期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Pressure-driven mold filling model of aluminum alloy melt/semi-solid slurry based on rheological behavior 被引量:4
1
作者 Zhen Ma Huarui Zhang +3 位作者 Wei Song Xiaoyan Wu Lina Jia Hu Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第4期14-21,共8页
The pressure-driven mold filling ability of aluminum alloy melt/semi-solid slurry is of great significance in pressure casting processes,and the rheological behavior of the alloy has a crucial effect on the mold filli... The pressure-driven mold filling ability of aluminum alloy melt/semi-solid slurry is of great significance in pressure casting processes,and the rheological behavior of the alloy has a crucial effect on the mold filling ability according to fluid dynamics.In this work,a pressure-driven mold filling model is first proposed based on the rheological behavior of the alloys.A356 alloy is employed as an example to clarify the rheological behavior of aluminum alloys,which obeys the power law model and is affected by temperature.The rheological behavior of the alloy in semi-solid state is modelled with the coupling of shear rate and temperature.The stop of mold filling attributes to the pressure loss which is caused by the viscosity during the flow of the melt/semi-solid slurry.Pressure loss caused by viscous flow and heat transfer between the alloy and the mold are calculated and coupled during the mold filling of the melt/semi-solid slurry.A pressure-driven mold filling model of aluminum alloy melt/semi-solid slurry is established based on steady-state rheological behavior.The model successfully predicts the filling length of melt/semi-solid slurry in pressure casting processes.Compared with the experimental results,the model can provide a quantitative approach to characterize the pressure-driven mold filling ability of aluminum alloy melt.The model is capable of describing the stop filling behavior of other aluminum alloys in pressure casting processes with corresponding rheological parameters and heat transfer coefficient. 展开更多
关键词 Mold filling model FLUIDITY pressure-driven RHEOLOGICAL behavior ALUMINUM alloys SEMI-SOLID state
原文传递
Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas 被引量:1
2
作者 张定宗 冯旭铭 +3 位作者 马骏 郭文峰 黄艳清 刘洪波 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第1期392-397,共6页
The linear behavior of the dominant unstable mode(m=2,n=1)and its high order harmonics(m=2n,n≥2)are numerically investigated in a reversed magnetic shear cylindrical plasma with two q=2 rational surfaces on the basis... The linear behavior of the dominant unstable mode(m=2,n=1)and its high order harmonics(m=2n,n≥2)are numerically investigated in a reversed magnetic shear cylindrical plasma with two q=2 rational surfaces on the basis of the non-reduced magnetohydrodynamics(MHD)equations.The results show that with low beta(beta is defined as the ratio of plasma pressure to magnetic field pressure),the dominant mode is a classical double tearing mode(DTM).However,when the beta is sufficiently large,the mode is driven mainly by plasma pressure.In such a case,both the linear growth rate and mode structures are strongly affected by pressure,while almost independent of the resistivity.This means that the dominant mode undergoes a transition from DTM to pressure-driven mode with the increase of pressure,which is consistent with the experimental result in ASDEX Upgrade.The simulations also show that the distance between two rational surfaces has an important influence on the pressure needed in mode transition.The larger the distance between two rational surfaces,the larger the pressure for driving the mode transition is.Motivated by the phenomena that the high-m modes may dominate over low-m modes at small inter-resonance distance,the high-m modes with different pressures and q profiles are studied too. 展开更多
关键词 magnetohydrodynamics(MHD) double tearing mode pressure-driven mode
原文传递
Study on the desalination efficiency of hydrate phase by a pressure-driven filtration method
3
作者 Yiwei Wu Zhenbin Xu +5 位作者 Xiaohui Wang Jin Cai Tenghua Zhang Peng Xiao Changyu Sun Guangjin Chen 《Chinese Journal of Chemical Engineering》 2025年第9期66-75,共10页
The mechanism of hydrate-based desalination is that water molecules would transfer to the hydrate phase during gas hydrate formation process,while the salt ions would be conversely concentrated in the unreacted saltwa... The mechanism of hydrate-based desalination is that water molecules would transfer to the hydrate phase during gas hydrate formation process,while the salt ions would be conversely concentrated in the unreacted saltwater.However,the salt concentration of hydrate decomposed water and the desalination degree of hydrate phase are still unclear.The biggest challenge is how to effectively separate the hydrate phase and the remaining unreacted salt water,and then decompose the hydrate phase to measure the salt concentration of hydrate melt water.This work developed an apparatus and pressure-driven