Science and Technology Commission of Shanghai Municipality,China(No.23ZR1428800)the Shanghai Industrial Collaborative Innovation Project(No.XTCX-KJ-2022-41)The authors are thankful to Prof.Diran Apelian(University of Cal-ifornia,Irvine),Prof.Enrique Lavernia(Texas A&M University),and Prof.Alan A.Luo(Ohio State University)for their constructive and helpful comments during manuscript preparation.
文摘Counter-gravity casting(CGC)is a widely adopted material processing technique in metals due to its notable benefits,including enhanced filling behavior,reduced defect occurrence,and elevated mechani-cal properties.It plays a pivotal role in fabricating intricate,high-quality components.After its inception in the early 1900s,various CGC processes have emerged,such as low-pressure,counter-pressure,vac-uum suction,and adjusted pressure casting,which are explored in this discourse with an eye toward further advancements.Despite CGC’s superiority over traditional gravity casting and other manufacturing methodologies,specific issues and constraints persist within CGC.This paper endeavors to provide a com-prehensive overview of the historical progression of CGC,its recent developments,and the associated re-search aspects,encompassing topics like filling processes,solidification,microstructural transformations,and the resultant mechanical properties of the fabricated products.Additionally,this paper offers insights into the future challenges and opportunities of CGC.
基金supported by the National Key Research and Development Program of China under Grant(2024YFE0100400)Taishan Scholars Project Special Funds(tsqn202312035)+2 种基金the open research foundation of State Key Laboratory of Integrated Chips and Systems,the Tianjin Science and Technology Plan Project(No.22JCZDJC00630)the Higher Education Institution Science and Technology Research Project of Hebei Province(No.JZX2024024)Jinan City-University Integrated Development Strategy Project under Grant(JNSX2023017).
文摘Sleep monitoring is an important part of health management because sleep quality is crucial for restoration of human health.However,current commercial products of polysomnography are cumbersome with connecting wires and state-of-the-art flexible sensors are still interferential for being attached to the body.Herein,we develop a flexible-integrated multimodal sensing patch based on hydrogel and its application in unconstraint sleep monitoring.The patch comprises a bottom hydrogel-based dualmode pressure–temperature sensing layer and a top electrospun nanofiber-based non-contact detection layer as one integrated device.The hydrogel as core substrate exhibits strong toughness and water retention,and the multimodal sensing of temperature,pressure,and non-contact proximity is realized based on different sensing mechanisms with no crosstalk interference.The multimodal sensing function is verified in a simulated real-world scenario by a robotic hand grasping objects to validate its practicability.Multiple multimodal sensing patches integrated on different locations of a pillow are assembled for intelligent sleep monitoring.Versatile human–pillow interaction information as well as their evolution over time are acquired and analyzed by a one-dimensional convolutional neural network.Track of head movement and recognition of bad patterns that may lead to poor sleep are achieved,which provides a promising approach for sleep monitoring.
基金Fund supported this work for Excellent Youth Scholars of China(Grant No.52222708)the National Natural Science Foundation of China(Grant No.51977007)+1 种基金Part of this work is supported by the research project“SPEED”(03XP0585)at RWTH Aachen Universityfunded by the German Federal Ministry of Education and Research(BMBF)。
文摘Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries.
基金National Natural Science Foundation of china(Grant No.12402468)。
文摘RBOE is a new type of DNAN-based high-energy melt-cast mixed explosive,whose safety under thermal stimulation is significantly affected by heating conditions and venting area of the warhead.Based on the thermal decomposition reaction characteristics and combustion characteristics of each component of RBOE explosive,the cook-off calculation models of RBOE warhead before and after ignition were established.In addition,closed and vented warheads were designed,as well as fast and slow cook-off test devices.The cook-off characteristics and thermal safety venting area of RBOE warhead were extensively studied.The results showed that the closed RBOE warhead underwent deflagration reaction under both slow and fast cook-off conditions.The calculation result of the shell wall temperature before slow cookoff ignition response of the warhead was 454.06 K,with an error of+1.75%compared to the test result of462.15 K,and the temperature rise rate calculated was in good agreement with the test.The calculated ignition time of RBOE warhead under fast cook-off was 161 s,with an error of+8.8%compared to the test result of 148 s,which verified the accuracy of cook-off model of RBOE warhead before ignition.According to the cook-off calculation model of the warhead after ignition and cook-off test of the vented warhead,it was determined that the thermal safety venting area was 1124.61 mm^(2)for fast cook-off and 530.66 mm~2 for slow cook-off,effectively preventing the reaction of warhead above combustion.Therefore,this study provides a scientific basis for the thermal safety design and evaluation of insensitive warheads.
