期刊文献+
共找到210篇文章
< 1 2 11 >
每页显示 20 50 100
Deep Learning-Assisted Organogel Pressure Sensor for Alphabet Recognition and Bio-Mechanical Motion Monitoring
1
作者 Kusum Sharma Kousik Bhunia +5 位作者 Subhajit Chatterjee Muthukumar Perumalsamy Anandhan Ayyappan Saj Theophilus Bhatti Yung‑Cheol Byun Sang-Jae Kim 《Nano-Micro Letters》 2026年第2期644-663,共20页
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,... Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility,adhesion,self-healing,and environmental robustness with excellent sensing metrics.Herein,we report a multifunctional,anti-freezing,selfadhesive,and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes(CoN CNT)embedded in a polyvinyl alcohol-gelatin(PVA/GLE)matrix.Fabricated using a binary solvent system of water and ethylene glycol(EG),the CoN CNT/PVA/GLE organogel exhibits excellent flexibility,biocompatibility,and temperature tolerance with remarkable environmental stability.Electrochemical impedance spectroscopy confirms near-stable performance across a broad humidity range(40%-95%RH).Freeze-tolerant conductivity under sub-zero conditions(-20℃)is attributed to the synergistic role of CoN CNT and EG,preserving mobility and network integrity.The Co N CNT/PVA/GLE organogel sensor exhibits high sensitivity of 5.75 k Pa^(-1)in the detection range from 0 to 20 k Pa,ideal for subtle biomechanical motion detection.A smart human-machine interface for English letter recognition using deep learning achieved 98%accuracy.The organogel sensor utility was extended to detect human gestures like finger bending,wrist motion,and throat vibration during speech. 展开更多
关键词 Wearable ORGANOGEL Deep learning pressure sensor Bio-mechanical motion
在线阅读 下载PDF
All-fiber anti-jamming capacitive pressure sensors based on liquid metals 被引量:1
2
作者 Hui-Chen Xu Yue Liu +4 位作者 Ye-Pei Mo Zi-Yu Chen Xiao-Jun Pan Rong-Rong Bao Cao-Feng Pan 《Rare Metals》 2025年第7期4839-4850,共12页
Capacitive pressure sensors have a promising application in the field of wearable electronic devices due to their excellent electrical properties.Owing to the complexity of the environment,capacitive sensors are susce... Capacitive pressure sensors have a promising application in the field of wearable electronic devices due to their excellent electrical properties.Owing to the complexity of the environment,capacitive sensors are susceptible to electromagnetic interference and changes in the surrounding medium,resulting in unstable signal acquisition.Capacitive sensor with excellent immunity to interference while maintaining flexibility is an urgent challenge.This study proposes an all-fiber anti-jamming capacitive pressure sensor that integrates liquid metal(LM)into a fiber-based dielectric layer.The combination of the LM and the fiber not only improves the dielectric properties of the dielectric layer but also reduces the Young's modulus of the fiber.The sensor has high interference immunity in various noise environments.Its all-fiber structure ensures lightweight,great air permeability and stretchability,whichmakes it a promising application in wearable electronic devices fields. 展开更多
关键词 Liquid metal ANTI-JAMMING pressure sensors Dielectric properties Hybrid electrospinning
原文传递
Modeling the sensitivity of capacitive pressure sensors with microstructured wavy surfaces 被引量:1
3
作者 Han Peng Nian Zhang +1 位作者 Hengxu Song Liu Wang 《Acta Mechanica Sinica》 2025年第5期104-116,共13页
In recent decades,capacitive pressure sensors(CPSs)with high sensitivity have demonstrated significant potential in applications such as medical monitoring,artificial intelligence,and soft robotics.Efforts to enhance ... In recent decades,capacitive pressure sensors(CPSs)with high sensitivity have demonstrated significant potential in applications such as medical monitoring,artificial intelligence,and soft robotics.Efforts to enhance this sensitivity have predominantly focused on material design and structural optimization,with surface microstructures such as wrinkles,pyramids,and micro-pillars proving effective.Although finite element modeling(FEM)has guided enhancements in CPS sensitivity across various surface designs,a theoretical understanding of sensitivity improvements remains underexplored.This paper employs sinusoidal wavy surfaces as a representative model to analytically elucidate the underlying mechanisms of sensitivity enhancement through contact mechanics.These theoretical insights are corroborated by FEM and experimental validations.Our findings underscore that optimizing material properties,such as Young’s modulus and relative permittivity,alongside adjustments in surface roughness and substrate thickness,can significantly elevate the sensitivity.The optimal performance is achieved when the amplitude-to-wavelength ratio(H/)is about 0.2.These results offer critical insights for designing ultrasensitive CPS devices,paving the way for advancements in sensor technology. 展开更多