filtration method to efficiently separate the hydrate phase and the remaining unreacted saltwater.On this basis,the single hydrate phase was obtained,then it was dissociated and the salt concentration of hydrate melt water was measured.The experimental results demonstrate that when the initial salt mass concentration is 0.3% to 8.0%,the salt removal efficiency for NaCl solution is 15.9% to 29.8%by forming CO_(2) hydrate,while for CaCl_(2) solution is 28.9%to 45.5%.The solute CaCl_(2) is easier to be removed than solute NaCl.In addition,the salt removal efficiency for forming CO_(2) hydrate is higher than that for forming methane hydrate.The multi-stage desalination can continuously decrease the salt concentration of hydrate dissociated water,and the salt removal efficiency per stage is around 20%. 展开更多
关键词 Desalination Gas hydrate pressure-driven filtration Salt removal efficiency Multi-stage
在线阅读 下载PDF
The Development of a Renewable-Energy-Driven Reverse Osmosis System for Water Desalination and Aquaculture Production 被引量:1
4
作者 Clark C K Liu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第8期1357-1362,共6页
Water and energy are closely linked natural resources - the transportation, treatment, and distribution of water depends on low-cost energy; while power generation requires large volumes of water. Seawater desalinatio... Water and energy are closely linked natural resources - the transportation, treatment, and distribution of water depends on low-cost energy; while power generation requires large volumes of water. Seawater desalination is a mature technology for increasing freshwater supply, but it is essentially a trade of energy for freshwater and is not a viable solution for regions where both water and energy are in short supply. This paper discusses the development and application of a renewable-energy-driven reverse osmosis (RO) system for water desalination and the treatment and reuse of aquaculture wastewater. The system consists of (1) a wind-driven pumping subsystem, (2) a pressure-driven RO membrane desalination subsystem, and (3) a solar-driven feedback control module. The results of the pilot experiments indicated that the system, operated under wind speeds of 3 m s-~ or higher, can be used for brackish water desalination by reducing the salinity of feedwater with total dissolved solids (TDS) of over 3 000 mg L-1 to product water or permeate with a TDS of 200 mg L-~ or less. Results of the pilot experiments also indicated that the system can remove up to 97% of the nitrogenous wastes from the fish pond effluent and can recover and reuse up to 56% of the freshwater supply for fish pond operation. 展开更多
关键词 renewable energy DESALINATION pressure-driven membrane processes AQUACULTURE fish pond
在线阅读 下载PDF
A new real-time hole cleaning monitoring method based on downhole multi-point pressure measurement and data driven approach
5
作者 Feifei Zhang Baixue Li +3 位作者 Chen Yu Jun Chen Tao Peng Xi Wang 《Natural Gas Industry B》 2023年第3期312-321,共10页
During the construction of long horizontal wells and extended reach wells,inadequate hole cleaning can lead to a series of drilling problems.Traditional hole cleaning analysis is simply based on theoretical models or ... During the construction of long horizontal wells and extended reach wells,inadequate hole cleaning can lead to a series of drilling problems.Traditional hole cleaning analysis is simply based on theoretical models or surface vibrating screen data,and cannot accurately assess downhole cuttings distribution and existing problems.This paper introduces a novel research idea that combines the traditional drilling hydraulic model with the artificial intelligence method.A downhole true cuttings distribution technology based on measurement data,the inversion offlow characteristics from pressure in the hole cleaningfield,and a new method for quantitatively evaluating the dynamic distribution of downhole cuttings using along-string measurement(ASM)data were proposed.The results depict that,the relationship between hole cleanliness and annular pressure loss in different hole sections under different working conditions is proportional.Second,under givenflow conditions,a pressure-driven hole-cleaning model exerted a reverse pressure drop by inferring the effect of cuttings on the borehole.Third,downhole multipoint measurement indicated an accurate evaluation of the hole cleaning condition and provide detailed downhole information that avoided and solve inadequate hole cleaning of long horizontal wells and extended reach wells.In conclusion,the combination of these methods can overcome the defects of traditional hole cleaning analysis.The integrated approach is helpful in improving the practical technique in hole cleaning and promotes the large-scale application in the oil and gas industry. 展开更多
关键词 pressure-driven Holecleaningalgorithm Intelligentdrilling Hydraulicmodel Intelligentdrillpipe Along-stringmeasurement(ASM)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部