文摘BACKGROUND Most patients who were included in previous studies on achalasia had increased lower esophageal sphincter(LES)pressure.Peroral endoscopic myotomy(POEM)has been confirmed to be effective at relieving the clinical symptoms of achalasia associated with increased LES pressure.AIM To identify the safety and efficacy of POEM for patients with normal LES integrated relaxation pressure(LES-IRP).METHODS The clinical data of patients who underwent POEM successfully in The First Medical Center of Chinese PLA General Hospital were retrospectively analyzed.A total of 481 patients who underwent preoperative high-resolution manometry(HRM)at our hospital were ultimately included in this research.According to the HRM results,the patients were divided into two groups:71 patients were included in the normal LES-IRP group(LES-IRP<15 mmHg)and 410 patients were included in the increased LES-IRP group(LES-IRP≥15 mmHg).Clinical characteristics,procedure-related parameters,adverse events,and outcomes were compared between the two groups to evaluate the safety and efficacy of POEM for patients with normal LES-IRP.RESULTS Among the 481 patients included in our study,209 were males and 272 were females,with a mean age of 44.2 years.All patients underwent POEM without severe adverse events.The median pre-treatment Eckardt scores of the normal LES-IRP and increased LES-IRP groups were 7.0 and 7.0(P=0.132),respectively,decreasing to 1.0 and 1.0 post-treatment(P=0.572).The clinical success rate of the normal LES-IRP group was 87.3%(62/71),and that of the increased LES-IRP group was 91.2%(374/410)(P=0.298).Reflux symptoms were measured by the GerdQ questionnaire,and the percentages of patients with GerdQ scores≥9 in the normal LES-IRP and increased LES-IRP groups were 8.5%and 10.7%,respectively(P=0.711).After matching,the rates of clinical success and the rates of GerdQ score≥9 were not significantly different between the two groups.CONCLUSION Our results suggest that POEM is safe and effective for achalasia and patients with normal LES-IRP.In addition,in patients with normal LES-IRP,compared with those with increased LES-IRP,POEM was not associated with a greater incidence of reflux symptoms.
基金supported by the National Natural Science Foundation of China(Grant Nos.52168046 and 52178321)the Natural Science Foundation of Guangxi Province,China(Grant No.2021AC18019).
文摘Precast driven piles are extensively used for infrastructure on soft soils,but the buildup of excess pore water pressure associated with pile driving is a challenging issue.The process of soil consolidation could take several months.Measures are sought to shorten the drainage path in the ground,and permeable pipe pile is a concept that involves drainage channels at the peak pore pressure locations around the pile circumference.Centrifuge tests were conducted to understand the responses of permeable pipe pile treated ground,experiencing the whole pile driving,soil consolidating,and axially loading process.Results show that the dissipation rate of pore pressures can be improved,especially at a greater depth or at a shorter distance from the pile,since the local hydraulic gradient was higher.Less significant buildup of pore pressures can be anticipated with the use of permeable pipe pile.For this,the bearing capacity of composite foundation with permeable pipe pile can be increased by over 36.9%,compared to the case with normal pipe pile at a specific time period.All these demonstrate the ability of permeable pipe pile in accelerating the consolidation process,mobilizing the bearing capacity of treated ground at an early stage,and minimizing the set-up effect.
基金supported by the Major Program of the National Natural Science Foundation of China (Grant No.42090055)the National Major Scientific Instruments and Equipment Development Projects of China (Grant No.41827808)the National Nature Science Foundation of China (Grant No.42207216).
文摘The strength of the sliding zone soil determines the stability of reservoir landslides.Fluctuations in water levels cause a change in the seepage field,which serves as both the external hydrogeological environment and the internal component of a landslide.Therefore,considering the strength changes of the sliding zone with seepage effects,they correspond with the actual hydrogeological circumstances.To investigate the shear behavior of sliding zone soil under various seepage pressures,24 samples were conducted by a self-developed apparatus to observe the shear strength and measure the permeability coefficients at different deformation stages.After seepage-shear tests,the composition of clay minerals and microscopic structure on the shear surface were analyzed through X-ray and scanning electron microscope(SEM)to understand the coupling effects of seepage on strength.The results revealed that the sliding zone soil exhibited strain-hardening without seepage pressure.However,the introduction of seepage caused a significant reduction in shear strength,resulting in strain-softening characterized by a three-stage process.Long-term seepage action softened clay particles and transported broken particles into effective seepage channels,causing continuous damage to the interior structure and reducing the permeability coefficient.Increased seepage pressure decreased the peak strength by disrupting occlusal and frictional forces between sliding zone soil particles,which carried away more clay particles,contributing to an overhead structure in the soil that raised the permeability coefficient and decreased residual strength.The internal friction angle was less sensitive to variations in seepage pressure than cohesion.
基金supported by the National Natural Science Foundation of China(Grant No.12272369)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0620101).
文摘In recent decades,capacitive pressure sensors(CPSs)with high sensitivity have demonstrated significant potential in applications such as medical monitoring,artificial intelligence,and soft robotics.Efforts to enhance this sensitivity have predominantly focused on material design and structural optimization,with surface microstructures such as wrinkles,pyramids,and micro-pillars proving effective.Although finite element modeling(FEM)has guided enhancements in CPS sensitivity across various surface designs,a theoretical understanding of sensitivity improvements remains underexplored.This paper employs sinusoidal wavy surfaces as a representative model to analytically elucidate the underlying mechanisms of sensitivity enhancement through contact mechanics.These theoretical insights are corroborated by FEM and experimental validations.Our findings underscore that optimizing material properties,such as Young’s modulus and relative permittivity,alongside adjustments in surface roughness and substrate thickness,can significantly elevate the sensitivity.The optimal performance is achieved when the amplitude-to-wavelength ratio(H/)is about 0.2.These results offer critical insights for designing ultrasensitive CPS devices,paving the way for advancements in sensor technology.