关键词 Capacitive pressure sensor Sensitivity Micro-structured wavy surface
原文传递
Metal-sensitive diaphragm fiber optic Fabry-Perot pressure sensor with temperature compensation
4
作者 WANG Hao-xing LIU Jia +6 位作者 WANG Hai-yang WANG Jun LI Yuan-hao YIN Jian-xiong WAN Shun DAI Yun-teng JIA Ping-gang 《中国光学(中英文)》 北大核心 2025年第5期1255-1265,共11页
A metal-sensitive diaphragm fiber optic pressure sensor with temperature compensation is developed for pressure monitoring in high-temperature environments,such as engine fuel systems,oil and gas wells,and aviation hy... A metal-sensitive diaphragm fiber optic pressure sensor with temperature compensation is developed for pressure monitoring in high-temperature environments,such as engine fuel systems,oil and gas wells,and aviation hydraulic systems.The sensor combines a metal-sensitive diaphragm and a sapphire wafer to form a temperature-pressure dual Fabry-Perot(FP)interference cavity.A cross-correlation signal demodulation algorithm and a temperature decoupling method are utilized to reduce the influence of temperature crosstalk on pressure measurement.Experimental results show that the maximum nonlinear error of the sensor pressure measurement is 0.75%full scale(FS)and 0.99%FS at room temperature and 300°C,respectively,in a pressure range of 0−10 MPa and 0−1.5 MPa.The sensor’s pressure measurement accuracy is 1.7%FS when using the temperature decoupling method.The sensor exhibits good static pressure characteristics,stability,and reliability,providing an effective solution for high-temperature pressure monitoring applications. 展开更多
关键词 high-temperature pressure sensor dual Fabry-Perot interference cavity temperature compensa-tion cross-correlation algorithm
在线阅读 下载PDF
Ultrasensitive iontronic pressure sensor based on microstructure ionogel dielectric layer for wearable electronics
5
作者 Hairong Kou Yuhang Pang +8 位作者 Libo Yang Xiaoyong Zhang Zhenzhen Shang Lei Zhang Liang Zhang Yixin Shi Zhiguo Gui Youwen Ye Shijie Song 《Nanotechnology and Precision Engineering》 2025年第2期95-103,共9页
Flexible pressure sensors show great promise for applications in such fields as electronic skin,healthcare,and intelligent robotics.Traditional capacitive pressure sensors,however,face the problem of low sensitivity,w... Flexible pressure sensors show great promise for applications in such fields as electronic skin,healthcare,and intelligent robotics.Traditional capacitive pressure sensors,however,face the problem of low sensitivity,which limits their wider application.In this paper,a flexible capacitive pressure sensor with microstructured ionization layer is fabricated by a sandwich-type process,with a low-cost and simple process of inverted molding with sandpapers being used to form a thermoplastic polyurethane elastomer ionic film with double-sided microstructure as the dielectric layer of the sensor,with silver nanowires as electrodes.The operating mechanism of this iontronic pressure sensor is analyzed using a graphical method,and the sensor is tested on a pressure platform.The test results show that the sensor has ultrahigh pressure sensitivities of 3.744 and 1.689 kPa^(−1) at low(0-20 kPa)and high(20-800 kPa)pressures,respectively,as well as a rapid response time(100 ms),and it exhibits good stability and repeatability.The sensor can be used for sensitive monitoring of activities such as finger bending,and for facial expression(smile,frown)recognition,as well as speech recognition. 展开更多
关键词 pressure sensor MICROSTRUCTURE Ionogel Dielectric layer High sensitivity Electronic skin
在线阅读 下载PDF
A Hypersensitive,Fast-response Biomimetic Pressure Sensor Inspired by the Superior Sensing Structures of the Dragonfly's Neck
6
作者 Yuechun Ding Rui Zhou +8 位作者 Changchao Zhang Hanliang Ding Bowei Li Bo Li Honglie Song Shichao Niu Junqiu Zhang Zhiwu Han Luquan Ren 《Journal of Bionic Engineering》 2025年第1期251-261,共11页
Flexible piezoresistive pressure sensors have attracted much attention for applications in health monitoring and human-machine interfaces due to their simple device structures and easy-to-read signals.For practical ap... Flexible piezoresistive pressure sensors have attracted much attention for applications in health monitoring and human-machine interfaces due to their simple device structures and easy-to-read signals.For practical applications,the deployment of flexible pressure sensors characterized by high sensitivity and fast response time is imperative for the rapid and accurate detection and monitoring of tiny signals.Such capabilities are essential for facilitating immediate feedback and informed decision-making across a spectrum of contexts.Drawing lessons from the hypersensitive and fast-responding pressure sensing structures in the dragonfly’s neck(for stable imaging during its highly maneuverable flight),a Biomimetic Piezoresistive Pressure Sensor(BPPS)with exquisite mechanically interlocking sensing microstructures is developed.Each interlocking perceptual structure pair consists of an ox-horn-shaped and a mushroom-shaped structural unit.Through the characteristic configuration of the perceptual structure pair,the BPPS realizes a fast gradient accumulation of the contact area,thus synergistically enhancing the sensitivity and fast response capability.Remarkably,the sensitivity of the BPPS reaches 0.35 kPa^(−1),which increased by 75%compared to the 0.2 kPa^(−1) of the pressure sensors without biomimetic structures.Moreover,the BPPS also achieves rapid response/recovery times(<90/15 ms).Our BPPS finds utility in tasks such as identifying objects of different weights,monitoring human respiratory status,and tracking motion,demonstrating its potential in wearable healthcare devices,assistive technology,and intelligent soft robotics.Moreover,it possesses the advantages of high sensitivity and fast response time in practical applications. 展开更多
关键词 Bionic Dragonfly neck HYPERSENSITIVITY Fast response pressure sensor
在线阅读 下载PDF
Metamaterial pressure sensor based on ceramic for harsh environments
7
作者 FENG Rui QIAO Yi +2 位作者 WU Dongyang TAN Shijian TAN Qiulin 《Journal of Measurement Science and Instrumentation》 2025年第4期603-611,共9页
This paper presents a new type of ultra-material microwave pressure sensor designed for extreme environments,and conducts a systematic study on its structural design,manufacturing process,working mechanism,and experim... This paper presents a new type of ultra-material microwave pressure sensor designed for extreme environments,and conducts a systematic study on its structural design,manufacturing process,working mechanism,and experimental performance.The sensor is based on the cross-slot ultra-material resonant structure.Platinum-based conductive patterns are precisely fabricated on a high-purity alumina ceramic substrate through screen printing,and a strong bond between metal and ceramic is achieved through high-temperature sintering.Thanks to the high-temperature stability of the ceramic material and the high precision of the process,this sensor maintains excellent structural integrity and performance consistency in harsh environments.The working mechanism of the sensor is based on the microstructural deformation induced by pressure.When external pressure is applied to the ceramic cavity,the deformation of the cavity will change the equivalent electromagnetic boundary conditions inside,thereby causing perturbations in the resonant modes of the metamaterial,resulting in a continuous measurable shift in the resonant frequency.Based on this mechanism,the change in pressure can be precisely mapped to the frequency change,enabling wireless and passive pressure measurement.By utilizing the intrinsic resonant radiation of the metamaterial to achieve coupled readings,the complexity of sensor integration is significantly reduced and its working reliability in high-pressure,high-temperature,and strong electromagnetic interference environments is improved.During the design stage,the influence laws of the geometric parameters of the metamaterial and other factors on the resonant performance and pressure sensitivity were analyzed through finite element coupling simulation.Experimental verification shows that the sensor exhibits excellent linear pressure response within the range of 0−500 kPa,and maintains good repeatability and frequency stability in the high-pressure zone.The maximum sensitivity reaches 135 kHz/kPa,and the frequency drift is minimal during multiple loading-unloading cycles,fully demonstrating that the structural strength and reliability of the design meet the engineering requirements.The sensor proposed in this study could achieve longterm stable operation in aerospace engine compartments,high-temperature metallurgical furnaces,deep mine pressure monitoring,petrochemical high-corrosion pipelines,and extreme environment equipment.This research not only demonstrated the potential of integrating metamaterials with advanced ceramic processes to construct wireless passive sensors,but also provided new design ideas and process routes for the engineering application of microwave sensing technology in harsh environments. 展开更多
关键词 pressure sensor wireless passive high-temperature co-fired ceramic ceramic process MICROWAVE aerospace and aviatio
在线阅读 下载PDF
Development of a composite sandwich-structure piezoresistive pressure sensor for subtle-pressures application
8
作者 Mosayeb Shiri Nowrouz Mohammad Nouri Mohammad Riahi 《Defence Technology(防务技术)》 2025年第3期48-61,共14页
The Design and manufacturing of a noble piezoresistive pressure sensor(PS) for subtle pressures(<1 kPa) were presented. Meanwhile, in the studies conducted in the field of pressure sensors, the measurement of subtl... The Design and manufacturing of a noble piezoresistive pressure sensor(PS) for subtle pressures(<1 kPa) were presented. Meanwhile, in the studies conducted in the field of pressure sensors, the measurement of subtle pressures has received less attention. The limitations in the inherent gauge factor in silicon, have led to the development of polymer and composite resistive sensitive elements. However,in the development of resistance sensing elements, the structure of composite elements with reinforcement core has not been used. The proposed PS had a composite sandwich structure consisting of a nanocomposite graphene layer covered by layers of PDMS at the bottom and on the top coupled with a polyimide(PI) core. Various tests were performed to analyze the PS. The primary design target was improved sensitivity, with a finite-element method(FEM) utilized to simulate the stress profile over piezoresistive elements and membrane deflection at various pressures. The PS manufacturing process is based on Laser-engraved graphene(LEG) technology and PDMS casting. Experimental data indicated that the manufactured PS exhibits a sensitivity of 67.28 mV/kPa for a pressure range of 30-300 Pa in ambient temperature. 展开更多
关键词 Piezoresistive pressure sensor sensor manufacturing FEM Stretchable sensor LEG
在线阅读 下载PDF
Braided NiTi alloys microfilaments with near-linear responses:Toward flexible high-pressure sensors
9
作者 Yiwen Liu Ling Li +8 位作者 Fei Xiao Ruihang Hou Zehuan Lin Xiaorong Cai Shungui Zuo Ying Zhou Shuyuan Hua Yuhan Chen Xuejun Jin 《Journal of Materials Science & Technology》 2025年第26期269-278,共10页
Shape memory alloys(SMAs)are smart materials with superelasticity originating from a reversible stressinduced martensitic transformation(MT)accompanied by a significant electrical resistance change.However,the stress-... Shape memory alloys(SMAs)are smart materials with superelasticity originating from a reversible stressinduced martensitic transformation(MT)accompanied by a significant electrical resistance change.However,the stress-strain and resistance-stress relationships of typical NiTi wires are non-linear due to the stress plateau during the stress-induced MT.This limits the usage of these materials as pressure sensors.Herein,we propose a high-strength flexible sensor based on superelastic NiTi wires that achieves near-linear mechanical and electrical responses through a low-cost double-braided strategy.This microarchitectured strategy reduces or even eliminates stress plateau and it is demonstrated that the phase transformation of microfilaments can be controlled:regions with localized stress undergo the MT first,which is successively followed by the rest of the microfilament.This structure-dependent MT characteristic exhibits slim-hysteresis superelasticity and tunable low stiffness,and the braided wire shows improved flexibility.The double-braided NiTi microfilaments exhibit stable electrical properties and repeatability under approximately 600 MPa(8%strain)and can maintain stability over a wide temperature range(303-403 K).Moreover,a cross-grid flexible woven sensor array textile based on microfilaments is further developed to detect pressure distribution.This work provides insight into the design and application of SMAs in the field of flexible and functional fiber. 展开更多
关键词 NITI Shape memory alloys BRAIDING Near-linear responses Flexible pressure sensors
原文传递
Pressure Sensors Based on the Third-Generation Semiconductor Silicon Carbide:A Comprehensive Review
10
作者 Xudong Fang Chen Wu +3 位作者 Bian Tian Libo Zhao Xueyong Wei Zhuangde Jiang 《Engineering》 2025年第9期183-203,共21页
Microelectromechanical system(MEMS)high-temperature pressure sensors are widely used in aerospace,petrochemical industries,automotive electronics,and other fields owing to their advantages of miniaturization,lightweig... Microelectromechanical system(MEMS)high-temperature pressure sensors are widely used in aerospace,petrochemical industries,automotive electronics,and other fields owing to their advantages of miniaturization,lightweight design,simplified signal processing,and high accuracy.In recent years,advances in semiconductor material growth technology and intelligent equipment operation have significantly increased interest in high-temperature pressure sensors based on the third-generation semiconductor silicon carbide(SiC).This review examines the material properties of SiC single crystals and discusses several technologies influencing the performance of SiC pressure sensors,including the piezoresistive effect,ohmic contact,etching processes,and packaging methodologies.Additionally,it explores future research directions in the field.The review highlights the importance of increasing operating temperatures and advancing sensor integration as critical trends for future SiC high-temperature pressure sensor research and applications. 展开更多
关键词 Silicon carbide pressure sensor Extreme environment Etching and packaging Ohmic contact
在线阅读 下载PDF
Polyimide aerogel-based capacitive pressure sensor with enhanced sensitivity and temperature resistance
11
作者 Minhan Cheng Yifei Yuan +6 位作者 Qianyang Li Chuanliang Chen Jie Chen Ke Tian Mao Zhang Qiang Fu Hua Deng 《Journal of Materials Science & Technology》 2025年第14期60-69,共10页
The development of intelligent electronic power systems necessitates advanced flexible pressure sensors.Despite improved compressibility through surface micro-structures or bulk pores,conventional capacitive pressure ... The development of intelligent electronic power systems necessitates advanced flexible pressure sensors.Despite improved compressibility through surface micro-structures or bulk pores,conventional capacitive pressure sensors face limitations due to their low dielectric constant and poor temperature tolerance of most elastomers.Herein,we constructed oriented polyimide-based aerogels with mechanical robustness and notable changes in dielectric constant under compression.The enhancement is attributed to the doping of surface-modified dielectric nanoparticles and graphene oxide sheets,which interact with polymer molecular chains.The resulting aerogels,with their excellent temperature resistance,were used to assemble high-performance capacitive pressure sensors.The sensor exhibits a maximum sensitivity of 1.41 kPa^(−1)over a wide working range of 0-200 kPa.Meanwhile,the sensor can operate in environments up to 150℃during 2000 compression/release cycles.Furthermore,the aerogel-based sensor demonstrates proximity sensing capabilities,showing great potential for applications in non-contact sensing and extreme environment detection. 展开更多
关键词 Capacitive pressure sensor Polyimide aerogel Dielectric constant Proximity sensing Extreme temperature sensing
原文传递
Laser-induced and Conformal liquid-silicone Casting of oxalis-inspired graphene-based Piezoresistive Pressure Sensors
12
作者 Wentao Wang Zeping Deng +4 位作者 Ziqiang Chen Linfeng Yuan Junyan Xiang Longzhou Dai Kun Tang 《Journal of Bionic Engineering》 2025年第2期713-726,共14页
Laser-Induced Graphene (LIG) is regarded as a promising sensor carrier due to its inherent three-dimensional porous structure. However, as two mutually exclusive properties of the pressure sensor, sensitivity and work... Laser-Induced Graphene (LIG) is regarded as a promising sensor carrier due to its inherent three-dimensional porous structure. However, as two mutually exclusive properties of the pressure sensor, sensitivity and working range are difficult to be further improved by the single porous structure. Inspired by the unique geometry of Oxalis corniculata L. leaves, we here propose a novel method consist of laser pre-etching and inducing steps to fabricate LIG-based electrodes with a two-stage architecture featuring microjigsaw and microporous structures. The following injection of liquid-silicone significantly improves the friction resistance and bending reliability of LIG materials. The interface contact between external microjigsaw structures induces substantial resistance changes, and the internal microporous structure exhibits reversibility during dynamic deformation. Consequently, the jigsaw-like pressure sensor achieves a balanced performance with sensitivities of 3.64, 1.20 and 0.03 kPa^(- 1) in pressure range of 0 -20, 20 - 40 and 40 - 150 kPa, respectively. The bionic LIG-based pressure sensor serves as the core component and further integrated with an all-in-one wireless transmission system capable of monitoring various health parameters such as subtle pulse rates, heartbeat rhythms, sounds, etc., indicating broad prospects in future wearable electronics. 展开更多
关键词 Oxalis corniculata L.leaves BIONIC Laser-induced graphene Flexible pressure sensor Mircojigsaw
在线阅读 下载PDF
Boosting Sensitivity of Cellulose Pressure Sensor via Hierarchically Porous Structure
13
作者 Minzhang Chen Xiaoni An +4 位作者 Fengyan Zhao Pan Chen Junfeng Wang Miaoqian Zhang Ang Lu 《Nano-Micro Letters》 2025年第9期59-74,共16页
Pressure sensors are essential for a wide range of applica-tions,including health monitoring,industrial diagnostics,etc.However,achieving both high sensitivity and mechanical ability to withstand high pressure in a si... Pressure sensors are essential for a wide range of applica-tions,including health monitoring,industrial diagnostics,etc.However,achieving both high sensitivity and mechanical ability to withstand high pressure in a single material remains a significant challenge.This study introduces a high-performance cellulose hydrogel inspired by the biomi-metic layered porous structure of human skin.The hydrogel features a novel design composed of a soft layer with large macropores and a hard layer with small micropores,each of which contribute uniquely to its pressure-sensing capabilities.The macropores in the soft part facilitate significant deforma-tion and charge accumulation,providing exceptional sensitivity to low pressures.In contrast,the microporous structure in the hard part enhances pressure range,ensuring support under high pressures and preventing structural failure.The performance of hydrogel is further optimized through ion introduction,which improves its conductivity,and as well the sensitivity.The sensor demonstrated a high sensitivity of 1622kPa^(-1),a detec-tion range up to 160 kPa,excellent conductivity of 4.01 Sm^(-1),rapid response time of 33 ms,and a low detection limit of 1.6 Pa,outperforming most existing cellulose-based sensors.This innovative hierarchically porous architecture not only enhances the pressure-sensing performance but also offers a simple and effective approach for utilizing natural polymers in sensing technologies.The cellulose hydrogel demonstrates sig-nificant potential in both health monitoring and industrial applications,providing a sensitive,durable,and versatile solution for pressure sensing. 展开更多
关键词 pressure sensor CELLULOSE HYDROGEL High sensitivity
在线阅读 下载PDF
Biomimetic Engineering High-Sensitivity Flexible Pressure Sensors with Ultra-Wide Pressure Detection Range via Synergistic Interlocked Structures and Multi-scale Micro-dome Interfaces
14
作者 Junqiu Zhang Jiachao Wu +16 位作者 Lili Liu Tao Sun Xiangbo Gu Zijian Shi Xueyang Li Xueping Zhang Yu Chen Jiqi Gao Kejun Wang Bin Zhu Wenze Sun Yutao Mei Yubo Yan Yan Li Zhijing Wu Zhiwu Han Luquan Ren 《Journal of Bionic Engineering》 2025年第5期2550-2560,共11页
Flexible pressure sensors have excellent prospects in applications of human-machine interfaces,artificial intelligence and human health monitoring due to their bendable and lightweight characteristics compared to rigi... Flexible pressure sensors have excellent prospects in applications of human-machine interfaces,artificial intelligence and human health monitoring due to their bendable and lightweight characteristics compared to rigid pressure sensors.However,arising from the limited compressibility of soft materials and the hardening of microstructures at the device interface,there is always a trade-off between high sensitivity and broad sensing range for most flexible pressure sensors,which results in a gradual saturation response and limits their practical applications.Herein,inspired by the distinct pressure perception function of crocodile receptors,a highly sensitive and wide-range flexible pressure sensor with multiscale microdomes and interlocked architecture is developed via a facile PS-decorated molding method.Combined with interlocked architecture,the multiscale dome-shaped structured interface enhances the compressibility of the material through structural complementarity,increases the contact area between functional materials,which compensates for the stiffness induced by the deformation of dense microscale columns.This effectively mitigates structural hardening across a wide pressure range,leading to the overall high performance of the sensor.As a result,the obtained sensor exhibits a low detection limit of 5 Pa,a high sensitivity of 6.14 kPa^(-1),a wide measurement range up to 231 kPa,short response/recovery time of 56 ms/69 ms,outstanding stability over 10,000 cycles.Considering these excellent properties,the sensor shows promising potential in health monitoring,human-computer interaction,wearable electronics.This study presents a strategy for the fabrication of flexible pressure sensors exhibiting high sensitivity and a wide pressure response range. 展开更多
关键词 Biomimetic engineering Flexible pressure sensors Ultrahigh sensitivity and wide-range detection Multiscale interface Interlocked structure
在线阅读 下载PDF
Recent advances in MXene-based flexible pressure sensors for medical monitoring
15
作者 Xu-Hui Zhang Bo Wang +6 位作者 Bin Zhou Hai-Jun Lin Yu-Xi Liu Fu-Mei Yang Shang-Kun Sun Qing-Hao Song Qing Wu 《Rare Metals》 2025年第6期3653-3685,共33页
The emergence of two-dimensional nanomaterials,especially MXene,significantly overcomes the limitations of flexible pressure sensors regarding their sensing abilities,mechanical properties,and electromagnetic shieldin... The emergence of two-dimensional nanomaterials,especially MXene,significantly overcomes the limitations of flexible pressure sensors regarding their sensing abilities,mechanical properties,and electromagnetic shielding effectiveness.This advancement underscores their great potential for use in wearable and medical monitoring devices.However,single-layer MXene is highly prone to oxidation when exposed to air and tends to stack between layers.Combining MXene with other functional materials to create heterojunction structures effectively addresses the stacking problem while also providing the resulting composites with excellent electrical conductivity,mechanical flexibility,and electromagnetic shielding capabilities,which are essential for enhancing sensor performance.This review systematically outlines various microstructural designs and improvement strategies aimed at boosting the sensing efficiency of different flexible pressure sensors based on MXene.It offers a comprehensive analysis of their significance in medical monitoring,anticipates future challenges and opportunities,and serves as an important reference for advancing precision and personalized approaches in medical monitoring. 展开更多
关键词 Flexible pressure sensors Electromagnetic shielding-MXenes MICROSTRUCTURE Medical monitoring
原文传递
Motion intention recognition using surface electromyography and arrayed flexible thin-film pressure sensors
16
作者 BU Lingyu YIN Xiangguo +1 位作者 LIN Mingxing LIU Jiahe 《Journal of Measurement Science and Instrumentation》 2025年第4期486-497,共12页
Motion intention recognition is considered the key technology for enhancing the training effectiveness of upper limb rehabilitation robots for stroke patients,but traditional recognition systems are difficult to simul... Motion intention recognition is considered the key technology for enhancing the training effectiveness of upper limb rehabilitation robots for stroke patients,but traditional recognition systems are difficult to simultaneously balance real-time performance and reliability.To achieve real-time and accurate upper limb motion intention recognition,a multi-modal fusion method based on surface electromyography(sEMG)signals and arrayed flexible thin-film pressure(AFTFP)sensors was proposed.Through experimental tests on 10 healthy subjects(5 males and 5 females,age 23±2 years),sEMG signals and human-machine interaction force(HMIF)signals were collected during elbow flexion,extension,and shoulder internal and external rotation.The AFTFP signals based on dynamic calibration compensation and the sEMG signals were processed for feature extraction and fusion,and the recognition performance of single signals and fused signals was compared using a support vector machine(SVM).The experimental results showed that the sEMG signals consistently appeared 175±25 ms earlier than the HMIF signals(p<0.01,paired t-test).In offline conditions,the recognition accuracy of the fused signals exceeded 99.77%across different time windows.Under a 0.1 s time window,the real-time recognition accuracy of the fused signals was 14.1%higher than that of the single sEMG signal,and the system’s end-to-end delay was reduced to less than 100 ms.The AFTFP sensor is applied to motion intention recognition for the first time.And its low-cost,high-density array design provided an innovative solution for rehabilitation robots.The findings demonstrate that the AFTFP sensor adopted in this study effectively enhances intention recognition performance.The fusion of its output HMIF signals with sEMG signals combines the advantages of both modalities,enabling real-time and accurate motion intention recognition.This provides efficient command output for human-machine interaction in scenarios such as stroke rehabilitation. 展开更多
关键词 upper limb rehabilitation robot motion intention recognition sEMG signal arrayed flexible thin-film pressure sensor humanmachine interaction force
在线阅读 下载PDF
Pressure sensor with wide detection range and high sensitivity for wearable human health monitoring
17
作者 Lingchen Liu Ying Yuan +4 位作者 Hao Xu Xiaokun Qin Xiaofeng Wang Zheng Lou Lili Wang 《Journal of Semiconductors》 2025年第4期72-79,共8页
High-performance flexible pressure sensors have garnered significant attention in fields such as wearable electronics and human-machine interfaces.However,the development of flexible pressure sensors that simultaneous... High-performance flexible pressure sensors have garnered significant attention in fields such as wearable electronics and human-machine interfaces.However,the development of flexible pressure sensors that simultaneously achieve high sensitivity,a wide detection range,and good mechanical stability remains a challenge.In this paper,we propose a flexible piezoresistive pressure sensor based on a Ti_(3)C_(2)Tx(MXene)/polyethylene oxide(PEO)composite nanofiber membrane(CNM).The sensor,utilizing MXene(0.4 wt%)/PEO(5 wt%),exhibits high sensitivity(44.34 kPa^(−1)at 0−50 kPa,12.99 kPa^(−1)at 50−500 kPa)and can reliably monitor physiological signals and other subtle cues.Moreover,the sensor features a wide detection range(0−500 kPa),fast response and recovery time(~150/45 ms),and excellent mechanical stability(over 10000 pressure cycles at maximum load).Through an MXene/PEO sensor array,we demonstrate its applications in human physiological signal monitoring,providing a reliable way to expand the application of MXene-based flexible pressure sensors. 展开更多
关键词 flexible pressure sensor wide detection range high sensitivity pulse wave detection
在线阅读 下载PDF
Research on a compact and high sensitivity gas pressure sensor based on fiber Fabry-Pérot interferometer and Bragg grating
18
作者 LIU Qinpeng XING Meihua +2 位作者 YANG Di LIU Bo YAN Cheng 《Optoelectronics Letters》 2025年第6期321-327,共7页
A compact and highly sensitive gas pressure and temperature sensor based on Fabry-Pérot interferometer(FPI)and fiber Bragg grating(FBG)is proposed and demonstrated experimentally in this paper.The theoretical mod... A compact and highly sensitive gas pressure and temperature sensor based on Fabry-Pérot interferometer(FPI)and fiber Bragg grating(FBG)is proposed and demonstrated experimentally in this paper.The theoretical model for pressure and temperature sensing is established.Building on this foundation,a novel micro silicon cavity sensor structure sensitive to pressure is devised downstream of an FBG.The concept of separate measurement and the mechanisms enhancing pressure sensitivity are meticulously analyzed,and the corresponding samples are fabricated.The experimental results indicate that the pressure sensitivity of the sensor is-747.849 nm/MPa in 0—100 k Pa and its linearity is 99.7%and it maintains good stability in 150 min.The sensor offers the advantages of compact size,robust construction,easy fabrication,and high sensitivity,making it potentially valuable for micro-pressure application. 展开更多
关键词 fiber bragg grating fbg gas pressure sensor temperature sensor separate measurement fiber Bragg grating fiber Fabry P rot interferometer theoretical model pressure temperature sensing micro silicon cavity sensor structure
原文传递
Design of a Pressure Sensor Array System Based on Minecraft
19
作者 Ximing Luo 《Journal of Electronic Research and Application》 2025年第5期117-131,共15页
Multimodal information sensing becomes increasingly critical under the rapid development of automation and information technology.With the ability to provide high-density and high-sensitivity pressure detection,pressu... Multimodal information sensing becomes increasingly critical under the rapid development of automation and information technology.With the ability to provide high-density and high-sensitivity pressure detection,pressure sensor arrays have been applied to a variety of fields,including intelligent robotics,medical monitoring,and industrial automation.This study proposes a pressure sensor array system based on the Minecraft game platform.The simulation and testing of the pressure sensor arrays system have been conducted using redstone circuits and pressure plates in Minecraft to simulate real-world piezoelectric pressure sensor arrays.A series of experiments verified the feasibility and effectiveness of the system. 展开更多
关键词 pressure sensor array Minecraft Redstone circuits
在线阅读 下载PDF
Ti_(3)C_(2)T_(x) Composite Aerogels Enable Pressure Sensors for Dialect Speech Recognition Assisted by Deep Learning
20
作者 Yanan Xiao He Li +8 位作者 Tianyi Gu Xiaoteng Jia Shixiang Sun Yong Liu Bin Wang He Tian Peng Sun Fangmeng Liu Geyu Lu 《Nano-Micro Letters》 2025年第5期1-15,共15页
Wearable pressure sensors capable of adhering comfortably to the skin hold great promise in sound detection.However,current intelligent speech assistants based on pressure sensors can only recognize standard languages... Wearable pressure sensors capable of adhering comfortably to the skin hold great promise in sound detection.However,current intelligent speech assistants based on pressure sensors can only recognize standard languages,which hampers effective communication for non-standard language people.Here,we prepare an ultralight Ti_(3)C_(2)T_(x)MXene/chitosan/polyvinylidene difluoride composite aerogel with a detection range of 6.25 Pa-1200 k Pa,rapid response/recovery time,and low hysteresis(13.69%).The wearable aerogel pressure sensor can detect speech information through the throat muscle vibrations without any interference,allowing for accurate recognition of six dialects(96.2%accuracy)and seven different words(96.6%accuracy)with the assistance of convolutional neural networks.This work represents a significant step forward in silent speech recognition for human–machine interaction and physiological signal monitoring. 展开更多
关键词 pressure sensor Wearable sensor Ti_(3)C_(2)T_(x) composite aerogel Dialect speech recognition
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部